COMPARISON OF METHODS FOR ASSESSING THE CONCENTRATION OF EXTRACELLULAR VESICLES ISOLATED FROM DIFFERENT BIOLOGICAL FLUIDS
- Authors: Skryabin G.O1, Enikeev A.D1, Beliaeva A.A1, Zhordania K.I1, Galetsky S.A1, Bagrov D.V1,2, Imaraliev O.T1, Karasev I.A1, Tchevkina E.M1
-
Affiliations:
- Blokhin National Medical Research Center of Oncology
- Faculty of Biology, Lomonosov Moscow State University
- Issue: Vol 90, No 10 (2025)
- Pages: 1474-1486
- Section: Articles
- URL: https://journals.rcsi.science/0320-9725/article/view/355113
- DOI: https://doi.org/10.31857/S0320972525100056
- ID: 355113
Cite item
Abstract
Keywords
About the authors
G. O Skryabin
Blokhin National Medical Research Center of OncologyMoscow, Russia
A. D Enikeev
Blokhin National Medical Research Center of OncologyMoscow, Russia
A. A Beliaeva
Blokhin National Medical Research Center of OncologyMoscow, Russia
K. I Zhordania
Blokhin National Medical Research Center of OncologyMoscow, Russia
S. A Galetsky
Blokhin National Medical Research Center of OncologyMoscow, Russia
D. V Bagrov
Blokhin National Medical Research Center of Oncology; Faculty of Biology, Lomonosov Moscow State UniversityMoscow, Russia; Moscow, Russia
O. T Imaraliev
Blokhin National Medical Research Center of OncologyMoscow, Russia
I. A Karasev
Blokhin National Medical Research Center of OncologyMoscow, Russia
E. M Tchevkina
Blokhin National Medical Research Center of Oncology
Email: tchevkina@mail.ru
Moscow, Russia
References
- Kalluri, R., and LeBleu, V. S. (2020) The biology, function, and biomedical applications of exosomes, Science, 367, eaau6977, https://doi.org/10.1126/science.aau6977.
- Hu, C., Jiang, W., Lv, M., Fan, S., Lu, Y., Wu, Q., and Pi, J. (2022) Potentiality of exosomal proteins as novel cancer biomarkers for liquid biopsy, Front. Immunol., 13, 792046, https://doi.org/10.3389/fimmu.2022.792046.
- Han, Q.-F., Li, W.-J., Hu, K.-S., Gao, J., Zhai, W.-L., Yang, J.-H., and Zhang, S.-J. (2022) Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer, Mol. Cancer, 21, 207, https://doi.org/10.1186/s12943-022-01671-0.
- Welsh, J. A., Goberdhan, D. C. I., O'Driscoll, L., Buzas, E. I., Blenkiron, C., Bussolati, B., Cai, H., Di Vizio, D., Driedonks, T. A. P., and Erdbrugger, U. (2024) Minimal information for studies of extracellular vesicles (MISEY2023): from basic to advanced approaches, J. Extracell. Vesicle, 13, e12404, https://doi.org/10.1002/jev2.12404.
- Vogel, R., Coumans, F. A. W., Maltesen, R.G., Böing, A. N., Bonnington, K. E., Broekman, M.L., Broom, M. F., Buzas, E. I., Christiansen, G., Haiji, N., Kristensen, S. R., Kuehn, M. J., Lund, S. M., Maas, S. L., Nieuwland, R., Ostelkoetxea, X., Schnoor, R., Scicluna, B. J., Shambrook, M., de Vrij, J., and Pedersen, S. (2016) A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing, J. Extracell. Vesicles, 5, 31242, https://doi.org/10.3402/jev.v5.31242.
- Hartjes, T. A., Mytnyk, S., Jenster, G. W., van Steijn, V., and van Royen, M. E. (2019) Extracellular vesicle quantification and characterization: common methods and emerging approaches, Bioengineering, 6, 7, https://doi.org/10.3390/bioengineering6010007.
- Jeppesen, D. K., Zhang, Q., Franklin, J. L., and Coffey, R. J. (2023) Extracellular vesicles and nanoparticles: emerging complexities, Trends Cell Biol., 33, 667-681, https://doi.org/10.1016/j.tcb.2023.01.002.
- Willms, E., Cabafias, C., Mäger, I., Wood, M. J., and Vader, P. (2018) Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression, Front. Immunol., 9, 738, https://doi.org/10.3389/fimmu.2018.00738.
- Brennan, K., Martin, K., FitzGerald, S. P., O'Sullivan, J., Wu, Y., Blanco, A., Richardson, C., and Mc Gee, M. M. (2020) A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum, Sci. Rep., 10, 1039, https://doi.org/10.1038/s41598-020-57497-7.
- Xu, R., Rai, A., Chen, M., Suwakulsiri, W., Greening, D. W., and Simpson, R. J. (2018) Extracellular vesicles in cancer – implications for future improvements in cancer care, Nat. Rev. Clin. Oncol., 15, 617-638, https://doi.org/10.1038/s41571-018-0036-9.
- Comfort, N., Cai, K., Bloomquist, T. R., Strait, M. D., Ferrante, A. W. Jr, and Baccarelli, A.A. (2021) Nanoparticle tracking analysis for the quantification and size determination of extracellular vesicles, J. Vis. Exp., 169, e62447, https://doi.org/10.3791/62447.
- Maas, S. L. N., Breakefield, X. O., and Weaver, A. M. (2017) Extracellular vesicles: unique intercellular delivery vehicles, Trends Cell Biol., 3, 172-188, https://doi.org/10.1016/j.tcb.2016.11.003.
- Tian, Y., Ma, L., Gong, M., Su, G., Zhu, S., Zhang, W., Wang, S., Li, Z., Chen, C., Li, L., Wu, L., and Yan, X. (2018) Protein profiling and sizing of extracellular vesicles from colorectal cancer patients via flow cytometry, ACS Nano, 12, 671-680, https://doi.org/10.1021/acsnano.7b07782.
- Skryabin, G. O., Beliaeva, A. A., Enikeev, A. D., Bagrov, D. V., Keremet, A. M., Komelkov, A. V., Elkin, D. S., Sylantieva, D. M., and Tchevkina, E. M. (2024) Analysis of miRNAs miR-125a-Sp, -27a-Sp, -193a-Sp, -135b-Sp, -451a, -495-Sp and -136-Sp in parental ovarian cancer cells and secreted extracellular vesicles, Adv. Mol. Oncol., 11, 113-123, https://doi.org/10.17650/2313-805X-2024-11-1-113-123.
- Skryabin, G. O., Komelkov, A. V., Zhordania, K. I., Bagrov, D. V., Enikeev, A. D., Galetsky, S.A., Beliaeva, A. A., Kopnin, P. B., Moiseenko, A. V., Senkovenko, A. M., and Tchevkina E. M. (2024) Integrated miRNA profiling of extracellular vesicles from uterine aspirates, malignant ascites and primary-cultured ascites cells for ovarian cancer screening, Pharmaceautics, 16, 902, https://doi.org/10.3390/pharmaceutics16070902.
- Skryabin, G. O., Vinokurova, S. V., Galetsky, S. A., Elkin, D. S., Senkovenko, A. M., Denisova, D. A., Komelkov, A. V., Stillid, I. S., Peregorodiev, I. N., Malikhova, O. A., Imaraliev, O. T., Enikeev, A. D., and Tchevkina, E. M. (2022) Isolation and characterization of extracellular vesicles from gastric juice, Cancers (Basel), 14, 3314, https://doi.org/10.3390/cancers14143314.
- Thery, C., Amigorena, S., Raposo, G., and Clayton, A. (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids, Curr. Protoc. Cell Biol., 30, 3.22.1-3.22.29, https://doi.org/10.1002/0471143030.cb0322830.
- Skryabin, G. O., Komelkov, A. V., Galetsky, S. A., Bagrov, D. V., Evtushenko, E. G., Nikishin, I. I., Zhordania, K. I., Savelyeva, E. E., Akselrod, M. E., Paianidi, I. G., and Tchevkina E. M. (2021) Stomatin is highly expressed in exosomes of different origin and is a promising candidate as an exosomal marker, J. Cell Biochem., 122, 100-115, https://doi.org/10.1002/jcb.29834.
- Beauregard, G., and Roufogalis, B. D. (1979) Characterization of lipid-protein interactions in acetylcholinesterase lipoprotein extracted from bovine erythrocytes, Biochem. J., 179, 109-117, https://doi.org/10.1042/bj1790109.
- Escudero-Cernuda, S., Eiro, N., Fraile, M., Vizoso, F. J., Fernández-Colomer, B., and Fernández-Sánchez, M. L. (2025) Limitations and challenges in the characterization of extracellular vesicles from stem cells and serum, Mikrochim. Acta, 192, 311, https://doi.org/10.1007/s00604-025-07147-4.
- Tkach, M., and Thery, C. (2016) Communication by extracellular vesicles: where we are and where we need to go, Cell, 164, 1226-1232, https://doi.org/10.1016/j.cell.2016.01.043.
- Liao, Z., Jaular, L. M., Soueidi, E., Jouve, M., Muth, D. C., Schøyen, T. H., Seale, T., Haughey, N. J., Ostrowski, M., Thery, C., and Witwer, K. W. (2019) Acetylcholinesterase is not a generic marker of extracellular vesicles, J. Extracell. Vesicles, 8, 1628592, https://doi.org/10.1080/20013078.2019.1628592.
- Grigor'eva, A. E., Dyrkheeva, N. S., Bryzgunova, O. E., Tamkovich, S. N., Chelobanov, B. P., and Ryabchikova, E. I. (2017) Contamination of exosome preparations, isolated from biological fluids, Biomed. Khim., 63, 91-96, https://doi.org/10.18097/PBMC20176301991.
- Skryabin, G., Enikeev, A., Beliaeva, A., Galetsky, S., Bagrov, D., Moiseenko, A., Vnukova, A., Imaraliev, O., Karasev, I., and Tchevkina, E. (2025) Distinctive features of extracellular vesicles present in the gastric juice of patients with gastric cancer and healthy subjects, Int. J. Mol. Sci., 26, 5857, https://doi.org/10.3390/ijms26125857.
- Webber, J., and Clayton, A. (2013) How pure are your vesicles? J. Extracell. Vesicles, 2, 19861, https://doi.org/10.3402/jew.v20i.19861.
- Nelson, B. C., Maragh, S., Ghiran, I. C., Jones, J. C., DeRose, P. C., Elsheikh, E., Vreeland, W. N., and Wang, L. (2020) Measurement and standardization challenges for extracellular vesicle therapeutic delivery vectors, Nanomedicine (Lond), 15, 2149-2170, https://doi.org/10.2217/nnm-2020-0206.
- Erdbrügger, U., and Lannigan, J. (2016) Analytical challenges of extracellular vesicle detection: a comparison of different techniques, Cytometry A, 89, 123-134, https://doi.org/10.1002/cyto.a.22795.
- Zhou, E., Li, Y., Wu, F., Guo, M., Xu, J., Wang, S., et al. (2021) Circulating extracellular vesicles are effective biomarkers for predicting response to cancer therapy, eBioMedicine, 67, 103365, https://doi.org/10.1016/j.ebiom.2021.103365.
- Pink, R.C., Beaman, E.-M., Samuel, P., Brooks, S.A., and Carter, D.R.F. (2022) Utilising extracellular vesicles for early cancer diagnostics: benefits, challenges and recommendations for the future, Br. J. Cancer, 126, 323-330, https://doi.org/10.1038/s41416-021-01668-4.
- Stevic, I., Buescher, G., and Ricklefs, F. L. (2020) Monitoring therapy efficiency in cancer through extracellular vesicles, Cells, 9, 130, https://doi.org/10.3390/cells9010130.
Supplementary files


