EFFECT OF NON-MUSCLE TROPOMYOSIN ISOFORMS ENCODED BY THE TPM1 GENE ON COFILIN-1 ACTIVITY TOWARD ACTIN FILAMENTS
- Authors: Roman S.G1, Slushchev A.V1, Nefedova V.V1, Matyushenko A.M1
-
Affiliations:
- Research Center of Biotechnology of the Russian Academy of Sciences
- Issue: Vol 90, No 9 (2025)
- Pages: 1338-1350
- Section: Articles
- URL: https://journals.rcsi.science/0320-9725/article/view/355099
- DOI: https://doi.org/10.31857/S0320972525090061
- ID: 355099
Cite item
Abstract
About the authors
S. G Roman
Research Center of Biotechnology of the Russian Academy of SciencesMoscow, Russia
A. V Slushchev
Research Center of Biotechnology of the Russian Academy of SciencesMoscow, Russia
V. V Nefedova
Research Center of Biotechnology of the Russian Academy of SciencesMoscow, Russia
A. M Matyushenko
Research Center of Biotechnology of the Russian Academy of Sciences
Email: ammatyushenko@mail.ru
Moscow, Russia
References
- Blanchoin, L., Boujemaa-Paterski, R., Sykes, C., and Plastino, J. (2014) Actin dynamics, architecture, and mechanics in cell motility, Physiol. Rev., 94, 235-263, https://doi.org/10.1152/physrev.00018.2013.
- Pollard, T. D., and Cooper, J. A. (2009) Actin, a central player in cell shape and movement, Science, 326, 1208-1212, https://doi.org/10.1126/science.1175862.
- Katsuta, H., Sokabe, M., and Hirata, H. (2024) From stress fiber to focal adhesion: a role of actin crosslinkers in force transmission, Front. Cell Dev. Biol., 12, 1444827, https://doi.org/10.3389/fcell.2024.1444827.
- Carlier, M.-F., and Shekhar, S. (2017) Global treadmilling coordinates actin turnover and controls the size of actin networks, Nat. Rev. Mol. Cell Biol., 18, 389-401, https://doi.org/10.1038/nrm.2016.172.
- Chaffer, C. L., San Juan, B. P., Lim, E., and Weinberg, R. A. (2016) EMT, cell plasticity and metastasis, Cancer Metastasis Rev., 35, 645-654, https://doi.org/10.1007/s10555-016-9648-7.
- Fife, C. M., McCarroll, J. A., and Kavallaris, M. (2014) Movers and shakers: cell cytoskeleton in cancer metastasis, Br. J. Pharmacol., 171, 5507-5523, https://doi.org/10.1111/bph.12704.
- Gibieza, P., and Petrikaitis, V. (2021) The regulation of actin dynamics during cell division and malignancy, Am. J. Cancer Res., 11, 4050-4069.
- Khaitlina, S. Y. (2014) Intracellular transport based on actin polymerization, Biochemistry (Moscow), 79, 917-927, https://doi.org/10.1134/S0006297914090089.
- Bamburg, J. R. (1999) Proteins of the ADF/cofilin family: essential regulators of actin dynamics, Annu. Rev. Cell Dev. Biol., 15, 185-230, https://doi.org/10.1146/annurev.cellbio.15.1.185.
- Carlier, M.-F., Laurent, V., Santolini, J., Melki, R., Didry, D., Xia, G.-X., Hong, Y., Chua, N.-H., and Pantaloni, D. (1997) Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility, J. Cell Biol., 136, 1307-1322, https://doi.org/10.1083/jcb.136.6.1307.
- Blanchoin, L., and Pollard, T. D. (1998) Interaction of actin monomers with acanthamoeba ectophorin (ADF/cofilin) and profilin, J. Biol. Chem., 273, 25106-25111, https://doi.org/10.1074/jbc.273.39.25106.
- De La Cruz, E. M. (2009) How cofilin severs an actin filament, Biophys. Rev., 1, 51-59, https://doi.org/10.1007/s12551-009-0008-5.
- McCullough, B. R., Grintsevich, E. E., Chen, C. K., Kang, H., Hutchison, A. L., Henn, A., Cao, W., Suarez, C., Martiel, J.-L., Blanchoin, L., Reisler, E., and De La Cruz, E. M. (2011) Cofilin-linked changes in actin filament flexibility promote severing, Biophys. J., 101, 151-159, https://doi.org/10.1016/j.bpj.2011.05.049.
- Galkin, V. E., Orlova, A., Kudryashov, D. S., Solodukhin, A., Reisler, E., Schröder, G. F., and Egelman, E. H. (2011) Remodeling of actin filaments by ADF/cofilin proteins, Proc. Natl. Acad. Sci. USA, 108, 20568-20572, https://doi.org/10.1073/pnas.1110109108.
- Prochniewicz, E., Janson, N., Thomas, D. D., and De La Cruz, E. M. (2005) Cofilin increases the torsional flexibility and dynamics of actin filaments, J. Mol. Biol., 353, 990-1000, https://doi.org/10.1016/j.jmb.2005.09.021.
- McGough, A., Pope, B., Chiu, W., and Weeds, A. (1997) Cofilin changes the twist of f-actin: implications for actin filament dynamics and cellular function, J. Cell Biol., 138, 771-781, https://doi.org/10.1083/jcb.138.4.771.
- McCullough, B. R., Blanchoin, L., Martiel, J.-L., and De La Cruz, E. M. (2008) Cofilin increases the bending flexibility of actin filaments: implications for severing and cell mechanics, J. Mol. Biol., 381, 550-558, https://doi.org/10.1016/j.jmb.2008.05.055.
- Dedova, I. V., Nikolaeva, O. P., Mikhailova, V. V., Dos Remedios, C. G., and Levitsky, D. I. (2004) Two opposite effects of cofilin on the thermal unfolding of F-actin: a differential scanning calorimetric study, Biophys. Chem., 110, 119-128, https://doi.org/10.1016/j.bpc.2004.01.009.
- Pavlov, D., Muhlrad, A., Cooper, J., Wear, M., and Reisler, E. (2007) Actin filament severing by cofilin, J. Mol. Biol., 365, 1350-1358, https://doi.org/10.1016/j.jmb.2006.10.102.
- Bamburg, J. R., and Bernstein, B. W. (2016) Actin dynamics and cofilin-actin rods in Alzheimer disease, Cytoskeleton, 73, 477-497, https://doi.org/10.1002/cm.21282.
- Kanellos, G., and Frame, M. C. (2016) Cellular functions of the ADF/cofilin family at a glance, J. Cell Sci., 129, 3211-3218, https://doi.org/10.1242/jcs.187849.
- Ohashi, K. (2015) Roles of cofilin in development and its mechanisms of regulation, Dev. Growth Differ., 57, 275-290, https://doi.org/10.1111/dgd.12213.
- Thirion, C., Stucka, R., Mendel, B., Gruhler, A., Jaksch, M., Nowak, K. J., Binz, N., Laing, N. G., and Lochmüller, H. (2001) Characterization of human muscle type cofilin (CFL2) in normal and regenerating muscle, Eur. J. Biochem., 268, 3473-3482, https://doi.org/10.1046/j.1432-1327.2001.02247.x.
- Kremneva, E., Makkonen, M. H., Skwarek-Maruszewska, A., Gateva, G., Michelot, A., Dominguez, R., and Lappalainen, P. (2014) Cofilin-2 controls actin filament length in muscle sarcomeres, Dev. Cell, 31, 215-226, https://doi.org/10.1016/j.devcel.2014.09.002.
- Sexton, J. A., Potchernikov, T., Bibeau, J. P., Casanova-Sepúlveda, G., Cao, W., Lou, H. J., Boggon, T. J., De La Cruz, E. M., and Turk, B. E. (2024) Distinct functional constraints driving conservation of the cofilin N-terminal regulatory tail, Nat. Commun., 15, 1426, https://doi.org/10.1038/s41467-024-45878-9.
- Moriyama, K., Iida, K., and Yahara, I. (1996) Phosphorylation of Ser-3 of cofilin regulates its essential function on actin, Genes Cells, 1, 73-86, https://doi.org/10.1046/j.1365-2443.1996.05005.x.
- Niwa, R., Nagata-Ohashi, K., Takeichi, M., Mizuno, K., and Uemura, T. (2002) Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin, Cell, 108, 233-246, https://doi.org/10.1016/S0092-8674(01)00638-9.
- Ono, S. (2018) Functions of actin-interacting protein 1 (AIP1)/WD repeat protein 1 (WDR1) in actin filament dynamics and cytoskeletal regulation, Biochem. Biophys. Res. Commun., 506, 315-322, https://doi.org/10.1016/j.bbrc.2017.10.096.
- Ostrowska-Podhorodecka, Z., Śliwińska, M., Reisler, E., and Moraczewska, J. (2020) Tropomyosin isoforms regulate cofilin 1 activity by modulating actin filament conformation, Arch. Biochem. Biophys., 682, 108280, https://doi.org/10.1016/j.abb.2020.108280.
- Geeves, M. A., Hitchcock-Defregori, S. E., and Gunning, P. W. (2015) A systematic nomenclature for mammalian tropomyosin isoforms, J. Muscle Res. Cell Motil., 36, 147-153, https://doi.org/10.1007/s10974-014-9389-6.
- Nevzorov, I. A., and Levitsky, D. I. (2011) Tropomyosin: double helix from the protein world, Biochemistry (Moscow), 76, 1507-1527, https://doi.org/10.1134/S0006297911130098.
- Janco, M., Bonello, T. T., Byun, A., Coster, A. C. F., Lebhar, H., Dedova, I., Gunning, P. W., and Böcking, T. (2016) The impact of tropomyosins on actin filament assembly is isoform specific, BioArchitecture, 6, 61-75, https://doi.org/10.1080/19490992.2016.1201619.
- Gray, K. T., Kostyukova, A. S., and Fath, T. (2017) Actin regulation by tropomodulin and tropomyosin in neuronal morphogenesis and function, Mol. Cell. Neurosci., 84, 48-57, https://doi.org/10.1016/j.mcn.2017.04.002.
- Gunning, P. W., Hardeman, E. C., Lappalainen, P., and Mulvihill, D. P. (2015) Tropomyosin – master regulator of actin filament function in the cytoskeleton, J. Cell Sci., 128, 2965-2974, https://doi.org/10.1242/jcs.172502.
- Sung, L. A., Gao, K. M., Yee, L. J., Temm-Grove, C. J., Helfman, D. M., Lin, J. J., and Mehrpouryan, M. (2000) Tropomyosin isoform 5b is expressed in human erythrocytes: implications of tropomodulin-TM5 or tropomodulin-TM5 complexes in the protofilament and hexagonal organization of membrane skeletons, Blood, 95, 1473-1480, https://doi.org/10.1182/blood.v95.4.1473.004k50_1473_1480.
- Gokhin, D. S., and Fowler, V. M. (2016) Feisty filaments: actin dynamics in the red blood cell membrane skeleton, Curr. Opin. Hematol., 23, 206-214, https://doi.org/10.1097/MOH.0000000000000227.
- Fowler, V. M. (2013) The human erythrocyte plasma membrane, Curr. Top. Membr., 72, 39-88, https://doi.org/10.1016/B978-0-12-417027-8.00002-7.
- Sui, Z., Gokhin, D. S., Nowak, R. B., Guo, X., An, X., and Fowler, V. M. (2017) Stabilization of F-actin by tropomyosin isoforms regulates the morphology and mechanical behavior of red blood cells, Mol. Biol. Cell, 28, 2531-2542, https://doi.org/10.1091/mbc.e16-10-0699.
- Hughes, J. A. I., Cooke-Yarborough, C. M., Chadwick, N. C., Schevzov, G., Arbuckle, S. M., Gunning, P., and Weinberger, R. P. (2003) High-molecular-weight tropomyosins localize to the contractile rings of dividing CNS cells but are absent from malignant pediatric and adult CNS tumors, Glia, 42, 25-35, https://doi.org/10.1002/glia.10174.
- Dalby-Payne, J. R., O’Loughlin, E. V., and Gunning, P. (2003) Polarization of specific tropomyosin isoforms in gastrointestinal epithelial cells and their impact on CFTR at the apical surface, Mol. Biol. Cell, 14, 4365-4375, https://doi.org/10.1091/mbc.e03-03-0169.
- Schevzov, G., Whittaker, S. P., Fath, T., Lin, J. J., and Gunning, P. W. (2011) Tropomyosin isoforms and reagents, Bioarchitecture, 1, 135-164, https://doi.org/10.4161/bioa.1.4.17897.
- Lin, J. J.-C., Eppinga, R. D., Warren, K. S., and McCrae, K. R. (2008) Human tropomyosin isoforms in the regulation of cytoskeleton functions, Adv. Exp. Med. Biol., 644, 201-222, https://doi.org/10.1007/978-0-387-85766-4_16.
- Manstein, D. J., and Mulvihill, D. P. (2016) Tropomyosin-mediated regulation of cytoplasmic myosins, Traffic, 17, 872-877, https://doi.org/10.1111/tra.12399.
- Blanchoin, L., Pollard, T. D., and Hitchcock-Defregori, S. E. (2001) Inhibition of the Arp2/3 complex-nucleated actin polymerization and branch formation by tropomyosin, Curr. Biol., 11, 1300-1304, https://doi.org/10.1016/S0960-9822(01)00395-5.
- Kuhn, T. B., and Bamburg, J. R. (2008) Tropomyosin and ADF/cofilin as collaborators and competitors, Adv. Exp. Med. Biol., 644, 232-249, https://doi.org/10.1007/978-0-387-85766-4_18.
- Robaszkiewicz, K., Ostrowska, Z., Marchiewicz, K., and Moraczewska, J. (2016) Tropomyosin isoforms differentially modulate the regulation of actin filament polymerization and depolymerization by cofilins, FEBS J., 283, 723-737, https://doi.org/10.1111/febs.13626.
- Robaszkiewicz, K., Śliwińska, M., and Moraczewska, J. (2020) Regulation of actin filament length by muscle isoforms of tropomyosin and cofilin, Int. J. Mol. Sci., 21, 4285, https://doi.org/10.3390/ijms21124285.
- Robaszkiewicz, K., Wróbel, J., and Moraczewska, J. (2023) Troponin and a myopathy-linked mutation in TPM3 inhibit cofilin-2-induced thin filament depolymerization, Int. J. Mol. Sci., 24, 16457, https://doi.org/10.3390/ijms242216457.
- Ostrowska, Z., Robaszkiewicz, K., and Moraczewska, J. (2017) Regulation of actin filament turnover by cofilin-1 and cytoplasmic tropomyosin isoforms, Biochim. Biophys. Acta Prot. Proteomics, 1865, 88-98, https://doi.org/10.1016/j.bbapap.2016.09.019.
- Selvaraj, M., Kokate, S. B., Reggiano, G., Kogan, K., Kotila, T., Kremneva, E., DiMaio, F., Lappalainen, P., and Huiskonen, J. T. (2023) Structural basis underlying specific biochemical activities of non-muscle tropomyosin isoforms, Cell Rep., 42, 111900, https://doi.org/10.1016/j.celrep.2022.111900.
- Gateva, G., Kremneva, E., Reindl, T., Kotila, T., Kogan, K., Gressin, L., Gunning, P. W., Manstein, D. J., Michelot, A., and Lappalainen, P. (2017) Tropomyosin isoforms specify functionally distinct actin filament populations in vitro, Curr. Biol., 27, 705-713, https://doi.org/10.1016/j.cub.2017.01.018.
- Marchenko, M., Nefedova, V., Artemova, N., Kleymenov, S., Levitsky, D., and Matyushenko, A. (2021) Structural and functional peculiarities of cytoplasmic tropomyosin isoforms, the products of TPM1 and TPM4 genes, Int. J. Mol. Sci., 22, 5141, https://doi.org/10.3390/ijms22105141.
- Lapshina, K. K., Nefedova, V. V., Nabiev, S. R., Roman, S. G., Shchepkin, D. V., Kopylova, G. V., Kochurova, A. M., Beldija, E. A., Kleymenov, S. Y., Levitsky, D. I., and Matyushenko, A. M. (2024) Functional and structural properties of cytoplasmic tropomyosin isoforms Tpm1.8 and Tpm1.9, Int. J. Mol. Sci., 25, 6873, https://doi.org/10.3390/ijms25136873.
- Monteiro, P. B., Lataro, R. C., Ferro, J. A., and Reinach, F. de C. (1994) Functional alpha-tropomyosin produced in Escherichia coli. A dipeptide extension can substitute the amino-terminal acetyl group, J. Biol. Chem., 269, 10461-10466, https://doi.org/10.1016/S0021-9258(17)34082-6.
- Umeki, N., Hirose, K., and Uyeda, T. Q. P. (2016) Cofilin-induced cooperative conformational changes of actin subunits revealed using cofilin-actin fusion protein, Sci. Rep., 6, 20406, https://doi.org/10.1038/srep20406.
- Pardee, J. D., and Aspudich, J. (1982) Purification of muscle actin, Methods Enzymol., 85, 164-181, https://doi.org/10.1016/0076-6879(82)85020-9.
- Bobkov, A. A., Muhlrad, A., Shvetsov, A., Benchatar, S., Scoville, D., Almo, S. C., and Reisler, E. (2004) Cofilin (ADF) affects lateral contacts in F-actin, J. Mol. Biol., 337, 93-104, https://doi.org/10.1016/j.jmb.2004.01.014.
- Chou, S. Z., and Pollard, T. D. (2020) Cryo-electron microscopy structures of pyrene-labeled ADP-Pi- and ADP-actin filaments, Nat. Commun., 11, 5897, https://doi.org/10.1038/s41467-020-19762-1.
- Muhlrad, A., Ringel, I., Pavlov, D., Peyser, Y. M., and Reisler, E. (2006) Antagonistic effects of cofilin, beryllium fluoride complex, and phalloidin on subdomain 2 and nucleotide-binding cleft in F-actin, Biophys. J., 91, 4490-4499, https://doi.org/10.1529/biophysj.106.087767.
- Gunning, P., O'Neill, G., and Hardeman, E. (2008) Tropomyosin-based regulation of the actin cytoskeleton in time and space, Physiol. Rev., 88, 1-35, https://doi.org/10.1152/physrev.00001.2007.
- Kis-Bieskei, N., Vig, A., Nyirrai, M., Bugyi, B., and Talian, G. C. (2013) Purification of tropomyosin Br-3 and SNM1 and characterization of their interactions with actin, Cytoskeleton, 70, 755-765, https://doi.org/10.1002/cm.21143.
- Moraczewska, J., Nicholson-Flynn, K., and Hitchcock-DeGregori, S. E. (1999) The ends of tropomyosin are major determinants of actin affinity and myosin subfragment 1-induced binding to F-actin in the open state, Biochemistry, 38, 15885-15892, https://doi.org/10.1021/bi991816j.
- Matyushenko, A. M., Koubassova, N. A., Shchepkin, D. V., Kopylova, G. V., Nabiev, S. R., Nikitina, L. V., Bershitsky, S. Y., Levitsky, D. I., and Tsaturyan, A. K. (2019) The effects of cardiomyopathy-associated mutations in the head-to-tail overlap junction of α-tropomyosin on its properties and interaction with actin, Int. J. Biol. Macromol., 125, 1266-1274, https://doi.org/10.1016/j.ijbiomac.2018.09.105.
- Matyushenko, A. M., Shchepkin, D. V., Kopylova, G. V., Bershitsky, S. Y., and Levitsky, D. I. (2020) Unique functional properties of slow skeletal muscle tropomyosin, Biochimie, 174, 1-8, https://doi.org/10.1016/j.biochi.2020.03.013.
Supplementary files


