EFFECT OF NON-MUSCLE TROPOMYOSIN ISOFORMS ENCODED BY THE TPM1 GENE ON COFILIN-1 ACTIVITY TOWARD ACTIN FILAMENTS
- 作者: Roman S.G1, Slushchev A.V1, Nefedova V.V1, Matyushenko A.M1
-
隶属关系:
- Research Center of Biotechnology of the Russian Academy of Sciences
- 期: 卷 90, 编号 9 (2025)
- 页面: 1338-1350
- 栏目: Articles
- URL: https://journals.rcsi.science/0320-9725/article/view/355099
- DOI: https://doi.org/10.31857/S0320972525090061
- ID: 355099
如何引用文章
详细
作者简介
S. Roman
Research Center of Biotechnology of the Russian Academy of SciencesMoscow, Russia
A. Slushchev
Research Center of Biotechnology of the Russian Academy of SciencesMoscow, Russia
V. Nefedova
Research Center of Biotechnology of the Russian Academy of SciencesMoscow, Russia
A. Matyushenko
Research Center of Biotechnology of the Russian Academy of Sciences
Email: ammatyushenko@mail.ru
Moscow, Russia
参考
- Blanchoin, L., Boujemaa-Paterski, R., Sykes, C., and Plastino, J. (2014) Actin dynamics, architecture, and mechanics in cell motility, Physiol. Rev., 94, 235-263, https://doi.org/10.1152/physrev.00018.2013.
- Pollard, T. D., and Cooper, J. A. (2009) Actin, a central player in cell shape and movement, Science, 326, 1208-1212, https://doi.org/10.1126/science.1175862.
- Katsuta, H., Sokabe, M., and Hirata, H. (2024) From stress fiber to focal adhesion: a role of actin crosslinkers in force transmission, Front. Cell Dev. Biol., 12, 1444827, https://doi.org/10.3389/fcell.2024.1444827.
- Carlier, M.-F., and Shekhar, S. (2017) Global treadmilling coordinates actin turnover and controls the size of actin networks, Nat. Rev. Mol. Cell Biol., 18, 389-401, https://doi.org/10.1038/nrm.2016.172.
- Chaffer, C. L., San Juan, B. P., Lim, E., and Weinberg, R. A. (2016) EMT, cell plasticity and metastasis, Cancer Metastasis Rev., 35, 645-654, https://doi.org/10.1007/s10555-016-9648-7.
- Fife, C. M., McCarroll, J. A., and Kavallaris, M. (2014) Movers and shakers: cell cytoskeleton in cancer metastasis, Br. J. Pharmacol., 171, 5507-5523, https://doi.org/10.1111/bph.12704.
- Gibieza, P., and Petrikaitis, V. (2021) The regulation of actin dynamics during cell division and malignancy, Am. J. Cancer Res., 11, 4050-4069.
- Khaitlina, S. Y. (2014) Intracellular transport based on actin polymerization, Biochemistry (Moscow), 79, 917-927, https://doi.org/10.1134/S0006297914090089.
- Bamburg, J. R. (1999) Proteins of the ADF/cofilin family: essential regulators of actin dynamics, Annu. Rev. Cell Dev. Biol., 15, 185-230, https://doi.org/10.1146/annurev.cellbio.15.1.185.
- Carlier, M.-F., Laurent, V., Santolini, J., Melki, R., Didry, D., Xia, G.-X., Hong, Y., Chua, N.-H., and Pantaloni, D. (1997) Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility, J. Cell Biol., 136, 1307-1322, https://doi.org/10.1083/jcb.136.6.1307.
- Blanchoin, L., and Pollard, T. D. (1998) Interaction of actin monomers with acanthamoeba ectophorin (ADF/cofilin) and profilin, J. Biol. Chem., 273, 25106-25111, https://doi.org/10.1074/jbc.273.39.25106.
- De La Cruz, E. M. (2009) How cofilin severs an actin filament, Biophys. Rev., 1, 51-59, https://doi.org/10.1007/s12551-009-0008-5.
- McCullough, B. R., Grintsevich, E. E., Chen, C. K., Kang, H., Hutchison, A. L., Henn, A., Cao, W., Suarez, C., Martiel, J.-L., Blanchoin, L., Reisler, E., and De La Cruz, E. M. (2011) Cofilin-linked changes in actin filament flexibility promote severing, Biophys. J., 101, 151-159, https://doi.org/10.1016/j.bpj.2011.05.049.
- Galkin, V. E., Orlova, A., Kudryashov, D. S., Solodukhin, A., Reisler, E., Schröder, G. F., and Egelman, E. H. (2011) Remodeling of actin filaments by ADF/cofilin proteins, Proc. Natl. Acad. Sci. USA, 108, 20568-20572, https://doi.org/10.1073/pnas.1110109108.
- Prochniewicz, E., Janson, N., Thomas, D. D., and De La Cruz, E. M. (2005) Cofilin increases the torsional flexibility and dynamics of actin filaments, J. Mol. Biol., 353, 990-1000, https://doi.org/10.1016/j.jmb.2005.09.021.
- McGough, A., Pope, B., Chiu, W., and Weeds, A. (1997) Cofilin changes the twist of f-actin: implications for actin filament dynamics and cellular function, J. Cell Biol., 138, 771-781, https://doi.org/10.1083/jcb.138.4.771.
- McCullough, B. R., Blanchoin, L., Martiel, J.-L., and De La Cruz, E. M. (2008) Cofilin increases the bending flexibility of actin filaments: implications for severing and cell mechanics, J. Mol. Biol., 381, 550-558, https://doi.org/10.1016/j.jmb.2008.05.055.
- Dedova, I. V., Nikolaeva, O. P., Mikhailova, V. V., Dos Remedios, C. G., and Levitsky, D. I. (2004) Two opposite effects of cofilin on the thermal unfolding of F-actin: a differential scanning calorimetric study, Biophys. Chem., 110, 119-128, https://doi.org/10.1016/j.bpc.2004.01.009.
- Pavlov, D., Muhlrad, A., Cooper, J., Wear, M., and Reisler, E. (2007) Actin filament severing by cofilin, J. Mol. Biol., 365, 1350-1358, https://doi.org/10.1016/j.jmb.2006.10.102.
- Bamburg, J. R., and Bernstein, B. W. (2016) Actin dynamics and cofilin-actin rods in Alzheimer disease, Cytoskeleton, 73, 477-497, https://doi.org/10.1002/cm.21282.
- Kanellos, G., and Frame, M. C. (2016) Cellular functions of the ADF/cofilin family at a glance, J. Cell Sci., 129, 3211-3218, https://doi.org/10.1242/jcs.187849.
- Ohashi, K. (2015) Roles of cofilin in development and its mechanisms of regulation, Dev. Growth Differ., 57, 275-290, https://doi.org/10.1111/dgd.12213.
- Thirion, C., Stucka, R., Mendel, B., Gruhler, A., Jaksch, M., Nowak, K. J., Binz, N., Laing, N. G., and Lochmüller, H. (2001) Characterization of human muscle type cofilin (CFL2) in normal and regenerating muscle, Eur. J. Biochem., 268, 3473-3482, https://doi.org/10.1046/j.1432-1327.2001.02247.x.
- Kremneva, E., Makkonen, M. H., Skwarek-Maruszewska, A., Gateva, G., Michelot, A., Dominguez, R., and Lappalainen, P. (2014) Cofilin-2 controls actin filament length in muscle sarcomeres, Dev. Cell, 31, 215-226, https://doi.org/10.1016/j.devcel.2014.09.002.
- Sexton, J. A., Potchernikov, T., Bibeau, J. P., Casanova-Sepúlveda, G., Cao, W., Lou, H. J., Boggon, T. J., De La Cruz, E. M., and Turk, B. E. (2024) Distinct functional constraints driving conservation of the cofilin N-terminal regulatory tail, Nat. Commun., 15, 1426, https://doi.org/10.1038/s41467-024-45878-9.
- Moriyama, K., Iida, K., and Yahara, I. (1996) Phosphorylation of Ser-3 of cofilin regulates its essential function on actin, Genes Cells, 1, 73-86, https://doi.org/10.1046/j.1365-2443.1996.05005.x.
- Niwa, R., Nagata-Ohashi, K., Takeichi, M., Mizuno, K., and Uemura, T. (2002) Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin, Cell, 108, 233-246, https://doi.org/10.1016/S0092-8674(01)00638-9.
- Ono, S. (2018) Functions of actin-interacting protein 1 (AIP1)/WD repeat protein 1 (WDR1) in actin filament dynamics and cytoskeletal regulation, Biochem. Biophys. Res. Commun., 506, 315-322, https://doi.org/10.1016/j.bbrc.2017.10.096.
- Ostrowska-Podhorodecka, Z., Śliwińska, M., Reisler, E., and Moraczewska, J. (2020) Tropomyosin isoforms regulate cofilin 1 activity by modulating actin filament conformation, Arch. Biochem. Biophys., 682, 108280, https://doi.org/10.1016/j.abb.2020.108280.
- Geeves, M. A., Hitchcock-Defregori, S. E., and Gunning, P. W. (2015) A systematic nomenclature for mammalian tropomyosin isoforms, J. Muscle Res. Cell Motil., 36, 147-153, https://doi.org/10.1007/s10974-014-9389-6.
- Nevzorov, I. A., and Levitsky, D. I. (2011) Tropomyosin: double helix from the protein world, Biochemistry (Moscow), 76, 1507-1527, https://doi.org/10.1134/S0006297911130098.
- Janco, M., Bonello, T. T., Byun, A., Coster, A. C. F., Lebhar, H., Dedova, I., Gunning, P. W., and Böcking, T. (2016) The impact of tropomyosins on actin filament assembly is isoform specific, BioArchitecture, 6, 61-75, https://doi.org/10.1080/19490992.2016.1201619.
- Gray, K. T., Kostyukova, A. S., and Fath, T. (2017) Actin regulation by tropomodulin and tropomyosin in neuronal morphogenesis and function, Mol. Cell. Neurosci., 84, 48-57, https://doi.org/10.1016/j.mcn.2017.04.002.
- Gunning, P. W., Hardeman, E. C., Lappalainen, P., and Mulvihill, D. P. (2015) Tropomyosin – master regulator of actin filament function in the cytoskeleton, J. Cell Sci., 128, 2965-2974, https://doi.org/10.1242/jcs.172502.
- Sung, L. A., Gao, K. M., Yee, L. J., Temm-Grove, C. J., Helfman, D. M., Lin, J. J., and Mehrpouryan, M. (2000) Tropomyosin isoform 5b is expressed in human erythrocytes: implications of tropomodulin-TM5 or tropomodulin-TM5 complexes in the protofilament and hexagonal organization of membrane skeletons, Blood, 95, 1473-1480, https://doi.org/10.1182/blood.v95.4.1473.004k50_1473_1480.
- Gokhin, D. S., and Fowler, V. M. (2016) Feisty filaments: actin dynamics in the red blood cell membrane skeleton, Curr. Opin. Hematol., 23, 206-214, https://doi.org/10.1097/MOH.0000000000000227.
- Fowler, V. M. (2013) The human erythrocyte plasma membrane, Curr. Top. Membr., 72, 39-88, https://doi.org/10.1016/B978-0-12-417027-8.00002-7.
- Sui, Z., Gokhin, D. S., Nowak, R. B., Guo, X., An, X., and Fowler, V. M. (2017) Stabilization of F-actin by tropomyosin isoforms regulates the morphology and mechanical behavior of red blood cells, Mol. Biol. Cell, 28, 2531-2542, https://doi.org/10.1091/mbc.e16-10-0699.
- Hughes, J. A. I., Cooke-Yarborough, C. M., Chadwick, N. C., Schevzov, G., Arbuckle, S. M., Gunning, P., and Weinberger, R. P. (2003) High-molecular-weight tropomyosins localize to the contractile rings of dividing CNS cells but are absent from malignant pediatric and adult CNS tumors, Glia, 42, 25-35, https://doi.org/10.1002/glia.10174.
- Dalby-Payne, J. R., O’Loughlin, E. V., and Gunning, P. (2003) Polarization of specific tropomyosin isoforms in gastrointestinal epithelial cells and their impact on CFTR at the apical surface, Mol. Biol. Cell, 14, 4365-4375, https://doi.org/10.1091/mbc.e03-03-0169.
- Schevzov, G., Whittaker, S. P., Fath, T., Lin, J. J., and Gunning, P. W. (2011) Tropomyosin isoforms and reagents, Bioarchitecture, 1, 135-164, https://doi.org/10.4161/bioa.1.4.17897.
- Lin, J. J.-C., Eppinga, R. D., Warren, K. S., and McCrae, K. R. (2008) Human tropomyosin isoforms in the regulation of cytoskeleton functions, Adv. Exp. Med. Biol., 644, 201-222, https://doi.org/10.1007/978-0-387-85766-4_16.
- Manstein, D. J., and Mulvihill, D. P. (2016) Tropomyosin-mediated regulation of cytoplasmic myosins, Traffic, 17, 872-877, https://doi.org/10.1111/tra.12399.
- Blanchoin, L., Pollard, T. D., and Hitchcock-Defregori, S. E. (2001) Inhibition of the Arp2/3 complex-nucleated actin polymerization and branch formation by tropomyosin, Curr. Biol., 11, 1300-1304, https://doi.org/10.1016/S0960-9822(01)00395-5.
- Kuhn, T. B., and Bamburg, J. R. (2008) Tropomyosin and ADF/cofilin as collaborators and competitors, Adv. Exp. Med. Biol., 644, 232-249, https://doi.org/10.1007/978-0-387-85766-4_18.
- Robaszkiewicz, K., Ostrowska, Z., Marchiewicz, K., and Moraczewska, J. (2016) Tropomyosin isoforms differentially modulate the regulation of actin filament polymerization and depolymerization by cofilins, FEBS J., 283, 723-737, https://doi.org/10.1111/febs.13626.
- Robaszkiewicz, K., Śliwińska, M., and Moraczewska, J. (2020) Regulation of actin filament length by muscle isoforms of tropomyosin and cofilin, Int. J. Mol. Sci., 21, 4285, https://doi.org/10.3390/ijms21124285.
- Robaszkiewicz, K., Wróbel, J., and Moraczewska, J. (2023) Troponin and a myopathy-linked mutation in TPM3 inhibit cofilin-2-induced thin filament depolymerization, Int. J. Mol. Sci., 24, 16457, https://doi.org/10.3390/ijms242216457.
- Ostrowska, Z., Robaszkiewicz, K., and Moraczewska, J. (2017) Regulation of actin filament turnover by cofilin-1 and cytoplasmic tropomyosin isoforms, Biochim. Biophys. Acta Prot. Proteomics, 1865, 88-98, https://doi.org/10.1016/j.bbapap.2016.09.019.
- Selvaraj, M., Kokate, S. B., Reggiano, G., Kogan, K., Kotila, T., Kremneva, E., DiMaio, F., Lappalainen, P., and Huiskonen, J. T. (2023) Structural basis underlying specific biochemical activities of non-muscle tropomyosin isoforms, Cell Rep., 42, 111900, https://doi.org/10.1016/j.celrep.2022.111900.
- Gateva, G., Kremneva, E., Reindl, T., Kotila, T., Kogan, K., Gressin, L., Gunning, P. W., Manstein, D. J., Michelot, A., and Lappalainen, P. (2017) Tropomyosin isoforms specify functionally distinct actin filament populations in vitro, Curr. Biol., 27, 705-713, https://doi.org/10.1016/j.cub.2017.01.018.
- Marchenko, M., Nefedova, V., Artemova, N., Kleymenov, S., Levitsky, D., and Matyushenko, A. (2021) Structural and functional peculiarities of cytoplasmic tropomyosin isoforms, the products of TPM1 and TPM4 genes, Int. J. Mol. Sci., 22, 5141, https://doi.org/10.3390/ijms22105141.
- Lapshina, K. K., Nefedova, V. V., Nabiev, S. R., Roman, S. G., Shchepkin, D. V., Kopylova, G. V., Kochurova, A. M., Beldija, E. A., Kleymenov, S. Y., Levitsky, D. I., and Matyushenko, A. M. (2024) Functional and structural properties of cytoplasmic tropomyosin isoforms Tpm1.8 and Tpm1.9, Int. J. Mol. Sci., 25, 6873, https://doi.org/10.3390/ijms25136873.
- Monteiro, P. B., Lataro, R. C., Ferro, J. A., and Reinach, F. de C. (1994) Functional alpha-tropomyosin produced in Escherichia coli. A dipeptide extension can substitute the amino-terminal acetyl group, J. Biol. Chem., 269, 10461-10466, https://doi.org/10.1016/S0021-9258(17)34082-6.
- Umeki, N., Hirose, K., and Uyeda, T. Q. P. (2016) Cofilin-induced cooperative conformational changes of actin subunits revealed using cofilin-actin fusion protein, Sci. Rep., 6, 20406, https://doi.org/10.1038/srep20406.
- Pardee, J. D., and Aspudich, J. (1982) Purification of muscle actin, Methods Enzymol., 85, 164-181, https://doi.org/10.1016/0076-6879(82)85020-9.
- Bobkov, A. A., Muhlrad, A., Shvetsov, A., Benchatar, S., Scoville, D., Almo, S. C., and Reisler, E. (2004) Cofilin (ADF) affects lateral contacts in F-actin, J. Mol. Biol., 337, 93-104, https://doi.org/10.1016/j.jmb.2004.01.014.
- Chou, S. Z., and Pollard, T. D. (2020) Cryo-electron microscopy structures of pyrene-labeled ADP-Pi- and ADP-actin filaments, Nat. Commun., 11, 5897, https://doi.org/10.1038/s41467-020-19762-1.
- Muhlrad, A., Ringel, I., Pavlov, D., Peyser, Y. M., and Reisler, E. (2006) Antagonistic effects of cofilin, beryllium fluoride complex, and phalloidin on subdomain 2 and nucleotide-binding cleft in F-actin, Biophys. J., 91, 4490-4499, https://doi.org/10.1529/biophysj.106.087767.
- Gunning, P., O'Neill, G., and Hardeman, E. (2008) Tropomyosin-based regulation of the actin cytoskeleton in time and space, Physiol. Rev., 88, 1-35, https://doi.org/10.1152/physrev.00001.2007.
- Kis-Bieskei, N., Vig, A., Nyirrai, M., Bugyi, B., and Talian, G. C. (2013) Purification of tropomyosin Br-3 and SNM1 and characterization of their interactions with actin, Cytoskeleton, 70, 755-765, https://doi.org/10.1002/cm.21143.
- Moraczewska, J., Nicholson-Flynn, K., and Hitchcock-DeGregori, S. E. (1999) The ends of tropomyosin are major determinants of actin affinity and myosin subfragment 1-induced binding to F-actin in the open state, Biochemistry, 38, 15885-15892, https://doi.org/10.1021/bi991816j.
- Matyushenko, A. M., Koubassova, N. A., Shchepkin, D. V., Kopylova, G. V., Nabiev, S. R., Nikitina, L. V., Bershitsky, S. Y., Levitsky, D. I., and Tsaturyan, A. K. (2019) The effects of cardiomyopathy-associated mutations in the head-to-tail overlap junction of α-tropomyosin on its properties and interaction with actin, Int. J. Biol. Macromol., 125, 1266-1274, https://doi.org/10.1016/j.ijbiomac.2018.09.105.
- Matyushenko, A. M., Shchepkin, D. V., Kopylova, G. V., Bershitsky, S. Y., and Levitsky, D. I. (2020) Unique functional properties of slow skeletal muscle tropomyosin, Biochimie, 174, 1-8, https://doi.org/10.1016/j.biochi.2020.03.013.
补充文件

