Restriction–Modification Systems with Specificity GGATC, GATGC and GATGG. Part 2. Functionality and Structural Issues

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The structural and functional issues of protein functionality of restriction-modification systems recognizing one of the GGATC/GATCC, GATGC/GCATC, and GATGG/CCATC sites have been studied using bioinformatics methods. Such systems include a single restriction endonuclease and either two separate DNA methyltransferases or a single fusion DNA methyltransferase with two catalytic domains. For a subset of these systems, it was known that both adenines within the site are methylated to form 6-methyladenine, but the role of each of the two DNA methyltransferases comprising the system was unknown. In this work, the functionality of most known systems of this kind is proven. Based on analysis of the structures of related DNA methyltransferases, it is hypothesized which of the adenines within the site is modified by each of the DNA methyltransferases of the system. A possible molecular mechanism of DNA methyltransferase specificity change from GATGG to GATGC during horizontal transfer of its gene is described.

About the authors

S. A. Spirin

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; National Research University Higher School of Economics; NRC 'Kurchatov Institute' – SRISA

Email: sas@belozersky.msu.ru
119234 Moscow, Russia; 109028 Moscow, Russia; 117218 Moscow, Russia

A. V. Grishin

N. F. Gamaleya National Research Center for Epidemiology and Microbiology; All-Russia Research Institute of Agricultural Biotechnology

123098 Moscow, Russia; 127550 Moscow, Russia

I. S. Rusinov

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119234 Moscow, Russia

A. V. Alexeevski

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; NRC 'Kurchatov Institute' – SRISA

119234 Moscow, Russia; 117218 Moscow, Russia

A. S. Karyagina

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; N. F. Gamaleya National Research Center for Epidemiology and Microbiology; All-Russia Research Institute of Agricultural Biotechnology

119234 Moscow, Russia; 123098 Moscow, Russia; 127550 Moscow, Russia

References

  1. Williams, R. J. (2003) Restriction endonucleases: classification, properties, and applications,Mol. Biotechnol.,23, 225-244,https://doi.org/10.1385/mb:23:3:225.
  2. Roberts, R. J. (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes,Nucleic Acids Res.,31, 1805-1812,https://doi.org/10.1093/nar/gkg274.
  3. Madhusoodanan, U. K., and Rao, D. N. (2010) Diversity of DNA methyltransferases that recognize asymmetric target sequences,Crit. Rev. Biochem. Mol. Biol.,45, 125-145,https://doi.org/10.3109/10409231003628007.
  4. Vasu, K., and Nagaraja, V. (2013) Diverse functions of restriction-modification systems in addition to cellular defense,Microbiol. Mol. Biol. Rev.,77, 53-72,https://doi.org/10.1128/mmbr.00044-12.
  5. Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E.,Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., and Bateman, A. (2020) Pfam: the protein families database in 2021,Nucleic Acids Res.,49, D412-D419,https://doi.org/10.1093/nar/gkaa913.
  6. Roberts, R. J., Vincze, T., Posfai, J., and Macelis, D. (2014) REBASE – a database for DNA restriction and modification: enzymes, genes and genomes,Nucleic Acids Res.,43, D298-D299,https://doi.org/10.1093/nar/gku1046.
  7. Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput,Nucleic Acids Res.,32, 1792-1797,https://doi.org/10.1093/nar/gkh340.
  8. Waterhouse, A. M., Procter, J. B., Martin, D. M. A, Clamp, M., and Barton, G. J. (2009) Jalview Version 2 – a multiple sequence alignment editor and analysis workbench,Bioinformatics,25,1189-1191,https://doi.org/10.1093/bioinformatics/btp033.
  9. Lefort, V., Desper, R., and Gascuel, O. (2015) FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program,Mol. Biol. Evol.,32, 2798-2800,https://doi.org/10.1093/molbev/msv150.
  10. Kumar, S., Stecher, G., and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets,Mol. Biol. Evol.,33, 1870-1874,https://doi.org/10.1093/molbev/msw054.
  11. Letunic, I., and Bork, P. (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation,Nucleic Acids Res.,49, W293-W296,https://doi.org/10.1093/nar/gkab301.
  12. Li, W., and Godzik, A. (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences,Bioinformatics,22, 1658-1659,https://doi.org/10.1093/bioinformatics/btl158.
  13. Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., and Steinegger, M. (2022) ColabFold: making protein folding accessible to all,Nat. Methods,19, 679-682,https://doi.org/10.1038/s41592-022-01488-1.
  14. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., et al. (2021) Highly accurate protein structure prediction with AlphaFold,Nature,596, 583-589,https://doi.org/10.1038/s41586-021-03819-2.
  15. DeLano, W. L. (2002) Pymol: An open-source molecular graphics tool,CCP4 Newsl. Protein Crystallogr.,40, 82-92.
  16. Crooks, G. E., Hon, G., Chandonia, J. M., and Brenner, S. E. (2004) WebLogo: A sequence logo generator,Genome Res.,14, 1188-1190,https://doi.org/10.1101/gr.849004.
  17. Gingeras, T. R., Milazzo, J. P., and Roberts, R. J. (1978). A computer assisted method for the determination of restriction enzyme recognition sites,Nucleic Acids Res.,5, 4105-4127,https://doi.org/10.1093/nar/5.11.4105.
  18. Higgins, L. S., Besnier, C., and Kong, H. (2001) The nicking endonuclease N.BstNBI is closely related to type IIS restriction endonucleases MlyI and PleI,Nucleic Acids Res.,29, 2492-2501,https://doi.org/10.1093/nar/29.12.2492.
  19. Kachalova, G. S., Rogulin, E. A., Yunusova, A. K., Artyukh, R. I., Perevyazova, T. A., Matvienko, N. I., Zheleznaya, L. A., and Bartunik, H. D. (2008) Structural analysis of the heterodimeric type IIS restriction endonuclease R.BspD6I acting as a complex between a monomeric site-specific nickase and a catalytic subunit,J. Mol. Biol.,384, 489-502,https://doi.org/10.1016/j.jmb.2008.09.033.
  20. Malone, T., Blumenthal, R. M., and Cheng, X. (1995) Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes,J. Mol. Biol.,253, 618-632,https://doi.org/10.1006/jmbi.1995.0577.
  21. Yang, Z., Horton, J. R., Zhou, L., Zhang, X. J., Dong, A., Zhang, X., Schlagman, S. L., Kossykh, V., Hattman, S., and Cheng, X. (2003) Structure of the bacteriophage T4 DNA adenine methyltransferase,Nat. Struct. Biol.,10, 849-855,https://doi.org/10.1038/nsb973.
  22. Horton, J. R., Liebert, K., Hattman, S., Jeltsch, A., and Cheng, X. (2005) Transition from nonspecific to specific DNA interactions along the substrate-recognition pathway of dam methyltransferase,Cell,121, 349-361,https://doi.org/10.1016/j.cell.2005.02.021.
  23. Horton, J. R., Liebert, K., Bekes, M., Jeltsch, A., and Cheng, X. (2006) Structure and substrate recognition of theEscherichia coliDNA adenine methyltransferase,J. Mol. Biol.,358, 559-570,https://doi.org/10.1016/j.jmb.2006.02.028.
  24. Nell, S., Estibariz, I., Krebes, J., Bunk, B., Graham, D. Y., Overmann, J., Song, Y., Spröer, C., Yang, I., Wex, T., Korlach, J., Malfertheiner, P., and Suerbaum, S. (2018) Genome and methylome variation inHelicobacter pyloriwith acagpathogenicity island during early stages of human infection,Gastroenterology,154, 612-623,https://doi.org/10.1053/j.gastro.2017.10.014.
  25. Friedrich, T., Fatemi, M., Gowhar, H., Leismann, O., and Jeltsch, A. (2000) Specificity of DNA binding and methylation by the M.FokI DNA methyltransferase,Biochim. Biophys. Acta,1480, 145-159,https://doi.org/10.1016/s0167-4838(00)00065-0.
  26. Tomilova, J. E., Kuznetsov, V. V., Abdurashitov, M. A., Netesova, N. A., and Degtyarev, S. K. (2010) Recombinant DNA-methyltransferase M1.Bst19I fromBacillus stearothermophilus 19: purification, properties, and amino acid sequence analysis,Mol. Biol.,44, 606-615,https://doi.org/10.1134/S0026893310040163.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. P1. Alignment of MTase A and B sequences together with MTase M.DpnII, M.EcoRV, M1.Bst19I, and M.EcoKDam sequences, M.EcoT4Dam and the N- and C-terminal parts of the MTase of M.FokI. Group A MTase sequences together with their close N-terminal part M.FokI sequences are above the black line. The specificity of the investigated MTases is indicated by the color of the bar after the name, red GGATC, green GATGG and blue GATGC. The degree of conservation of amino acid residues is indicated by blue background of different intensities. Yellow, green, and red stars indicate residues from conserved clusters on the surface of the proteins (see details in the text of the article). Colored bars under the alignment mark structural elements (see Fig. 4 of the article)
Download (658KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).