Restriction–Modification Systems with Specificity GGATC, GATGC and GATGG. Part 2. Functionality and Structural Issues
- Authors: Spirin S.A.1,2,3, Grishin A.V.4,5, Rusinov I.S.1, Alexeevski A.V.1,3, Karyagina A.S.1,4,5
-
Affiliations:
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
- National Research University Higher School of Economics
- NRC 'Kurchatov Institute' – SRISA
- N. F. Gamaleya National Research Center for Epidemiology and Microbiology
- All-Russia Research Institute of Agricultural Biotechnology
- Issue: Vol 90, No 4 (2025)
- Pages: 571-579
- Section: Articles
- URL: https://journals.rcsi.science/0320-9725/article/view/312340
- DOI: https://doi.org/10.31857/S0320972525040061
- EDN: https://elibrary.ru/ihzyiu
- ID: 312340
Cite item
Abstract
About the authors
S. A. Spirin
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; National Research University Higher School of Economics; NRC 'Kurchatov Institute' – SRISA
Email: sas@belozersky.msu.ru
119234 Moscow, Russia; 109028 Moscow, Russia; 117218 Moscow, Russia
A. V. Grishin
N. F. Gamaleya National Research Center for Epidemiology and Microbiology; All-Russia Research Institute of Agricultural Biotechnology123098 Moscow, Russia; 127550 Moscow, Russia
I. S. Rusinov
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University119234 Moscow, Russia
A. V. Alexeevski
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; NRC 'Kurchatov Institute' – SRISA119234 Moscow, Russia; 117218 Moscow, Russia
A. S. Karyagina
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; N. F. Gamaleya National Research Center for Epidemiology and Microbiology; All-Russia Research Institute of Agricultural Biotechnology119234 Moscow, Russia; 123098 Moscow, Russia; 127550 Moscow, Russia
References
- Williams, R. J. (2003) Restriction endonucleases: classification, properties, and applications,Mol. Biotechnol.,23, 225-244,https://doi.org/10.1385/mb:23:3:225.
- Roberts, R. J. (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes,Nucleic Acids Res.,31, 1805-1812,https://doi.org/10.1093/nar/gkg274.
- Madhusoodanan, U. K., and Rao, D. N. (2010) Diversity of DNA methyltransferases that recognize asymmetric target sequences,Crit. Rev. Biochem. Mol. Biol.,45, 125-145,https://doi.org/10.3109/10409231003628007.
- Vasu, K., and Nagaraja, V. (2013) Diverse functions of restriction-modification systems in addition to cellular defense,Microbiol. Mol. Biol. Rev.,77, 53-72,https://doi.org/10.1128/mmbr.00044-12.
- Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E.,Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., and Bateman, A. (2020) Pfam: the protein families database in 2021,Nucleic Acids Res.,49, D412-D419,https://doi.org/10.1093/nar/gkaa913.
- Roberts, R. J., Vincze, T., Posfai, J., and Macelis, D. (2014) REBASE – a database for DNA restriction and modification: enzymes, genes and genomes,Nucleic Acids Res.,43, D298-D299,https://doi.org/10.1093/nar/gku1046.
- Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput,Nucleic Acids Res.,32, 1792-1797,https://doi.org/10.1093/nar/gkh340.
- Waterhouse, A. M., Procter, J. B., Martin, D. M. A, Clamp, M., and Barton, G. J. (2009) Jalview Version 2 – a multiple sequence alignment editor and analysis workbench,Bioinformatics,25,1189-1191,https://doi.org/10.1093/bioinformatics/btp033.
- Lefort, V., Desper, R., and Gascuel, O. (2015) FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program,Mol. Biol. Evol.,32, 2798-2800,https://doi.org/10.1093/molbev/msv150.
- Kumar, S., Stecher, G., and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets,Mol. Biol. Evol.,33, 1870-1874,https://doi.org/10.1093/molbev/msw054.
- Letunic, I., and Bork, P. (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation,Nucleic Acids Res.,49, W293-W296,https://doi.org/10.1093/nar/gkab301.
- Li, W., and Godzik, A. (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences,Bioinformatics,22, 1658-1659,https://doi.org/10.1093/bioinformatics/btl158.
- Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., and Steinegger, M. (2022) ColabFold: making protein folding accessible to all,Nat. Methods,19, 679-682,https://doi.org/10.1038/s41592-022-01488-1.
- Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., et al. (2021) Highly accurate protein structure prediction with AlphaFold,Nature,596, 583-589,https://doi.org/10.1038/s41586-021-03819-2.
- DeLano, W. L. (2002) Pymol: An open-source molecular graphics tool,CCP4 Newsl. Protein Crystallogr.,40, 82-92.
- Crooks, G. E., Hon, G., Chandonia, J. M., and Brenner, S. E. (2004) WebLogo: A sequence logo generator,Genome Res.,14, 1188-1190,https://doi.org/10.1101/gr.849004.
- Gingeras, T. R., Milazzo, J. P., and Roberts, R. J. (1978). A computer assisted method for the determination of restriction enzyme recognition sites,Nucleic Acids Res.,5, 4105-4127,https://doi.org/10.1093/nar/5.11.4105.
- Higgins, L. S., Besnier, C., and Kong, H. (2001) The nicking endonuclease N.BstNBI is closely related to type IIS restriction endonucleases MlyI and PleI,Nucleic Acids Res.,29, 2492-2501,https://doi.org/10.1093/nar/29.12.2492.
- Kachalova, G. S., Rogulin, E. A., Yunusova, A. K., Artyukh, R. I., Perevyazova, T. A., Matvienko, N. I., Zheleznaya, L. A., and Bartunik, H. D. (2008) Structural analysis of the heterodimeric type IIS restriction endonuclease R.BspD6I acting as a complex between a monomeric site-specific nickase and a catalytic subunit,J. Mol. Biol.,384, 489-502,https://doi.org/10.1016/j.jmb.2008.09.033.
- Malone, T., Blumenthal, R. M., and Cheng, X. (1995) Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes,J. Mol. Biol.,253, 618-632,https://doi.org/10.1006/jmbi.1995.0577.
- Yang, Z., Horton, J. R., Zhou, L., Zhang, X. J., Dong, A., Zhang, X., Schlagman, S. L., Kossykh, V., Hattman, S., and Cheng, X. (2003) Structure of the bacteriophage T4 DNA adenine methyltransferase,Nat. Struct. Biol.,10, 849-855,https://doi.org/10.1038/nsb973.
- Horton, J. R., Liebert, K., Hattman, S., Jeltsch, A., and Cheng, X. (2005) Transition from nonspecific to specific DNA interactions along the substrate-recognition pathway of dam methyltransferase,Cell,121, 349-361,https://doi.org/10.1016/j.cell.2005.02.021.
- Horton, J. R., Liebert, K., Bekes, M., Jeltsch, A., and Cheng, X. (2006) Structure and substrate recognition of theEscherichia coliDNA adenine methyltransferase,J. Mol. Biol.,358, 559-570,https://doi.org/10.1016/j.jmb.2006.02.028.
- Nell, S., Estibariz, I., Krebes, J., Bunk, B., Graham, D. Y., Overmann, J., Song, Y., Spröer, C., Yang, I., Wex, T., Korlach, J., Malfertheiner, P., and Suerbaum, S. (2018) Genome and methylome variation inHelicobacter pyloriwith acagpathogenicity island during early stages of human infection,Gastroenterology,154, 612-623,https://doi.org/10.1053/j.gastro.2017.10.014.
- Friedrich, T., Fatemi, M., Gowhar, H., Leismann, O., and Jeltsch, A. (2000) Specificity of DNA binding and methylation by the M.FokI DNA methyltransferase,Biochim. Biophys. Acta,1480, 145-159,https://doi.org/10.1016/s0167-4838(00)00065-0.
- Tomilova, J. E., Kuznetsov, V. V., Abdurashitov, M. A., Netesova, N. A., and Degtyarev, S. K. (2010) Recombinant DNA-methyltransferase M1.Bst19I fromBacillus stearothermophilus 19: purification, properties, and amino acid sequence analysis,Mol. Biol.,44, 606-615,https://doi.org/10.1134/S0026893310040163.
Supplementary files
