Системы рестрикции-модификации со специфичностями GGATC, GATGC и GATGG. Часть 2. Функциональность и структурные аспекты

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методами биоинформатики проведено исследование структуры и функциональности белков систем рестрикции-модификации, узнающих один из следующих сайтов: GGATC/GATCC,GATGC/GCATCи GATGG/CCATC. Такие системы включают одну эндонуклеазу рестрикции и либо две раздельные ДНК-метилтрансферазы, либо одну слитную ДНК-метилтрансферазу с двумя каталитическими доменами. Для части таких систем известно, что оба аденина в пределах сайта метилируются с образованием N6-метиладенина, но неизвестна роль каждой из двух ДНК-метилтрансфераз, входящих в систему. В данной работе доказана функциональность большинства известных систем такого рода. На основании анализа структур родственных ДНК-метилтрансфераз высказаны предположения о том, какой из аденинов в пределах сайта модифицируется каждой из ДНК-метилтрансфераз системы. Описан возможный молекулярный механизм смены специфичности ДНК-метилтрансферазы с GATGG на GATGC при горизонтальном переносе её гена.

Об авторах

С. А. Спирин

Московский государственный университет имени М.В. Ломоносова, НИИ физико-химической биологии имени А.Н. Белозерского; НИУ «Высшая школа экономики»; НИЦ «Курчатовский институт» – НИИСИ

Email: sas@belozersky.msu.ru
119234 Москва, Россия; 109028 Москва, Россия; 117218 Москва, Россия

А. В. Гришин

НИЦ эпидемиологии и микробиологии им. Н.Ф. Гамалеи Минздрава России; ВНИИ сельскохозяйственной биотехнологии

123098 Москва, Россия; 127550 Москва, Россия

И. С. Русинов

Московский государственный университет имени М.В. Ломоносова, НИИ физико-химической биологии имени А.Н. Белозерского

119234 Москва, Россия

А. В. Алексеевский

Московский государственный университет имени М.В. Ломоносова, НИИ физико-химической биологии имени А.Н. Белозерского; НИЦ «Курчатовский институт» – НИИСИ

119234 Москва, Россия; 117218 Москва, Россия

А. С. Карягина

Московский государственный университет имени М.В. Ломоносова, НИИ физико-химической биологии имени А.Н. Белозерского; НИЦ эпидемиологии и микробиологии им. Н.Ф. Гамалеи Минздрава России; ВНИИ сельскохозяйственной биотехнологии

119234 Москва, Россия; 123098 Москва, Россия; 127550 Москва, Россия

Список литературы

  1. Williams, R. J. (2003) Restriction endonucleases: classification, properties, and applications,Mol. Biotechnol.,23, 225-244,https://doi.org/10.1385/mb:23:3:225.
  2. Roberts, R. J. (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes,Nucleic Acids Res.,31, 1805-1812,https://doi.org/10.1093/nar/gkg274.
  3. Madhusoodanan, U. K., and Rao, D. N. (2010) Diversity of DNA methyltransferases that recognize asymmetric target sequences,Crit. Rev. Biochem. Mol. Biol.,45, 125-145,https://doi.org/10.3109/10409231003628007.
  4. Vasu, K., and Nagaraja, V. (2013) Diverse functions of restriction-modification systems in addition to cellular defense,Microbiol. Mol. Biol. Rev.,77, 53-72,https://doi.org/10.1128/mmbr.00044-12.
  5. Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E.,Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., and Bateman, A. (2020) Pfam: the protein families database in 2021,Nucleic Acids Res.,49, D412-D419,https://doi.org/10.1093/nar/gkaa913.
  6. Roberts, R. J., Vincze, T., Posfai, J., and Macelis, D. (2014) REBASE – a database for DNA restriction and modification: enzymes, genes and genomes,Nucleic Acids Res.,43, D298-D299,https://doi.org/10.1093/nar/gku1046.
  7. Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput,Nucleic Acids Res.,32, 1792-1797,https://doi.org/10.1093/nar/gkh340.
  8. Waterhouse, A. M., Procter, J. B., Martin, D. M. A, Clamp, M., and Barton, G. J. (2009) Jalview Version 2 – a multiple sequence alignment editor and analysis workbench,Bioinformatics,25,1189-1191,https://doi.org/10.1093/bioinformatics/btp033.
  9. Lefort, V., Desper, R., and Gascuel, O. (2015) FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program,Mol. Biol. Evol.,32, 2798-2800,https://doi.org/10.1093/molbev/msv150.
  10. Kumar, S., Stecher, G., and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets,Mol. Biol. Evol.,33, 1870-1874,https://doi.org/10.1093/molbev/msw054.
  11. Letunic, I., and Bork, P. (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation,Nucleic Acids Res.,49, W293-W296,https://doi.org/10.1093/nar/gkab301.
  12. Li, W., and Godzik, A. (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences,Bioinformatics,22, 1658-1659,https://doi.org/10.1093/bioinformatics/btl158.
  13. Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., and Steinegger, M. (2022) ColabFold: making protein folding accessible to all,Nat. Methods,19, 679-682,https://doi.org/10.1038/s41592-022-01488-1.
  14. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., et al. (2021) Highly accurate protein structure prediction with AlphaFold,Nature,596, 583-589,https://doi.org/10.1038/s41586-021-03819-2.
  15. DeLano, W. L. (2002) Pymol: An open-source molecular graphics tool,CCP4 Newsl. Protein Crystallogr.,40, 82-92.
  16. Crooks, G. E., Hon, G., Chandonia, J. M., and Brenner, S. E. (2004) WebLogo: A sequence logo generator,Genome Res.,14, 1188-1190,https://doi.org/10.1101/gr.849004.
  17. Gingeras, T. R., Milazzo, J. P., and Roberts, R. J. (1978). A computer assisted method for the determination of restriction enzyme recognition sites,Nucleic Acids Res.,5, 4105-4127,https://doi.org/10.1093/nar/5.11.4105.
  18. Higgins, L. S., Besnier, C., and Kong, H. (2001) The nicking endonuclease N.BstNBI is closely related to type IIS restriction endonucleases MlyI and PleI,Nucleic Acids Res.,29, 2492-2501,https://doi.org/10.1093/nar/29.12.2492.
  19. Kachalova, G. S., Rogulin, E. A., Yunusova, A. K., Artyukh, R. I., Perevyazova, T. A., Matvienko, N. I., Zheleznaya, L. A., and Bartunik, H. D. (2008) Structural analysis of the heterodimeric type IIS restriction endonuclease R.BspD6I acting as a complex between a monomeric site-specific nickase and a catalytic subunit,J. Mol. Biol.,384, 489-502,https://doi.org/10.1016/j.jmb.2008.09.033.
  20. Malone, T., Blumenthal, R. M., and Cheng, X. (1995) Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes,J. Mol. Biol.,253, 618-632,https://doi.org/10.1006/jmbi.1995.0577.
  21. Yang, Z., Horton, J. R., Zhou, L., Zhang, X. J., Dong, A., Zhang, X., Schlagman, S. L., Kossykh, V., Hattman, S., and Cheng, X. (2003) Structure of the bacteriophage T4 DNA adenine methyltransferase,Nat. Struct. Biol.,10, 849-855,https://doi.org/10.1038/nsb973.
  22. Horton, J. R., Liebert, K., Hattman, S., Jeltsch, A., and Cheng, X. (2005) Transition from nonspecific to specific DNA interactions along the substrate-recognition pathway of dam methyltransferase,Cell,121, 349-361,https://doi.org/10.1016/j.cell.2005.02.021.
  23. Horton, J. R., Liebert, K., Bekes, M., Jeltsch, A., and Cheng, X. (2006) Structure and substrate recognition of theEscherichia coliDNA adenine methyltransferase,J. Mol. Biol.,358, 559-570,https://doi.org/10.1016/j.jmb.2006.02.028.
  24. Nell, S., Estibariz, I., Krebes, J., Bunk, B., Graham, D. Y., Overmann, J., Song, Y., Spröer, C., Yang, I., Wex, T., Korlach, J., Malfertheiner, P., and Suerbaum, S. (2018) Genome and methylome variation inHelicobacter pyloriwith acagpathogenicity island during early stages of human infection,Gastroenterology,154, 612-623,https://doi.org/10.1053/j.gastro.2017.10.014.
  25. Friedrich, T., Fatemi, M., Gowhar, H., Leismann, O., and Jeltsch, A. (2000) Specificity of DNA binding and methylation by the M.FokI DNA methyltransferase,Biochim. Biophys. Acta,1480, 145-159,https://doi.org/10.1016/s0167-4838(00)00065-0.
  26. Tomilova, J. E., Kuznetsov, V. V., Abdurashitov, M. A., Netesova, N. A., and Degtyarev, S. K. (2010) Recombinant DNA-methyltransferase M1.Bst19I fromBacillus stearothermophilus 19: purification, properties, and amino acid sequence analysis,Mol. Biol.,44, 606-615,https://doi.org/10.1134/S0026893310040163.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».