Alteration of the JNK signaling pathway in the hippocampus associated with age and development of AD-like pathology, and impact of IQ-1S
- Authors: Muraleva N.A.1, Zhdankina A.A.2, Khlebnikov A.I.3, Kolosova N.G.1
-
Affiliations:
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
- Siberian State Medical University
- Tomsk Polytechnic University
- Issue: Vol 90, No 2 (2025)
- Pages: 294-305
- Section: Articles
- URL: https://journals.rcsi.science/0320-9725/article/view/291904
- DOI: https://doi.org/10.31857/S0320972525020098
- EDN: https://elibrary.ru/BLFZMS
- ID: 291904
Cite item
Abstract
Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder that is the leading cause of senile dementia. Age is a key risk factor for the most common (>95%) sporadic form of AD; there are no effective methods for its prevention or treatment. Growing evidence indicates that the development of AD and other neurodegenerative diseases is associated with activation of mitogen-activated protein kinase pathways, and the JNK signaling pathway is considered a potential target for the prevention and treatment of AD, although information on changes in its activity during ontogenesis is extremely limited. The aim of this study was to compare age-related changes in the activity of the JNK signaling pathway in the hippocampus of Wistar rats and OXYS rats, which spontaneously develop all the key features of AD, and to evaluate the effect of a selective JNK3 inhibitor [sodium salt of 11H-indeno[1,2-b]quinoxalin-11-one oxime (IQ-1S)]. The ability of IQ-1S to suppress accelerated aging of the OXYS rat brain has been proven previously, but its effect on JNK activity has not been studied. In the present study, we showed that with age, the activity of the JNK signaling pathway increases in the hippocampus of rats of both lines. At the same time, the manifestation and active progression of AD signs in OXYS rats occur against the background of increased, compared to Wistar rats, phosphorylation of the key kinase of this signaling pathway – JNK3 and its target proteins, which allows us to consider JNK3 as a potential target for interventions aimed at preventing neurodegenerative processes. This is also supported by the fact that the neuroprotective effect of the selective JNK3 inhibitor IQ-1S, which we previously identified, and its ability to suppress the development of neurodegenerative processes in OXYS rats, is associated with a decrease in the level of phosphorylation of JNK3, c-Jun, APP and Tau in the hippocampus.
Keywords
About the authors
N. A. Muraleva
Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Author for correspondence.
Email: Myraleva@bionet.nsc.ru
Russian Federation, 630090 Novosibirsk
A. A. Zhdankina
Siberian State Medical University
Email: Myraleva@bionet.nsc.ru
Russian Federation, 634050 Tomsk
A. I. Khlebnikov
Tomsk Polytechnic University
Email: Myraleva@bionet.nsc.ru
Kizhner Research Center
Russian Federation, 634050 TomskN. G. Kolosova
Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Email: Myraleva@bionet.nsc.ru
Russian Federation, 630090 Novosibirsk
References
- “Ageing and Health,” World Health Organization, accessed July 31, 2023, URL: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health.
- Femminella, G. D., Thayanandan, T., Calsolaro, V., Komici, K., Rengo, G., Corbi, G., and Ferrara, N. (2018) Imaging and molecular mechanisms of Alzheimer’s disease: a review, Int. J. Mol. Sci., 19, 3702, https://doi.org/10.3390/ijms19123702.
- Hoenig, M. C., and Drzezga, A. (2023) Clear-headed into old age: Resilience and resistance against brain aging-A PET imaging perspective. J. Neurochem., 164, 325-345, https://doi.org/10.1111/jnc.15598.
- Hepp Rehfeldt, S. C., Majolo, F., Goettert, M. I., and Laufer, S. (2020) c-Jun N-terminal kinase inhibitors as potential leads for new therapeutics for Alzheimer’s diseases, Int. J Mol. Sci., 21, 9677, https://doi.org/10.3390/ijms21249677.
- Jun, J., Yang, S., Lee, J., Moon, H., Kim, J., Jung, H., Im, D., Oh, Y., Jang, M., Cho, H., Baek, J., Kim, H., Kang, D., Bae, H., Tak, C., Hwang, K., Kwon, H., Kim, H., and Hah, J. M. (2023) Discovery of novel imidazole chemotypes as isoform-selective JNK3 inhibitors for the treatment of Alzheimer’s disease, Eur. J. Med. Chem., 245, 114894, https://doi.org/10.1016/j.ejmech.2022.114894.
- Solas, M., Vela, S., Smerdou, C., Martisova, E., Martínez-Valbuena, I., Luquin, M. R., and Ramírez, M. J. (2023) JNK activation in Alzheimer’s disease is driven by amyloid β and is associated with tau pathology, ACS Chem. Neurosci., 14, 1524-1534, https://doi.org/10.1021/acschemneuro.3c00093.
- Anfinogenova, N. D., Quinn, M. T., Schepetkin, I. A., and Atochin, D. N (2020) Alarmins and c-Jun N-terminal kinase (JNK) signaling in neuroinflammation, Cells, 9, 2350, https://doi.org/10.3390/cells9112350.
- Kim, E. K., and Choi, E. J. (2010) Pathological roles of MAPK signaling pathways in human diseases, Biochim. Biophys. Acta, 1802, 396-405, https://doi.org/10.1016/j.bbadis.2009.12.009.
- Song, X., Raman, D., Gurevich, E., Vishnivetskiy, S., and Gurevich, V. (2006). Visual and both non-visual arrestins in their “inactive” conformation bind JNK3 and Mdm2 and relocalize them from the nucleus to the cytoplasm, J. Biol. Chem., 281, 21491-21499, https://doi.org/10.1074/jbc.M603659200.
- Yoon, S. O., Park, D. J., Ryu, J. C., Ozer, H. G., Tep, C., Shin, Y. J., Lim, T. H., Pastorino, L., Kunwar, A. J., Walton, J. C., Nagahara, A. H., Lu, K. P., Nelson, R. J., Tuszynski, M. H., and Huang, K. (2012) JNK3 perpetuates metabolic stress induced by Aβ peptides, Neuron, 75, 824-837, https://doi.org/10.1016/j.neuron.2012.06.024.
- Pomilio, C., Gorojod, R. M., Riudavets, M., Vinuesa, A., Presa, J., Gregosa, A., Bentivegna, M., Alaimo, A., Alcon, S. P., Sevlever, G., Kotler, M. L., Beauquis, J., and Saravia, F. (2020). Microglial autophagy is impaired by prolonged exposure to β-amyloid peptides: evidence from experimental models and Alzheimer’s disease patients, GeroScience, 42, 613-632, https://doi.org/10.1007/s11357-020-00161-9.
- Liu, Z., Li, T., Li, P., Wei, N., Zhao, Z., Liang, H., Ji, X., Chen, W., Xue, M., and Wei, J. (2015). The ambiguous relationship of oxidative stress, tau hyperphosphorylation, and autophagy dysfunction in Alzheimer’s disease, Oxid. Med. Cell Longev., 2015, 352723, https://doi.org/10.1155/2015/352723.
- De Los Reyes Corrales, T., Losada-Pérez, M., and Casas-Tintó, S. (2021) JNK pathway in CNS pathologies, Int. J. Mol. Sci., 22, 3883, https://doi.org/10.3390/ijms22083883.
- Zhu, X., Raina, A. K., Rottkamp, C. A., Aliev, G., Perry, G., Boux, H., and Smith, M. A. (2001). Activation and redistribution of c-jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer’s disease, J. Neurochem., 76, 435-441, https://doi.org/10.1046/j.1471-4159.2001.00046.x.
- Bjørklund, G., Aaseth, J., Dadar, M., and Chirumbolo, S. (2019) Molecular targets in Alzheimer’s disease, Mol. Neurobiol., 56, 7032-7044, https://doi.org/10.1007/s12035-019-1563-9.
- Ploia, C., Antoniou, X., Sclip, A., Grande, V., Cardinetti, D., Colombo, A., Canu, N., Benussi, L., Ghidoni, R., Forloni, G., and Borsello, T. (2011) JNK plays a key role in tau hyperphosphorylation in Alzheimer’s disease models, J. Alzheimer’s Dis., 26, 315-329, https://doi.org/10.3233/JAD-2011-110320.
- Mamun, A. A., Uddin, M. S., Mathew, B., and Ashraf, G. M. (2020) Toxic tau: structural origins of tau aggregation in Alzheimer’s disease, Neural. Regen. Res., 15, 1417-1420, https://doi.org/10.4103/1673-5374.274329.
- Banerjee, R., Beal, M. F., and Thomas, B. (2010). Autophagy in neurodegenerative disorders: pathogenic roles and therapeutic implications, Trends Neurosci., 33, 541-549, https://doi.org/10.1016/j.tins.2010.09.001.
- Wolfe, D. M., Lee, J. H., Kumar, A., Lee, S., Orenstein, S. J., and Nixon, R. A. (2013) Autophagy failure in Alzheimer’s disease and the role of defective lysosomal acidification, Eur. J. Neurosci., 37, 1949-1961, https://doi.org/ 10.1111/ejn.12169.
- Yoshida, H., Hastie, C. J., McLauchlan, H., Cohen, P., and Goedert, M. (2004). Phosphorylation of microtubule-associated protein tau by isoforms of c-Jun N-terminal kinase (JNK, J. Neurochem., 90, 352-358, https://doi.org/10.1111/j.1471-4159.2004.02479.x.
- Luna-Muñoz, J., Chávez-Macías, L., García-Sierra, F., and Mena, R. (2007) Earliest stages of tau conformational changes are related to the appearance of a sequence of specific phospho-dependent tau epitopes in Alzheimer’s disease, J. Alzheimers Dis., 12, 365-375, https://doi.org/10.3233/jad-2007-12410.
- Yan, H., He, L., Lv, D., Yang, J., and Yuan, Z. (2024) The role of the dysregulated JNK Signaling pathway in the pathogenesis of human diseases and its potential therapeutic strategies: a comprehensive review, Biomolecules, 14, 243, https://doi.org/10.3390/biom14020243.
- Devi, B., Jangid, K., Kumar, N., Kumar, V., and Kumar, V. (2024) Identification of potential JNK3 inhibitors through virtual screening, molecular docking and molecular dynamics simulation as therapeutics for Alzheimer’s disease, Mol. Divers., 28, 4361-4380, https://doi.org/10.1007/s11030-024-10820-0.
- Zhao, Y., Kuca, K., Wu, W., Wang, X., Nepovimova, E., Musilek, K., and Wu, Q. (2022) Hypothesis: JNK signaling is a therapeutic target of neurodegenerative diseases, Alzheimers Dement., 18, 152-158, https://doi.org/10.1002/alz.12370.
- Stefanova, N. A., Kozhevnikova, O. S., Vitovtov, A. O., Maksimova, K. Y., Logvinov, S. V., Rudnitskaya, E. A., Korbolina, E. E., Muraleva, N. A., and Kolosova, N. G. (2014) Senescence-accelerated OXYS rats: a model of age-related cognitive decline with relevance to abnormalities in Alzheimer disease, Cell Cycle, 13, 898-909, https:// doi.org/10.4161/cc.28255.
- Schepetkin, I. A., Khlebnikov, A. I., Potapov, A. S., Kovrizhina, A. R., Matveevskaya, V. V., Belyanin, M. L., Atochin, D. N., Zanoza, S. O., Gaidarzhy, N. M., Lyakhov, S. A., Kirpotina, L. N., and Quinn, M. T. (2019). Synthesis, biological evaluation, and molecular modeling of 11H-indeno[1,2-b]quinoxalin-11-one derivatives and tryptanthrin-6-oxime as c-Jun N-terminal kinase inhibitors, Eur. J. Med. Chem., 161, 179-191, https://doi.org/10.1016/j.ejmech. 2018.10.023.
- Atochin, D. N., Schepetkin, I. A., Khlebnikov, A. I., Seledtsov, V. I., Swanson, H., Quinn, M. T., and Huang, P. L. (2016) A novel dual NO-donating oxime and c-Jun N-terminal kinase inhibitor protects against cerebral ischemia-reperfusion injury in mice, Neurosci. Lett., 618, 45-49, https://doi.org/10.1016/j.neulet.2016.02.033.
- Жданкина А. А., Осипенко А. Н., Тихонов Д. И., Логвинов С. В., Плотников М. Б., Хлебников А. И., Колосова Н. Г. (2023) Ингибитор JNK (c-Jun N-терминальной киназы) IQ-1S подавляет преждевременное старение мозга крыс OXYS, Нейрохимия, 40, 245-256, https://doi.org/10.31857/S1027813323030214.
- Zhdankina, A. A., Tikhonov, D. I., Logvinov, S. V., Plotnikov, M. B., Khlebnikov, A. I., and Kolosova, N. G. (2023) Suppression of age-related macular degeneration-like pathology by c-Jun N-terminal kinase inhibitor IQ-1S, Biomedicines, 11, 395, https://doi.org/10.3390/biomedicines11020395.
- Schepetkin, I. A., Kirpotina, L. N., Khlebnikov, A. I., Hanks, T. S., Kochetkova, I., Pascual, D. W., Jutila, M. A., and Quinn, M. T. (2012) Identification and characterization of a novel class of c-Jun N-terminal kinase inhibitors, Mol. Pharmacol., 81, 832-845, https://doi.org/10.1124/mol.111.077446.
- Muraleva, N. A., Kolosova, N. G., and Stefanova, N. A. (2021). MEK1/2-ERK pathway alterations as a therapeutic target in sporadic Alzheimer’s disease: a study in senescence-accelerated OXYS rats, Antioxidants (Basel), 10, 1058, https://doi.org/10.3390/antiox10071058.
- Muraleva, N. A., Stefanova, N. A., and Kolosova, N. G. (2020) SkQ1 suppresses the p38 MAPK signaling pathway involved in Alzheimer’s disease-like pathology in OXYS rats, Antioxidants (Basel), 9, 676, https://doi.org/10.3390/antiox9080676.
- Castro-Torres, R. D., Busquets, O., Parcerisas, A., Verdaguer, E., Olloquequi, J., Ettcheto, M., Beas-Zarate, C., Folch, J., Camins, A., and Auladell, C. (2020) Involvement of JNK1 in neuronal polarization during brain development, Cells, 9, 1897, https://doi.org/10.3390/cells9081897.
- Rentsendorj, A., Sheyn, J., Fuchs, D. T., Daley, D., Salumbides, B. C., Schubloom, H. E., Hart, N. J., Li, S., Hayden, E. Y., Teplow, D. B., Black, K. L., Koronyo, Y., and Koronyo-Hamaoui, M. (2018) A novel role for osteopontin in macrophage-mediated amyloid-β clearance in Alzheimer’s models, Brain Behav. Immun., 67, 163-180, https:// doi.org/10.1016/j.bbi.2017.08.019.
- Liu, L., Wu, Q., Zhong, W., Chen, Y., Zhang, W., Ren, H., Sun, L., and Sun, J. (2020) Microarray analysis of differential gene expression in Alzheimer’s disease identifies potential biomarkers with diagnostic value, Med. Sci. Monit., 26, e919249, https://doi.org/10.12659/MSM.919249.
- Wang, Y., Su, B., Sah, V. P., Brown, J. H., Han, J., and Chien, K. R. (1998) Cardiac hypertrophy induced by mitogen-activated protein kinase kinase 7, a specific activator for c-Jun NH2-terminal kinase in ventricular muscle cells, J. Biol. Chem., 273, 5423-5426, https://doi.org/10.1074/jbc.273.10.5423.
- Devyatkin, V. A., Redina, O. E., Kolosova, N. G., and Muraleva, N. A. (2020) Single-nucleotide polymorphisms associated with the senescence-accelerated phenotype of OXYS rats: a focus on Alzheimer’s disease-like and age-related-macular-degeneration-like pathologies, J. Alzheimer’s Dis., 73, 1167-1183, https://doi.org/10.3233/ JAD-190956.
- Wang, Y., Sarnowski, C., Lin, H., Pitsillides, A. N., Heard-Costa, N. L., Choi, S. H., Wang, D., Bis, J. C., Blue, E. E., Alzheimer’s Disease Neuroimaging Initiative (ADNI), Boerwinkle, E., De Jager, P. L., Fornage, M., Wijsman, E. M., Seshadri, S., Dupuis, J., Peloso, G. M., DeStefano, A. L., and Alzheimer’s Disease Sequencing Project (ADSP) (2024) Key variants via the Alzheimer’s Disease Sequencing Project whole genome sequence data, Alzheimers Dement., 20, 3290-3304, https://doi.org/10.1002/alz.13705.
- Nolen, B., Taylor, S., and Ghosh, G. (2004). Regulation of protein kinases; controlling activity through activation segment conformation, Mol. Cell, 15, 661-675, https://doi.org/10.1016/j.molcel.2004.08.024.
- Waudby, C., Alvarez-Teijeiro, S., Josue Ruiz, E., Suppinger, S., Pinotsis, N., Brown, P., Behrens, A., Christodoulou, J., and Mylona, A. (2022) An intrinsic temporal order of c-JUN N-terminal phosphorylation regulates its activity by orchestrating co-factor recruitment, Nat. Commun., 13, 6133, https://doi.org/10.1038/s41467-022-33866-w.
- Sherrin, T., Blank, T., and Todorovic, C. (2011) c-Jun N-terminal kinases in memory and synaptic plasticity, Rev. Neurosci., 22, 403-410, https://doi.org/10.1515/RNS.2011.032.
- Komulainen, E., Varidaki, A., Kulesskaya, N., Mohammad, H., Sourander, C., Rauvala, H., and Coffey, E. T. (2020) Impact of JNK and its substrates on dendritic spine morphology, Cells, 9, 440, https://doi.org/10.3390/ cells9020440.
- Stefanova, N. A., Maksimova, K. Y., Kiseleva, E., Rudnitskaya, E. A., Muraleva, N. A., and Kolosova, N. G. (2015) Melatonin attenuates impairments of structural hippocampal neuroplasticity in OXYS rats during active progression of Alzheimer’s disease-like pathology, J. Pineal Res., 59, 163-177, https://doi.org/10.1111/ jpi.12248.
- Savage, M. J., Lin, Y. G., Ciallella, J. R., Flood, D. G., and Scott, R. W. (2002). Activation of c-Jun N-terminal kinase and p38 in an Alzheimer’s disease model is associated with amyloid deposition. J. Neurosci., 22, 3376-3385, https://doi.org/10.1523/JNEUROSCI.22-09-03376.2002.
- Telegina, D. V., Suvorov, G. K., Kozhevnikova, O. S., and Kolosova, N. G. (2019) Mechanisms of neuronal death in the cerebral cortex during aging and development of Alzheimer’s disease-like pathology in rats, Int. J. Mol. Sci., 20, 5632, https://doi.org/10.3390/ijms20225632.
- Albensi, B. C. (2019) Dysfunction of mitochondria: Impli499 cations for Alzheimer’s disease, Int. Rev. Neurobiol., 145, 13-27, https://doi.org/10.1016/bs.irn.2019.03.001.
- Zare-shahabadi, A, Masliah, E, Johnson, GVW, and Rezaei, N. (2015) Autophagy in Alzheimer’s disease, Rev. Neurosci., 26, 385-395, https://doi.org/10.1515/revneuro-2014-0076.
- Rudnitskaya, E. A., Maksimova, K. Y., Muraleva, N. A., Logvinov, S. V., Yanshole, L. V., Kolosova, N. G., and Stefanova, N. A. (2015) Beneficial effects of melatonin in a rat model of sporadic Alzheimer’s disease, Biogerontology, 16, 303-316, https://doi.org/10.1007/s10522-014-9547-7.
- Klemmensen, M. M., Borrowman, S. H., Pearce, C., Pyles, B., and Chandra, B. (2024). Mitochondrial dysfunction in neurodegenerative disorders, Neurotherapeutics, 21, e00292, https://doi.org/10.1016/j.neurot.2023.10.002.
- Tyumentsev, M. A., Stefanova, N. A., Kiseleva, E. V., and Kolosova, N. G. (2018) Mitochondria with morphology characteristic for Alzheimer’s disease patients are found in the brain of OXYS rats, Biochemistry (Moscow), 83, 1083-1088, https://doi.org/10.1134/S0006297918090109.
- Stefanova, N. A., Ershov, N. I., and Kolosova, N. G. (2019) Suppression of Alzheimer’s disease-like pathology progression by mitochondria-targeted antioxidant SkQ1: a transcriptome profiling study, Oxid. Med. Cell Longev., 2019, 3984906, https://doi.org/10.1155/2019/3984906.
- Kolosova, N. G., Kozhevnikova, O. S., Muraleva, N. A., Rudnitskaya, E. A., Rumyantseva, Y. V., Stefanova, N. A., Telegina, D. V., Tyumentsev, M. A., and Fursova, A. Z. (2022). SkQ1 as a tool for controlling accelerated senescence program: experiments with OXYS rats, Biochemistry (Moscow), 87, 1552-1562, https://doi.org/10.1134/S0006297922120124.
Supplementary files
