AGE-DEPENDENT CHANGES IN THE PRODUCTION OF MITOCHONDRIAL REACTIVE OXYGEN SPECIES IN HUMAN SKELETAL MUSCLE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A decrease in muscle mass and its functionality (strength, performance and insulin sensitivity) is one of the integral signs of aging. One of the triggers of aging is an increase in the production of mitochondrial reactive oxygen species. In our study, for the first time, age-dependent changes in the production of mitochondrial reactive oxygen species associated with a decrease in the proportion of mitochondria-associated hexokinase-2 in human skeletal muscle were studied. For this purpose, a biopsy from m. vastus lateralis in 10 young healthy volunteers and 70 patients (26-85 years old) with long-term primary arthrosis of the knee/hip joint was taken. It turned out that aging (comparison of different groups of patients), in contrast to inactivity/chronic inflammation (comparison of young healthy people and young patients), causes a pronounced increase in peroxide production by isolated mitochondria. This correlated with an age-dependent disruption of the mechanism of mild depolarization of mitochondria, namely with the distribution of hexokinase between the mitochondrial and cytosolic fractions, a decrease in the rate of coupled respiration of isolated mitochondria and respiration stimulated by glucose (the substrate of hexokinase). It is discussed that these changes may be caused by an age-dependent decrease in the content of cardiolipin, a potential regulator of the mitochondrial microcompartment containing hexokinase. The results obtained contribute to a deeper understanding of age-related pathogenetic processes in skeletal muscles and open prospects for the search for pharmacological/physiological approaches to the correction of these pathologies.

About the authors

M. Y Vyssokikh

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V. I. Kulakov; Institute of Biomedical Problems of the Russian Academy of Sciences

Email: mikhail.vyssokikh@gmail.com
119992 Moscow, Russia; 117997 Moscow, Russia; 123007 Moscow, Russia

M. A Vigovskiy

Medical Research and Educational Center of Lomonosov Moscow State University

119992 Moscow, Russia

V. V Philippov

Medical Research and Educational Center of Lomonosov Moscow State University

119992 Moscow, Russia

Y. R Boroday

Medical Research and Educational Center of Lomonosov Moscow State University

119992 Moscow, Russia

M. V Marey

National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V. I. Kulakov

117997 Moscow, Russia

O. A Grigorieva

Medical Research and Educational Center of Lomonosov Moscow State University

119992 Moscow, Russia

T. F Vepkhvadze

Institute of Biomedical Problems of the Russian Academy of Sciences

123007 Moscow, Russia

N. S Kurochkina

Institute of Biomedical Problems of the Russian Academy of Sciences

123007 Moscow, Russia

L. A Manukhova

National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V. I. Kulakov

117997 Moscow, Russia

A. Yu Efimenko

Medical Research and Educational Center of Lomonosov Moscow State University

119992 Moscow, Russia

D. V Popov

Institute of Biomedical Problems of the Russian Academy of Sciences

123007 Moscow, Russia

V. P Skulachev

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119992 Moscow, Russia

References

  1. Harman, D. (1972) The biologic clock: the mitochondria? J. Am. Geriatr. Soc., 20, 145-147, https://doi.org/10.1111/j.1532-5415.1972.tb00787.x.
  2. Anderson, C. M., Hu, J., Barnes, R. M., Heidt, A. B., Cornelissen, I., and Black, B. L. (2015) Myocyte enhancer factor 2C function in skeletal muscle is required for normal growth and glucose metabolism in mice, Skelet. Muscle, 5, 7, https://doi.org/10.1186/s13395-015-0031-0.
  3. Hargreaves, M. (2004) Muscle glycogen and metabolic regulation, Proc. Nutr. Soc., 63, 217-220, https://doi.org/10.1079/PNS2004344.
  4. Fealy, C. E., Grevendonk, L., Hoeks, J., and Hesselink, M. K. C. (2021) Skeletal muscle mitochondrial network dynamics in metabolic disorders and aging, Trends Mol. Med., 27, 1033-1044, https://doi.org/10.1016/j.molmed.2021.07.013.
  5. Vogt, C., Yki-Jarvinen, H., Iozzo, P., Pipek, R., Pendergrass, M., Koval, J., Ardehali, H., Printz, R., Granner, D., Defronzo, R., and Mandarino, L. (1998) Effects of insulin on subcellular localization of hexokinase II in human skeletal muscle in vivo, J. Clin. Endocrinol. Metab., 83, 230-234, https://doi.org/10.1210/jcem.83.1.4476.
  6. Wilson, J. E. (2003) Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function, J. Exp. Biol., 206, 2049-2057, https://doi.org/10.1242/jeb.00241.
  7. Gots, R. E., Gorin, F. A., and Bessman, S. P. (1972) Kinetic enhancement of bound hexokinase activity by mitochondrial respiration, Biochem. Biophys. Res. Commun., 49, 1249-1255, https://doi.org/10.1016/0006-291x(72)90602-x.
  8. Sui, D., and Wilson, J. E. (1997) Structural determinants for the intracellular localization of the isozymes of mammalian hexokinase: intracellular localization of fusion constructs incorporating structural elements from the hexokinase isozymes and the green fluorescent protein, Arch. Biochem. Biophys., 345, 111-125, https://doi.org/10.1006/abbi.1997.0241.
  9. Brdiczka, D., Knoll, G., Riesinger, I., Weiler, U., Klug, G., Benz, R., and Krause, J. (1986) Microcompartmentation at the mitochondrial surface: its function in metabolic regulation, Adv. Exp. Med. Biol., 194, 55-69, https://doi.org/10.1007/978-1-4684-5107-8_5.
  10. Vyssokikh, M., and Brdiczka, D. (2004) VDAC and peripheral channelling complexes in health and disease, Mol. Cell Biochem., 256-257, 117-126, https://doi.org/10.1023/b:mcbi.0000009863.69249.d9.
  11. Cadenas, E., Boveris, A., Ragan, C. I., and Stoppani, A. O. (1977) Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria, Arch. Biochem. Biophys., 180, 248-257, https://doi.org/10.1016/0003-9861(77)90035-2.
  12. Morse, P. T., Wan, J., Bell, J., Lee, I., Goebel, D. J., Malek, M. H., Sanderson, T. H., and Huttemann, M. (2022) Sometimes less is more: inhibitory infrared light during early reperfusion calms hyperactive mitochondria and suppresses reperfusion injury, Biochem. Soc. Trans., 50, 1377-1388, https://doi.org/10.1042/BST20220446.
  13. Korshunov, S. S., Skulachev, V. P., and Starkov, A. A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett., 416, 15-18, https://doi.org/10.1016/s0014-5793(97)01159-9.
  14. Da-Silva, W. S., Gomez-Puyou, A., de Gomez-Puyou, M. T., Moreno-Sanchez, R., De Felice, F. G., de Meis, L., Oliveira, M. F., and Galina, A. (2004) Mitochondrial bound hexokinase activity as a preventive antioxidant defense: steady-state ADP formation as a regulatory mechanism of membrane potential and reactive oxygen species generation in mitochondria, J. Biol. Chem., 279, 39846-39855, https://doi.org/10.1074/jbc.M403835200.
  15. Vyssokikh, M. Y., Holtze, S., Averina, O. A., Lyamzaev, K. G., Panteleeva, A. A., Marey, M. V., Zinovkin, R. A., Severin, F. F., Skulachev, M. V., Fasel, N., Hildebrandt, T. B., and Skulachev, V. P. (2020) Mild depolarization of the inner mitochondrial membrane is a crucial component of an anti-aging program, Proc. Natl. Acad. Sci. USA, 117, 6491-6501, https://doi.org/10.1073/pnas.1916414117.
  16. Callahan, D. M., Miller, M. S., Sweeny, A. P., Tourville, T. W., Slauterbeck, J. R., Savage, P. D., Maugan, D. W., Ades, P. A., Beynnon, B. D., and Toth, M. J. (2014) Muscle disuse alters skeletal muscle contractile function at the molecular and cellular levels in older adult humans in a sex-specific manner, J. Physiol., 592, 4555-4573, https://doi.org/10.1113/jphysiol.2014.279034.
  17. Callahan, D. M., Tourville, T. W., Miller, M. S., Hackett, S. B., Sharma, H., Cruickshank, N. C., Slauterbeck, J. R., Savage, P. D., Ades, P. A., Maughan, D. W., Beynnon, B. D., and Toth, M. J. (2015) Chronic disuse and skeletal muscle structure in older adults: sex-specific differences and relationships to contractile function, Am. J. Physiol. Cell Physiol., 308, C932-943, https://doi.org/10.1152/ajpcell.00014.2015.
  18. Miller, M. S., Callahan, D. M., Tourville, T. W., Slauterbeck, J. R., Kaplan, A., Fiske, B. R., Savage, P. D., Ades, P. A., Beynnon, B. D., and Toth, M. J. (2017) Moderate-intensity resistance exercise alters skeletal muscle molecular and cellular structure and function in inactive older adults with knee osteoarthritis, J. Appl. Physiol., 122, 775-787, https://doi.org/10.1152/japplphysiol.00830.2016.
  19. Suetta, C., Aagaard, P., Magnusson, S. P., Andersen, L. L., Sipila, S., Rosted, A., Jakobsen, A. K., Duus, B., and Kjaer, M. (2007) Muscle size, neuromuscular activation, and rapid force characteristics in elderly men and women: effects of unilateral long-term disuse due to hip-osteoarthritis, J. Appl. Physiol., 102, 942-948, https://doi.org/10.1152/japplphysiol.00067.2006.
  20. Ware, J., Jr., Kosinski, M., and Keller, S. D. (1996) A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity, Med. Care, 34, 220-233, https://doi.org/10.1097/00005650-199603000-00003.
  21. Popov, D. V., Makhnovskii, P. A., Shagimardanova, E. I., Gazizova, G. R., Lysenko, E. A., Gusev, O. A., and Vinogradova, O. L. (2019) Contractile activity-specific transcriptome response to acute endurance exercise and training in human skeletal muscle, Am. J. Physiol. Endocrinol. Metab., 316, E605-E614, https://doi.org/10.1152/ajpendo.00449.2018.
  22. Skulachev, V. P., Bogachev, A. V., and Kasparinsky, F. O. (2013) Comprehensive up-to-date treatment of molecular bioenergetic mechanisms, Principl. Bioenerg., https://doi.org/10.1007/978-3-642-33430-6.
  23. Gnaiger, E., Kuznetsov, A. V., Schneeberger, S., Seiler, R., Brandacher, G., Steurer, W., and Margreiter, R. (2000) Mitochondria in the cold, Life Cold, 431-442, https://doi.org/10.1007/978-3-662-04162-8_45.
  24. Zhou, M., Diwu, Z., Panchuk-Voloshina, N., and Haugland, R. P. (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases, Anal. Biochem., 253, 162-168, https://doi.org/10.1006/abio.1997.2391.
  25. Shabalina, I. G., Vyssokikh, M. Y., Gibanova, N., Csikasz, R. I., Edgar, D., Hallden-Waldemarson, A., Rozhdestvenskaya, Z., Bakeeva, L. E., Vays, V. B., Pustovidko, A. V., Skulachev, M. V., Cannon, B., Skulachev, V. P., and Nedergaard, J. (2017) Improved health-span and lifespan in mtDNA mutator mice treated with the mitochondrially targeted antioxidant SkQ1, Aging (Albany NY), 9, 315-339, https://doi.org/10.18632/aging.101174.
  26. Antonenko, Y. N., Avetisyan, A. V., Bakeeva, L. E., Chernyak, B. V., Chertkov, V. A., Domnina, L. V., Ivanova, O. Y., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya, A. A., Pletjushkina, O. Y., Pustovidko, A. V., Roginsky, V. A., Rokitskaya, T. I., Ruuge, E. K., et al. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies, Biochemistry (Moscow), 73, 1273-1287, https://doi.org/10.1134/s0006297908120018.
  27. Shabalina, I. G., Vrbacky, M., Pecinova, A., Kalinovich, A. V., Drahota, Z., Houstek, J., Mracek, T., Cannon, B., and Nedergaard, J. (2014) ROS production in brown adipose tissue mitochondria: the question of UCP1-dependence, Biochim. Biophys. Acta, 1837, 2017-2030, https://doi.org/10.1016/j.bbabio.2014.04.005.
  28. Scheer, W. D., Lehmann, H. P., and Beeler, M. F. (1978) An improved assay for hexokinase activity in human tissue homogenates, Anal. Biochem., 91, 451-463, https://doi.org/10.1016/0003-2697(78)90531-6.
  29. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-685, https://doi.org/10.1038/227680a0.
  30. Buscher, T., Luh, E., and Pette, D. (1964) Simple and Compound Optical Tests with Pyridine Nucleotides, in Hoppe-Seyler/Thierfelder, Handbook of Physiological and Pathological Chemical Analysis [in German], VI/A, 292-339.
  31. Bligh, E. G., and Dyer, W. J. (1959) A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37, 911-917, https://doi.org/10.1139/o59-099.
  32. Pinault, M., Guimaraes, C., Dumas, J., Servais, S., Chevalier, S., Besson, P., and Goupille, C. (2020) A 1D high performance thin layer chromatography method validated to quantify phospholipids including cardiolipin and monolysocardiolipin from biological samples, Eur. J. Lipid Sci. Technol., 122, https://doi.org/10.1002/ejlt.201900240.
  33. Kruszynska, Y. T., Mulford, M. I., Baloga, J., Yu, J. G., and Olefsky, J. M. (1998) Regulation of skeletal muscle hexokinase II by insulin in nondiabetic and NIDDM subjects, Diabetes, 47, 1107-1113, https://doi.org/10.2337/diabetes.47.7.1107.
  34. Vestergaard, H., Bjorbaek, C., Hansen, T., Larsen, F. S., Granner, D. K., and Pedersen, O. (1995) Impaired activity and gene expression of hexokinase II in muscle from non-insulin-dependent diabetes mellitus patients, J. Clin. Invest., 96, 2639-2645, https://doi.org/10.1172/JCI118329.
  35. Ritov, V. B., and Kelley, D. E. (2001) Hexokinase isozyme distribution in human skeletal muscle, Diabetes, 50, 1253-1262, https://doi.org/10.2337/diabetes.50.6.1253.
  36. Mandarino, L. J., Printz, R. L., Cusi, K. A., Kinchington, P., O’Doherty, R. M., Osawa, H., Sewell, C., Consoli, A., Granner, D. K., and DeFronzo, R. A. (1995) Regulation of hexokinase II and glycogen synthase mRNA, protein, and activity in human muscle, Am. J. Physiol., 269, E701-708, https://doi.org/10.1152/ajpendo.1995.269.4.E701.
  37. Wilson, J. E. (1995) Hexokinases, Rev. Physiol. Biochem. Pharmacol., 126, 65-198, https://doi.org/10.1007/BFb0049776.
  38. Cunha, T. F., Vieira, J. S., Santos, J. B., Coelho, M. A., Brum, P. C., and Gabriel-Costa, D. (2022) Lactate modulates cardiac gene expression in mice during acute physical exercise, Braz. J. Med. Biol. Res., 55, e11820, https://doi.org/10.1590/1414-431X2022e11820.
  39. BeltrandelRio, H., and Wilson, J. E. (1991) Hexokinase of rat brain mitochondria: relative importance of adenylate kinase and oxidative phosphorylation as sources of substrate ATP, and interaction with intramitochondrial compartments of ATP and ADP, Arch. Biochem. Biophys., 286, 183-194, https://doi.org/10.1016/0003-9861(91)90026-f.
  40. Saraiva, L. M., Seixas da Silva, G. S., Galina, A., da-Silva, W. S., Klein, W. L., Ferreira, S. T., and De Felice, F. G. (2010) Amyloid-beta triggers the release of neuronal hexokinase 1 from mitochondria, PLoS One, 5, e15230, https://doi.org/10.1371/journal.pone.0015230.
  41. De-Souza-Ferreira, E., Rios-Neto, I. M., Martins, E. L., and Galina, A. (2019) Mitochondria-coupled glucose phosphorylation develops after birth to modulate H2 O2 release and calcium handling in rat brain, J. Neurochem., 149, 624-640, https://doi.org/10.1111/jnc.14705.
  42. Silva-Rodrigues, T., de-Souza-Ferreira, E., Machado, C. M., Cabral-Braga, B., Rodrigues-Ferreira, C., and Galina, A. (2020) Hyperglycemia in a type 1 Diabetes Mellitus model causes a shift in mitochondria coupled-glucose phosphorylation and redox metabolism in rat brain, Free Radic. Biol. Med., 160, 796-806, https://doi.org/10.1016/j.freeradbiomed.2020.09.017.
  43. Tan, V. P., Smith, J. M., Tu, M., Yu, J. D., Ding, E. Y., and Miyamoto, S. (2019) Dissociation of mitochondrial HK-II elicits mitophagy and confers cardioprotection against ischemia, Cell Death Dis, 10, 730, https://doi.org/10.1038/s41419-019-1965-7.
  44. Rabbani, N., Xue, M., and Thornalley, P. J. (2022) Hexokinase-2-linked glycolytic overload and unscheduled glycolysis-driver of insulin resistance and development of vascular complications of diabetes, Int. J. Mol. Sci., 23, https://doi.org/10.3390/ijms23042165.
  45. Bryson, J. M., Coy, P. E., Gottlob, K., Hay, N., and Robey, R. B. (2002) Increased hexokinase activity, of either ectopic or endogenous origin, protects renal epithelial cells against acute oxidant-induced cell death, J. Biol. Chem., 277, 11392-11400, https://doi.org/10.1074/jbc.M110927200.
  46. Ahmad, A., Ahmad, S., Schneider, B. K., Allen, C. B., Chang, L. Y., and White, C. W. (2002) Elevated expression of hexokinase II protects human lung epithelial-like A549 cells against oxidative injury, Am. J. Physiol. Lung Cell. Mol. Physiol., 283, L573-584, https://doi.org/10.1152/ajplung.00410.2001.
  47. Shilovsky, G. A., Putyatina, T. S., Ashapkin, V. V., Yamskova, O. V., Lyubetsky, V. A., Sorokina, E. V., Shram, S. I., Markov, A. V., and Vyssokikh, M. Y. (2019) Biological diversity and remodeling of cardiolipin in oxidative stress and age-related pathologies, Biochemistry (Moscow), 84, 1469-1483, https://doi.org/10.1134/S000629791912006X.
  48. Bratic, I., and Trifunovic, A. (2010) Mitochondrial energy metabolism and ageing, Biochim. Biophys. Acta, 1797, 961-967, https://doi.org/10.1016/j.bbabio.2010.01.004.
  49. Pedersen, Z. O., Pedersen, B. S., Larsen, S., and Dysgaard, T. (2023) A scoping review investigating the “gene-dosage theory” of mitochondrial DNA in the healthy skeletal muscle, Int. J. Mol. Sci., 24, https://doi.org/10.3390/ijms24098154.
  50. Holloway, G. P., Holwerda, A. M., Miotto, P. M., Dirks, M. L., Verdijk, L. B., and van Loon, L. J. C. (2018) Age-associated impairments in mitochondrial ADP sensitivity contribute to redox stress in senescent human skeletal muscle, Cell Rep., 22, 2837-2848, https://doi.org/10.1016/j.celrep.2018.02.069.
  51. BeltrandelRio, H., and Wilson, J. E. (1992) Coordinated regulation of cerebral glycolytic and oxidative metabolism, mediated by mitochondrially bound hexokinase dependent on intramitochondrially generated ATP, Arch. Biochem. Biophys., 296, 667-677, https://doi.org/10.1016/0003-9861(92)90625-7.
  52. Vincent, A. M., Olzmann, J. A., Brownlee, M., Sivitz, W. I., and Russell, J. W. (2004) Uncoupling proteins prevent glucose-induced neuronal oxidative stress and programmed cell death, Diabetes, 53, 726-734, https://doi.org/10.2337/diabetes.53.3.726.
  53. Bellanti, F., Lo Buglio, A., and Vendemiale, G. (2022) Muscle delivery of mitochondria-targeted drugs for the treatment of sarcopenia: rationale and perspectives, Pharmaceutics, 14, https://doi.org/10.3390/pharmaceutics14122588.
  54. Russell, J. W., Golovoy, D., Vincent, A. M., Mahendru, P., Olzmann, J. A., Mentzer, A., and Feldman, E. L. (2002) High glucose-induced oxidative stress and mitochondrial dysfunction in neurons, FASEB J., 16, 1738-1748, https://doi.org/10.1096/fj.01-1027com.
  55. Green, K., Brand, M. D., and Murphy, M. P. (2004) Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes, Diabetes, 53 Suppl 1, S110-118, https://doi.org/10.2337/diabetes.53.2007.s110.
  56. Vyssokikh, M. Y., Zorova, L., Zorov, D., Heimlich, G., Jurgensmeier, J. J., and Brdiczka, D. (2002) Bax releases cytochrome c preferentially from a complex between porin and adenine nucleotide translocator. Hexokinase activity suppresses this effect, Mol. Biol. Rep., 29, 93-96, https://doi.org/10.1023/a:1020383108620.
  57. Beutner, G., Ruck, A., Riede, B., and Brdiczka, D. (1997) Complexes between hexokinase, mitochondrial porin and adenylate translocator in brain: regulation of hexokinase, oxidative phosphorylation and permeability transition pore, Biochem. Soc. Trans., 25, 151-157, https://doi.org/10.1042/bst0250151.
  58. Kunji, E. R., Aleksandrova, A., King, M. S., Majd, H., Ashton, V. L., Cerson, E., Springett, R., Kibalchenko, M., Tavoulari, S., Crichton, P. G., and Ruprecht, J. J. (2016) The transport mechanism of the mitochondrial ADP/ATP carrier, Biochim. Biophys. Acta, 1863, 2379-2393, https://doi.org/10.1016/j.bbamcr.2016.03.015.
  59. Duncan, A. L., Ruprecht, J. J., Kunji, E. R. S., and Robinson, A. J. (2018) Cardiolipin dynamics and binding to conserved residues in the mitochondrial ADP/ATP carrier, Biochim. Biophys. Acta Biomembr., 1860, 1035-1045, https://doi.org/10.1016/j.bbamem.2018.01.017.
  60. Allouche, M., Pertuiset, C., Robert, J. L., Martel, C., Veneziano, R., Henry, C., dein, O. S., Saint, N., Brenner, C., and Chopineau, J. (2012) ANT-VDAC1 interaction is direct and depends on ANT isoform conformation in vitro, Biochem. Biophys. Res. Commun., 429, 12-17, https://doi.org/10.1016/j.bbrc.2012.10.108.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies