FRAMEWORK ELEMENTS OR FREE INTERCELLULAR GEL-LIKE MATRIX AS A NECESSARY CONDITION FOR BUILDING OF ORGAN STRUCTURES DURING REGENERATION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Over the past decades, an unimaginably large number of attempts have been made to restore the structure of mammalian organs after damage by introducing stem cells into them. However, this procedure does not lead to a full recovery. At the same time, it is known that complete regeneration (restitution without fibrosis) is possible in organs with proliferating parenchymal cells. An analysis of such models allows us to conclude that the most important condition for the repair of the histological structures of an organ (in the presence of a stem cells) is the preservation of collagen frame structures in it, which serve as “guide rails” for proliferating and differentiating cells. An alternative condition for the complete reconstruction of organ structures is the presence of a free “morphogenetic space” consisting of a gel-like matrix of the embryonic-type connective tissue, which takes place in embryonal development of organs in mammalians or during complete regeneration in amphibians. Approaches aimed at preserving scaffold structures or creating a “morphogenetic space” could radically improve the results of organ regeneration using both local and exogenous stem cells.

About the authors

V. N Manskikh

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: Manskikh@mail.ru
119991 Moscow, Russia

References

  1. Guo, R., Morimatsu, M., Feng T., Lan, F., Chang, D., Wan, F., and Ling, Y. (2020) Stem cell-derived cell sheet transplantation for heart tissue repair in myocardial infarction, Stem Cell Res. Ther., 11, 19, https://doi.org/10.1186/s13287-019-1536-y.
  2. Lukomska, B., Stanaszek, L., Zuba-Surma, E., Legosz, P., Sarzynska, S., and Drela, K. (2019) Challenges and controversies in human mesenchymal stem cell therapy, Stem Cells Int., 2019, 9628536, https://doi.org/10.1155/2019/9628536.
  3. Chien, K. R., Frisén, J., Fritsche-Danielson, R., Melton, D. A., Murry, C. E., and Weissman, I. L. (2019) Regenerating the field of cardiovascular cell therapy, Nat. Biotechnol., 37, 232-237, https://doi.org/10.1038/s41587-019-0042-1.
  4. Lee, C. W., Chen, Y. F., Wu, H. H., and Lee, O. K. (2018) Historical perspectives and advances in mesenchymal stem cell research for the treatment of liver diseases, Gastroenterology, 154, 46-56, https://doi.org/10.1053/j.gastro.2017.09.049.
  5. Boyd, A., Newsome, P., and Lu, W. Y. (2019) The role of stem cells in liver injury and repair, Expert. Rev. Gastroenterol. Hepatol., 13, 623-631, https://doi.org/10.1080/17474124.2019.1618186.
  6. Brychtova, M., Thiele, J. A., Lysak, D., Holubova, M., Kralickova, M., and Vistejnova, L. (2019) Mesenchymal stem cells as the near future of cardiology medicine – truth or wish? Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech. Repub., 163, 8-18, https://doi.org/10.5507/bp.2018.071.
  7. Zhu, Y., Chen, X., Yang, X., and El-Hashash, A. (2018) Stem cells in lung repair and regeneration: Current applications and future promise, J. Cell Physiol., 233, 6414-6424, https://doi.org/10.1002/jcp.26414.
  8. Wang, Y. H., Wu, D. B., Chen, B., Chen, E. Q., and Tang, H. (2018) Progress in mesenchymal stem cell-based therapy for acute liver failure, Stem Cell Res.Ther., 9, 227, https://doi.org/10.1186/s13287-018-0972-4.
  9. Shiota, G., and Itaba, N. (2017) Progress in stem cell-based therapy for liver disease, Hepatol. Res., 47, 127-141, https://doi.org/10.1111/hepr.12747.
  10. Jiang, J., Wang, Y., Liu, B., Chen, X., and Zhang, S. (2018) Challenges and research progress of the use of mesenchymal stem cells in the treatment of ischemic stroke, Brain Dev., 40, 612-626, https://doi.org/10.1016/j.braindev.2018.03.015.
  11. Lazzeri, E., Romagnani, P., and Lasagni, L. (2015) Stem cell therapy for kidney disease, Expert Opin. Biol. Ther., 15, 1455-1468, https://doi.org/10.1517/14712598.2015.1067300.
  12. Sagrinati, C., Ronconi, E., Lazzeri, E., Lasagni, L., and Romagnani, P. (2018) Stem-cell approaches for kidney repair: choosing the right cells, Trends Mol. Med., 14, 277-285, https://doi.org/10.1016/j.molmed.2008.05.005.
  13. Morizane, R., Miyoshi, T., and Bonventre, J. V. (2017) Concise review: kidney generation with human pluripotent stem cells, Stem Cells, 35, 2209-2217, https://doi.org/10.1002/stem.2699.
  14. Laflamme, M. A., and Murry, C. E. (2011) Heart regeneration, Nature, 473, 326-335, https://doi.org/10.1038/nature10147.
  15. Rota, C., Morigi, M., and Imberti, B. (2019) Stem cell therapies in kidney diseases: progress and challenges, Int. J. Mol. Sci., 20, 2790, https://doi.org/10.3390/ijms20112790.
  16. Marcheque, J., Bussolati, B., Csete, M., and Perin, L. (2019) Concise reviews: stem cells and kidney regeneration: an update, Stem Cells Transl. Med., 8, 82-92, https://doi.org/10.1002/sctm.18-0115.
  17. Фриденштейн А. Я., Лалыкина К. С. (1973) Индукция костной ткани и остеогенные клетки-предшественники, Медицина, Москва.
  18. Sedrakyan, S., Angelow, S., De Filippo, R. E., and Perin, L. (2012) Stem cells as a therapeutic approach to chronic kidney diseases, Curr. Urol. Rep., 13, 47-54, https://doi.org/10.1007/s11934-011-0230-0.
  19. Cai, P., Ni, R., Lv, M., Liu, H., Zhao, J., He, J., and Luo, L. (2023) VEGF signaling governs the initiation of biliary-mediated liver regeneration through the PI3K-mTORC1 axis, Cell Rep., 42, 113028, https://doi.org/10.1016/j.celrep.2023.113028.
  20. Jiang M., Ren J., Belmonte, J. C. I., and Liu, G.-H. (2023) Hepatocyte reprogramming in liver regeneration: Biological mechanisms and applications, FEBS J., https://doi.org/10.1111/febs.16930.
  21. Jin, Y., Li, S., Yu, Q., Chen, T., and Liu, D. (2023) Application of stem cells in regeneration medicine, Med. Commun., 4, e291, https://doi.org/10.1002/mco2.291.
  22. Liu, D., Cheng, F., Pan, S., and Liu, Z. (2020) Stem cells: a potential treatment option for kidney diseases, Cell Res. Ther., 11, 249, https://doi.org/10.1186/s13287-020-01751-2.
  23. Mangipudy, R. S., Chanda, S., and Mehendale, H. M. (1995) Tissue repair response as a function of dose in thioacetamide hepatotoxicity, Environ. Health Perspect., 103, 260-267, https://doi.org/10.1289/ehp.95103260.
  24. Манских В. Н. (2017) Патоморфология лабораторной мыши, Т.3 Атлас, ВАКО, Москва.
  25. Струков А. И., Серов В. В. (1995) Патологическая анатомия, Медицина, Москва.
  26. Liu, K. D. (2003) Molecular mechanisms of recovery from acute renal failure, Crit. Care Med., 31, 572-581, https://doi.org/10.1097/01.CCM.0000081592.36382.BC.
  27. Ogbadu, J., Singh, G., and Aggarwal, D. (2019) Factors affecting the transition of acute kidney injury to chronic kidney disease: Potential mechanisms and future perspectives, Eur. J. Pharmacol., 865, 172711, https://doi.org/10.1016/j.ejphar.2019.172711.
  28. Greaves, P. (2011) Histopathology of Preclinical Toxicity Studies, Academic Press, Elsevier.
  29. Бреслер В. М. (1964) Цитологические механизмы бластомогенеза в яичке, Наука, Москва-Ленинград.
  30. Moch, H., Humphrey, P. A., Ulbright, T. M., and Reuter, V. (2016) WHO Classification of Tumours of the Urinary System and Male Genital Organs, International Agency for Research on Cancer, Lyon, France, https://doi.org/10.1016/j.eururo.2016.02.028.
  31. Montes, G. S. (1996) Structural biology of the fibres of the collagenous and elastic systems, Cell. Biol. Int., 20, 15-27, https://doi.org/10.1006/cbir.1996.0004.
  32. Ushiki, T. (2002) Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint, Arch. Histol. Cytol., 65, 109-126, https://doi.org/10.1679/aohc.65.109.
  33. Guvatova, Z. G., Borisov, P. V., Alekseev, A. A., and Moskalev, A. A. (2022) Age-related changes in extracellular matrix, Biochemistry (Moscow), 87, 1535-1551, https://doi.org/10.1134/S0006297922120112.
  34. Bonnans, C., Chou, J., and Werb, Z. (2014) Remodelling the extracellular matrix in development and disease, Nat. Rev. Mol. Cell. Biol., 15, 786-801, https://doi.org/10.1038/nrm3904.
  35. Daley, W. P., and Yamada, K. M. (2013) ECM-modulated cellular dynamics as a driving force for tissue morphogenesis, Curr. Opin. Genet. Dev., 23, 408-414, https://doi.org/10.1016/j.gde.2013.05.005.
  36. Mahoney, Z. X., Stappenbeck, T. S., and Miner, J. H. (2008) Laminin α5 influences the architecture of the mouse small intestine mucosa, J. Cell Sci., 121, 2493-2502, https://doi.org/10.1242/jcs.025528.
  37. Mammoto, T., Jiang, E., Jiang, A., and Mammoto, A. (2013) Extracellular matrix structure and tissue stiffness control postnatal lung development through the lipoprotein receptor-related protein 5/Tie2 signaling system, Am. J. Respir. Cell. Mol. Biol., 49, 1009-1018, https://doi.org/10.1165/rcmb.2013-0147OC.
  38. Nakanishi, Y., Sugiura, F., Kishi, J., and Hayakawa, T. (1986) Collagenase inhibitor stimulates cleft formation during early morphogenesis of mouse salivary gland, Dev. Biol., 113, 201-206, https://doi.org/10.1016/0012-1606(86)90122-3.
  39. Keely, P. J., Wu, J. E., and Santoro, S. A. (1995) The spatial and temporal expression of the α2β1 integrin and its ligands, collagen I, collagen IV, and laminin, suggest important roles in mouse mammary morphogenesis, Differentiation, 59, 1-13, https://doi.org/10.1046/j.1432-0436.1995.5910001.x.
  40. Brownfield, D. G., Venugopalan, G., Lo, A., Mori, H., Tanner, K., Fletcher, D. A., and Bissell, M. J. (2013) Patterned collagen fibers orient branching mammary epithelium through distinct signaling modules, Curr. Biol., 23, 703-709, https://doi.org/10.1016/j.cub.2013.03.032.
  41. Liozner, L. D., and Farutina, L. M. (1971) Regeneration of the kidney in newborn rabbits, Biull. Eksp. Biol. Med., 71, 684-686, https://doi.org/10.1007/BF00813598.
  42. Li, X., Liu, D., Xiao, Z., Zhao, Y., Han, S., Chen, B., and Dai, J. (2019) Scaffold-facilitated locomotor improvement post complete spinal cord injury: motor axon regeneration versus endogenous neuronal relay formation, Biomaterials, 197, 20-31, https://doi.org/10.1016/j.biomaterials.2019.01.012.
  43. Peng, Z., Gao, W., Yue, B., Jiang, J., Gu, Y., Dai, J., Chen, L., and Shi, Q. (2018) Promotion of neurological recovery in rat spinal cord injury by mesenchymal stem cells loaded on nerve-guided collagen scaffold through increasing alternatively activated macrophage polarization, J. Tissue Eng. Regen. Med., 12, 1725-1736, https://doi.org/10.1002/term.2358.
  44. Telegin, G. B., Minakov, A. N., Chernov, A. S., Kazakov, V. A., Kalabina, E. A., Manskikh, V. N., Asyutin, D. S., Belogurov, A. A. Jr, Gabibov, A. G., Konovalov, N. A., and Spallone, A. (2021) A new precision minimally invasive method of glial scar simulation in the rat spinal cord using cryoapplication, Front. Surg., 8, 607551, https://doi.org/10.3389/fsurg.2021.607551.
  45. Karyagina, A., Orlova, P., Poponova, M., Bulygina, I., Choudhary, R., Zhulina, A., Grunina, T., Nikitin, K., Strukova, N., Generalova, M., Ryazanova, A., Kovaleva, P., Zimina, A., Lukinova, E., Plakhotniuk, E., Kirsanova, M., Kolesnikov, E., Zakharova, E., Manskikh, V., Senatov, F., and Gromov, A. (2022) Hybrid implants based on calcium-magnesium silicate ceramics diopside as a carrier of recombinant BMP-2 and demineralized bone matrix as a scaffold: dynamics of reparative osteogenesis in a mouse craniotomy model, Biochemistry (Moscow), 87, 1277-1291, https://doi.org/10.1134/S0006297922110074.
  46. Senatov, F., Zimina, A., Chubrik, A., Kolesnikov, E., Permyakova, E., Voronin, A., Poponova, M., Orlova, P., Grunina, T., Nikitin, K., Krivozubov, M., Strukova, N., Generalova, M., Ryazanova, A., Manskikh, V., Lunin, V., Gromov, A., and Karyagina, A. (2022) Effect of recombinant BMP-2 and erythropoietin on osteogenic properties of biomimetic PLA/PCL/HA and PHB/HA scaffolds in critical-size cranial defects model, Mater. Sci. Eng. C Mater. Biol. Appl., 135, 112680, https://doi.org/10.1016/j.msec.2022.112680.
  47. Zimina, A., Senatov, F., Choudhary, R., Kolesnikov, E., Anisimova, N., Kiselevskiy, M., Orlova, P., Strukova, N., Generalova, M., Manskikh., V, Gromov, A., and Karyagina, A. (2020) Biocompatibility and physico-chemical properties of highly porous PLA/HA Scaffolds for bone reconstruction, Polymers (Basel), 12, 2938, https://doi.org/10.3390/polym12122938.
  48. Kim, I. H., Ko, I. K., Atala, A., and Yoo, J. J. (2015) Whole kidney engineering for clinical translation, Curr. Opin. Organ Transplant., 20, 165-170, https://doi.org/10.1097/MOT.0000000000000173.
  49. Moon, K. H., Ko, I. K., Yoo, J. J., and Atala, A. (2016) Kidney diseases and tissue engineering, Methods, 99, 112-119, https://doi.org/10.1016/j.ymeth.2015.06.020.
  50. Bonandrini, B., Figliuzzi, M., Papadimou, E., Morigi, M., Perico, N., Casiraghi, F., Dipl, C., Sangalli, F., Conti, S., Benigni, A., Remuzzi, A., and Remuzzi, G. (2014) Recellularization of well-preserved acellular kidney scaffold using embryonic stem cells, Tissue Eng. Part A, 20, 1486-1498, https://doi.org/10.1089/ten.tea.2013.0269.
  51. Chen, H., Xie, S., Yang, Y., Zhang, J., and Zhang, Z. (2018) Multiscale regeneration scaffold in vitro and in vivo, J. Biomed. Mater. Res. B Appl. Biomater., 106, 1218-1225, https://doi.org/10.1002/jbm.b.33926.
  52. Yazdani, M., Shahdadfar, A., Jackson, C. J., and Utheim, T. P. (2019) Hyaluronan-based hydrogel scaffolds for limbal stem cell transplantation: a review, Cells, 8, E245, https://doi.org/10.3390/cells8030245.
  53. Anrather, J., and Iadecola, C. (2016) Inflammation and stroke: an overview, Neurotherapeutics, 13, 661-670, https://doi.org/10.1007/s13311-016-0483-x.
  54. Prabhu, S. D., and Frangogiannis, N. G. (2016) The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis, Circ. Res., 119, 91-112, https://doi.org/10.1161/CIRCRESAHA.116.303577.
  55. Duann, P., Lianos, E. A., Ma, J., and Lin, P. H. (2016) Autophagy, innate immunity and tissue repair in acute kidney injury, Int. J. Mol. Sci., 17, 662, https://doi.org/10.3390/ijms17050662.
  56. Brezgunova, A. A., Andrianova, N. V., Popkov, V. A., Tkachev, S. Y., Manskikh, V. N., Pevzner, I. B., Zorova, L. D., Timashev, P. S., Silachev, D. N., Zorov, D. B., and Plotnikov, E. Y. (2023) New experimental model of kidney injury: Photothrombosis-induced kidney ischemia, Biochim. Biophys. Acta Mol. Basis Dis., 1869, 166622, https://doi.org/10.1016/j.bbadis.2022.166622.
  57. Padanilam, B. J. (2003) Cell death induced by acute renal injury: a perspective on the contributions of apoptosis and necrosis, Am. J. Physiol. Renal. Physiol., 284, 608-627, https://doi.org/10.1152/ajprenal.00284.2002.
  58. Манских В. Н. (2007) Пути гибели клетки и их биологическое значение, Цитология, 49, 909-915.
  59. Белушкина И. И., Северин С. Е. (2001) Молекулярные основы патологии апоптоза, Арх. пат., 63, 51-60.
  60. Pevzner, I. B., Pavlenko, T. A., Popkov, V. A., Andrianova, N. V., Zorova, L. D., Brezgunova, A. A., Zorov, S. D., Yankauskas, S. S., Silachev, D. N., Zorov, D. B., and Plotnikov, E. Y. (2018) Comparative study of the severity of renal damage in newborn and adult rats under conditions of ischemia/reperfusion and endotoxin administration, Bull. Exp. Biol. Med., 65, 189-194, https://doi.org/10.1007/s10517-018-4127-5.
  61. Алешин Б. В. (1937) Исследования по метаморфозу амфибий. Эмбриональная соединительная ткань амфибий, Академику Н. В. Насонову к восьмидесятилетию со дня рождения и шестидесятилетию научной деятельности (ред. В. Л. Комаров), Изд-во Академии наук СССР, Москва, 570-650.
  62. Фалин Л. И. (1976) Эмбриология человека. Атлас, Медицина, Москва.
  63. Zhou, B., Feng, Z., Xu, J., and Xie, J. (2023) Organoids: approaches and utility in cancer research, Chin. Med. J. (Engl), 136, 1783-1793, https://doi.org/10.1097/CM9.0000000000002477.
  64. Oh, G. C., Choi, Y. J., Park, B. W., Ban, K., and Park, H. J. (2023) Are there hopeful therapeutic strategies to regenerate the infarcted hearts? Korean Circ. J., 53, 367-386, https://doi.org/10.4070/kcj.2023.0098.
  65. Harrington, R., Harkins, P., and Conway, R. (2023) Targeted therapy in rheumatoid-arthritis-related interstitial lung disease, J. Clin. Med., 12, 6657, https://doi.org/10.3390/jcm12206657.
  66. Венгеровский А. И. (2015) Фармакология: курс лекций, 4-е издание, Москва, ГЭОТАР-медиа.
  67. Park, Ch. H., and Yoo, T.-H. (2022) TGF-β inhibitors for therapeutic management of kidney fibrosis, Pharmaceuticals (Basel), 15, 1485, https://doi.org/10.3390/ph15121485.
  68. Zhao, X., Kwan, J. Y. Y., Yip, K., Liu, P. P., and Liu, F. F. (2020) Targeting metabolic dysregulation for fibrosis therapy, Nat. Rev. Drug Discov., 19, 57-75, https://doi.org/10.1038/s41573-019-0040-5.
  69. Stefanovic, B., Manojlovic, Z., Vied, C., Badger, C. D., and Stefanovic, L. (2019) Discovery and evaluation of inhibitor of LARP6 as specific antifibrotic compound, Sci. Rep., 9, 326, https://doi.org/10.1038/s41598-018-36841-y.
  70. Herrera-Rincon, C., Golding, A. S., Moran, K. M., Harrison, C., Martyniuk, C. J., Guay, J. A., Zaltsman, J., Carabello, H., Kaplan, D. L., and Levin, M. (2018) Brief local application of progesterone via a wearable bioreactor induces long-term regenerative response in adult xenopus hindlimb, Cell Rep., 25, 1593-1609.e7, https://doi.org/10.1016/j.celrep.2018.10.010.
  71. Toole, B. P. (1997) Hyaluronan in morphogenesis, J. Intern. Med., 242, 35-40, https://doi.org/10.1046/j.1365-2796.1997.00171.x.
  72. Toole, B. P. (2004) Hyaluronan: from extracellular glue to pericellular cue, Nat. Rev. Cancer, 4, 528-539, https://doi.org/10.1038/nrc1391.
  73. Ahmadian, E., Eftekhari, A., Dizaj, S. M., Sharifi, S., Mokhtarpour, M., Nasibova, A. N., Khalilov, R., and Samiei, M. (2019) The effect of hyaluronic acid hydrogels on dental pulp stem cells behavior, Int. J. Biol. Macromol., 140, 245-254, https://doi.org/10.1016/j.ijbiomac.2019.08.119.
  74. Abbaszadeh, H., Ghorbani, F., Derakhshani, M., Movassaghpour, A., and Yousefi, M. (2020) Human umbilical cord mesenchymal stem cell-derived extracellular vesicles: a novel therapeutic paradigm, J. Cell Physiol., 235, 706-717, https://doi.org/10.1002/jcp.29004.
  75. Corrao, S., La Rocca, G., Lo Iacono, M., Zummo, G., Gerbino, A., Farina F., and Anzalone, R. (2013) New frontiers in regenerative medicine in cardiology: the potential of Wharton’s jelly mesenchymal stem cells, Curr. Stem Cell Res. Ther., 8, 39-45, https://doi.org/10.2174/1574888X11308010006.
  76. Hirose, S., Honjou, H., Nakagawa, H., Nishimura, K., Kuroda, Y., Tsuji, M., Miwa, A., and Kitagawa, M. (1989) Scirrhous carcinoma of the stomach: a clinical and pathological study of 106 surgical cases, Gastroenterol. Jpn., 24, 481-487, https://doi.org/10.1007/BF02773873.
  77. Van Bogaert, L. J., and Maldague, P. (1980) Scirrhous carcinoma of the female breast, Invest. Cell. Pathol., 3, 377-382.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies