Changes in the structure of potato virus A virions during limited proteolysis in situ according to tritium labeling data and computer simulation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The coat proteins (CP) of potato virus A virions (PVA) contain partially disordered N-terminal domains, which are necessary for performing vital functions of the virus. A comparative analysis of the structures of coat proteins (CPs) in intact PVA virions and in virus particles lacking the N-terminal 32 amino acids (PVAΔ32) was carried out in this work based on the tritium planigraphy data. Using the atomic resolution structure of the potato virus Y potyvirus (PVY) protein, which is a homolog of CP PVA, the available CP surfaces in the PVY virion were calculated and the areas of intersubunit/ interhelix contacts were determined. For this purpose, the approach of Lee and Richards (Lee, B., and Richards, F. M. (1971) J. Mol. Biol., 55, 379-400) was used. Comparison of the incorporation profiles of the tritium label in intact and trypsin-degraded PVA∆32 revealed the position of the ΔN-peptide shielding the surface domain (a.a. 66-73, 141-146) and the interhelix zone (a.a. 161-175) of the PVA CP. The presence of channels/cavities was found in the virion, which turned out to be partially permeable to tritium atoms. Upon removal of the ∆N-peptide, a decrease in the label within the virion (a.a. 184-200) was also observed, indicating a possible structural transition leading to virion compactization. Based on the data obtained, we can conclude that part of the surface ∆N-peptide is located between the coils of the virion helix, which increases the helix pitch and provides greater flexibility of the virion, which is important for the intercellular transport of the viruses in the plants.

About the authors

A. L Ksenofontov

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: ksenofon@belozersky.msu.ru
119992 Moscow, Russia

L. A Baratova

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: ksenofon@belozersky.msu.ru
119992 Moscow, Russia

P. I Semenyuk

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: ksenofon@belozersky.msu.ru
119992 Moscow, Russia

N. V Fedorova

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: ksenofon@belozersky.msu.ru
119992 Moscow, Russia

G. A Badun

Faculty of Chemistry, Lomonosov Moscow State University

Author for correspondence.
Email: ksenofon@belozersky.msu.ru
119991 Moscow, Russia

References

  1. Ksenofontov, A. L., Paalme, V., Arutyunyan, A. M., Semenyuk, P. I., Fedorova, N. V., Rumvolt, R., Baratova, L. A., Jarvekulg, L., and Dobrov, E. N. (2013) Partially disordered structure in intravirus coat protein of potyvirus potato virus A, PLoS One, 8, e67830, doi: 10.1371/journal.pone.0067830.
  2. Charon, J., Theil, S., Nicaise, V., and Michon, T. (2016) Protein intrinsic disorder within the Potyvirus genus: from proteome-wide analysis to functional annotation, Mol. BioSystems, 12, 634-652, doi: 10.1039/c5mb00677e.
  3. Baratova, L. A., Efimov, A. V., Dobrov, E. N., Fedorova, N. V., Hunt, R., Badun, G. A., Ksenofontov, A. L., Torrance, L., and Jarvekulg, L. (2001) In situ spatial organization of Potato virus A coat protein subunits as assessed by tritium bombardment, J. Virol., 75, 9696-9702, doi: 10.1128/JVI.75.20.9696-9702.2001.
  4. Kezar, A., Kavcic, L., Polak, M., Novacek, J., Gutierrez-Aguirre, I., Znidaric, M. T., Coll, A., Stare, K., Gruden, K., Ravnikar, M., Pahovnik, D., Zagar, E., Merzel, F., Anderluh, G., and Podobnik, M. (2019) Structural basis for the multitasking nature of the potato virus Y coat protein, Sci. Adv., 5, eaaw3808, doi: 10.1126/sciadv.aaw3808.
  5. Shtykova, E. V., Petoukhov, M. V., Fedorova, N. V., Arutyunyan, A. M., Skurat, E. V., Kordyukova, L. V., Moiseenko, A. V., and Ksenofontov, A. L. (2021) The structure of the potato virus A particles elucidated by small angle X-ray scattering and complementary techniques, Biochemistry (Moscow), 86, 230-240, doi: 10.1134/S0006297921020115.
  6. Zamora, M., Mendez-Lopez, E., Agirrezabala, X., Cuesta, R., Lavin, J. L., Sanchez-Pina, M. A., Aranda, M. A., and Valle, M. (2017) Potyvirus virion structure shows conserved protein fold and RNA binding site in ssRNA viruses, Sci. Adv., 3, eaao2182, doi: 10.1126/sciadv.aao2182.
  7. Cuesta, R., Yuste-Calvo, C., Gil-Carton, D., Sanchez, F., Ponz, F., and Valle, M. (2019) Structure of Turnip mosaic virus and its viral-like particles, Sci. Rep., 9, 15396, doi: 10.1038/s41598-019-51823-4.
  8. Agirrezabala, X., Mendez-Lopez, E., Lasso, G., Sanchez-Pina, M. A., Aranda, M., and Valle, M. (2015) The near-atomic cryoEM structure of a flexible filamentous plant virus shows homology of its coat protein with nucleoproteins of animal viruses, eLife, 4, e11795, doi: 10.7554/eLife.11795.
  9. DiMaio, F., Chen, C. C., Yu, X., Frenz, B., Hsu, Y. H., Lin, N. S., and Egelman, E. H. (2015) The molecular basis for flexibility in the flexible filamentous plant viruses, Nat. Struct. Mol. Biol., 22, 642-644, doi: 10.1038/nsmb.3054.
  10. Tatineni, S., Kovacs, F., and French, R. (2014) Wheat streak mosaic virus infects systemically despite extensive coat protein deletions: identification of virion assembly and cell-to-cell movement determinants, J. Virol., 88, 1366-1380, doi: 10.1128/JVI.02737-13.
  11. Jarveculg, L., Baratova, L., Dobrov, E., Badun, G., Hunt, R., Andreeva, E.,Rabenstein, F., Efimov, A. V. (2000) Study of the spatial structure of potato virus. A coat protein subunits and particles using tritium planigraphy, Beiträge Züchtungsfors., 6, 61-66.
  12. Shukla, D. D., Thomas, J. E., McKern, N. M., Tracy, S. L., and Ward, C. W. (1988) Coat protein of potyviruses. 4. Comparison of biological properties, serological relationships, and coat protein amino acid sequences of four strains of potato virus Y, Arch. Virol., 102, 207-219, doi: 10.1007/BF01310826.
  13. Atreya, P. L., Lopez-Moya, J. J., Chu, M., Atreya, C. D., and Pirone, T. P. (1995) Mutational analysis of the coat protein N-terminal amino acids involved in potyvirus transmission by aphids, J. Gen. Virol., 76, 265-270, doi: 10.1099/0022-1317-76-2-265.
  14. Harrison, B. D., and Robinson, D. J. (1988) Molecular variation in vector-borne plant viruses: epidemiological significance, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci., 321, 447-462, doi: 10.1098/rstb.1988.0102.
  15. Goldanskii, V. I., Kashirin, I. A., Shishkov, A. V., Baratova, L. A., and Grebenshchikov, N. I. (1988) The use of thermally activated tritium atoms for structural-biological investigations: the topography of the TMV protein-accessible surface of the virus, J. Mol. Biol., 201, 567-574, doi: 10.1016/0022-2836(88)90638-9.
  16. Баратова Л. А., Богачева Е. Н., Гольданский В. И., Колб В. А., Спирин А. С., Шишков А. В. (1999) Тритиевая планиграфия биологических макромолекул, Наука, Москва.
  17. Badun, G. A., and Fedoseev, V. M. (2001) Permeability of lipid membranes for atomic tritium or atom "slipping" effect and its role in tritium planigraphy, Radiochemistry, 43, 301-305, doi: 10.1023/A:1012872927896.
  18. Badun, G. A., and Chernysheva, M. G. (2023) Tritium thermal activation method. Features of application, modern achievements, and further development prospects, Radiochemistry, 65, 185-197, doi: 10.1134/S1066362223020054.
  19. Agafonov, D. E., Kolb, V. A., and Spirin, A. S. (1997) Proteins on ribosome surface: measurements of protein exposure by hot tritium bombardment technique, Proc. Natl. Acad. Sci. USA, 94, 12892-12897, doi: 10.1073/pnas.94.24.12892.
  20. Dobrov, E. N., Badun, G. A., Lukashina, E. V., Fedorova, N. V., Ksenofontov, A. L., Fedoseev, V. M., and Baratova, L. A. (2003) Tritium planigraphy comparative structural study of tobacco mosaic virus and its mutant with altered host specificity, Eur. J. Biochem., 270, 3300-3308, doi: 10.1046/j.1432-1033.2003.03680.x.
  21. Baratova, L. A., Grebenshchikov, N. I., Dobrov, E. N., Gedrovich, A. V., Kashirin, I. A., Shishkov, A. V., Efimov, A. V., Jarvekulg, L., Radavsky, Y. L., and Saarma, M. (1992) The organization of potato virus X coat proteins in virus particles studied by tritium planigraphy and model building, Virology, 188, 175-180, doi: 10.1016/0042-6822(92)90747-d.
  22. Shishkov, A. V., Goldanskii, V. I., Baratova, L. A., Fedorova, N. V., Ksenofontov, A. L., Zhirnov, O. P., and Galkin, A. V. (1999) The in situ spatial arrangement of the influenza A virus matrix protein M1 assessed by tritium bombardment, Proc. Natl. Acad. Sci. USA, 96, 7827-7830, doi: 10.1073/pnas.96.14.7827.
  23. Ksenofontov, A. L., Kozlovskii, V. S., Kordiukova, L. V., Radiukhin, V. A., Timofeeva, A. V., and Dobrov, E. N. (2006) Determination of concentration and aggregate size in influenza virus preparations using the true UV-absorption spectra [in Russian], Mol. Biol., 40, 172-179.
  24. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-685, doi: 10.1038/227680a0.
  25. Goodman, R. M. (1975) Reconstitution of potato virus X in vitro. I. Properties of the dissociated protein structural subunits, Virology, 68, 287-298, doi: 10.1016/0042-6822(75)90272-x.
  26. Tsugita, A., and Scheffler, J. J. (1982) A rapid method for acid hydrolysis of protein with a mixture of trifluoroacetic acid and hydrochloric acid, Eur. J. Biochem., 124, 585-588, doi: 10.1111/j.1432-1033.1982.tb06634.x.
  27. Trofimova, L., Ksenofontov, A., Mkrtchyan, G., Graf, A., Baratova, L. A., and Bunik, V. I. (2016) Quantification of rat brain amino acids: Analysis of the data consistency, Curr. Anal. Chem., 12, 349-356, doi: 10.2174/1573411011666151006220356.
  28. Lukashina, E., Ksenofontov, A., Fedorova, N., Badun, G., Mukhamedzhanova, A., Karpova, O., Rodionova, N., Baratova, L., and Dobrov, E. (2012) Analysis of the role of the coat protein N-terminal segment in Potato virus X virion stability and functional activity, Mol. Plant Pathol., 13, 38-45, doi: 10.1111/j.1364-3703.2011.00725.x.
  29. Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., and Lindahl, E. (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, 1-2, 19-25, doi: 10.1016/j.softx.2015.06.001.
  30. Gedrovich, A. V., and Badun, G. A. (1992) Study of the spatial structure of globular proteins by tritium planigraphy. Short peptides as a model of a fully extended polypeptide chain [in Russian], Mol. Biol., 26, 558-564.
  31. Lee, B., and Richards, F. M. (1971) The interpretation of protein structures: estimation of static accessibility, J. Mol. Biol., 55, 379-400, doi: 10.1016/0022-2836(71)90324-x.
  32. Shukla, D. D., Tribbick, G., Mason, T. J., Hewish, D. R., Geysen, H. M., and Ward, C. W. (1989) Localization of virus-specific and group-specific epitopes of plant potyviruses by systematic immunochemical analysis of overlapping peptide fragments, Proc. Natl. Acad. Sci. USA, 86, 8192-8196, doi: 10.1073/pnas.86.21.8192.
  33. Wei, T., Huang, T. S., McNeil, J., Laliberte, J. F., Hong, J., Nelson, R. S., and Wang, A. (2010) Sequential recruitment of the endoplasmic reticulum and chloroplasts for plant potyvirus replication, J. Virol., 84, 799-809, doi: 10.1128/JVI.01824-09.
  34. Ksenofontov, A. L., Parshina, E. Y., Fedorova, N. V., Arutyunyan, A. M., Rumvolt, R., Paalme, V., Baratova, L. A., Jarvekulg, L., and Dobrov, E. N. (2016) Heating-induced transition of Potyvirus Potato Virus A coat protein into beta-structure, J. Biomol. Struct. Dynamics, 34, 250-258, doi: 10.1080/07391102.2015.1022604.
  35. Ksenofontov, A. L., Dobrov, E. N., Fedorova, N. V., Arutyunyan, A. M., Golanikov, A. E., Jarvekulg, L., and Shtykova, E. V. (2018) Structure of potato virus A coat protein particles and their dissociation [in Russian], Mol. Biol., 52, 1055-1065, doi: 10.1134/S0026898418060101.
  36. Kordyukova, L. V., Ksenofontov, A. L., Badun, G. A., Baratova, L. A., and Shishkov, A. V. (2001) Studying liposomes by tritium bombardment, Biosci. Rep., 21, 711-718, doi: 10.1023/a:1015572321508.
  37. Shishkov, A. V., Ksenofontov, A. L., Bogacheva, E. N., Kordyukova, L. V., Badun, G. A., Alekseevsky, A. V., Tsetlin, V. I., and Baratova, L. A. (2002) Studying the spatial organization of membrane proteins by means of tritium stratigraphy: bacteriorhodopsin in purple membrane, Bioelectrochemistry, 56, 147-149, doi: 10.1016/s1567-5394(02)00018-x.
  38. Chakravarty, A., Reddy, V. S., and Rao, A. L. N. (2020) Unravelling the stability and capsid dynamics of the three virions of brome mosaic virus assembled autonomously in vivo, J. Virol., 94, doi: 10.1128/JVI.01794-19.
  39. Clare, D. K., Pechnikova, E. V., Skurat, E. V., Makarov, V. V., Sokolova, O. S., Solovyev, A. G., and Orlova, E. V. (2015) Novel inter-subunit contacts in barley stripe mosaic virus revealed by cryo-electron microscopy, Structure, 23, 1815-1826, doi: 10.1016/j.str.2015.06.028.
  40. Rodionova, N. P., Karpova, O. V., Kozlovsky, S. V., Zayakina, O. V., Arkhipenko, M. V., and Atabekov, J. G. (2003) Linear remodeling of helical virus by movement protein binding, J. Mol. Biol., 333, 565-572, doi: 10.1016/j.jmb.2003.08.058.
  41. Lukashina, E., Badun, G., Fedorova, N., Ksenofontov, A., Nemykh, M., Serebryakova, M., Mukhamedzhanova, A., Karpova, O., Rodionova, N., Baratova, L., and Dobrov, E. (2009) Tritium planigraphy study of structural alterations in the coat protein of Potato virus X induced by binding of its triple gene block 1 protein to virions, FEBS J., 276, 7006-7015, doi: 10.1111/j.1742-4658.2009.07408.x.
  42. Steele, J. F. C., Peyret, H., Saunders, K., Castells-Graells, R., Marsian, J., Meshcheriakova, Y., and Lomonossoff, G. P. (2017) Synthetic plant virology for nanobiotechnology and nanomedicine, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 9, e1447, doi: 10.1002/wnan.1447.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies