Dicarbonyl-modified low-density lipoproteins are key inducers of LOX-1 and NOX1 gene expression in cultured human umbilical vein endotheliocytes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The expression of LOX-1 and NOX1 genes in human umbilical vein endotheliocytes (HUVECs) when cultured in the presence of low-density lipoproteins (LDL) modified with various natural dicarbonyls was investigated for the first time. It was found that of the investigated dicarbonyl-modified LDLs (malondialdehyde (MDA)-modified LDLs, glyoxal-modified LDLs, and methylglyoxal-modified LDLs), namely MDA-modified LDLs caused the greatest induction of LOX-1 and NOX1 genes, as well as genes of antioxidant enzymes and genes of signaling molecules in HUVECs. MDA-modified LDLs also induce the highest peroxiredoxins expression of the studied antioxidant enzyme genes. The key role of dicarbonyl-modified LDLs in the molecular mechanisms of vascular wall damage and endothelial dysfunction is discussed.

About the authors

V. Z Lankin

National Medical Research Center of Cardiology named after Academician E. I. Chazov, Ministry of Health of Russia

121552 Moscow, Russia

M. G Sharapov

Institute of Cell Biophysics, Russian Academy of Sciences

Email: sharapov.mg@yandex.ru
142290 Pushchino, Moscow Region, Russia

A. K Tihaze

National Medical Research Center of Cardiology named after Academician E. I. Chazov, Ministry of Health of Russia

121552 Moscow, Russia

R. G Goncharov

Institute of Cell Biophysics, Russian Academy of Sciences

142290 Pushchino, Moscow Region, Russia

O. A Antonova

National Medical Research Center of Cardiology named after Academician E. I. Chazov, Ministry of Health of Russia

121552 Moscow, Russia

G. G Konovalova

National Medical Research Center of Cardiology named after Academician E. I. Chazov, Ministry of Health of Russia

121552 Moscow, Russia

V. I Novoselov

Institute of Cell Biophysics, Russian Academy of Sciences

142290 Pushchino, Moscow Region, Russia

References

  1. Гончаров Р. Г., Шарапов М. Г. (2023) Ишемически-реперфузионные поражения: молекулярные механизмы патогенеза и способы их коррекции, Мол. Биол., 6, 1150-1174, doi: 10.31857/S0026898423060071.
  2. Dubois-Deruy, E., Peugnet, V., Turkieh, A., and Pinet, F. (2020) Oxidative stress in cardiovascular diseases, Antioxidants (Basel), 9, 864, doi: 10.3390/antiox9090864.
  3. Lankin, V. Z., and Tikhaze, A. K. (2003) Atherosclerosis as a free radical pathology and antioxidative therapy of this disease, Free Radicals NO and Inflammation, IOS Press, Amsterdam etc., 344, 218-231.
  4. Lankin, V. Z., and Tikhaze, A. K. (2017) Role of oxidative stress in the genesis of atherosclerosis and diabetes mellitus: a personal look back on 50 years of research, Curr. Aging Sci., 10, 18-25, doi: 10.2174/1874609809666160926142640.
  5. Lankin, V. Z., Tikhaze, A. K., and Melkumyants, A. M. (2022) Dicarbonyl-dependent modification of LDL as a key factor of endothelial dysfunction and atherosclerotic vascular wall damage, Antioxidants (Basel), 11, 1565, doi: 10.3390/antiox11081565.
  6. Lankin, V. Z., Tikhaze, A. K., and Melkumyants, A. M. (2023) Malondialdehyde as an important key factor of molecular mechanisms of vascular wall damage under heart diseases development, Int. J. Mol. Sci., 24, 128, doi: 10.3390/ijms24010128.
  7. Spiteller, G. (2008) Peroxyl radicals are essential reagents in the oxidation steps of the Maillard reaction leading to generation of advanced glycation end products, Ann. NY Acad. Sci., 1126, 128-133, doi: 10.1196/annals.1433.031.
  8. Lankin, V. Z., Shadyro, O. I., Shumaev, K. B., Tikhaze, A. K., and Sladkova, A. A. (2019) Non-enzymatic methylglyoxal formation from glucose metabolites and generation of superoxide anion radical during methylglyoxal-dependend cross-links reaction, J. Antioxidant Activity, 1, 34-45, doi: 10.14302/issn.2471-2140.jaa-19-2997.
  9. Lankin, V. Z., Konovalova, G. G., Tikhaze, A. K., Shumaev, K. B., Belova-Kumskova, E. M., Grechnikova, M. A., and Viigimaa, M. (2016) Aldehyde inhibition of antioxidant enzymes in the blood of diabetic patients, J. Diabetes, 8, 398-404, doi: 10.1111/1753-0407.12309.
  10. Lankin, V. Z., Shumaev, K. B., Tikhaze, A. K., and Kurganov, B. I. (2017) Influence of dicarbonyls on kinetic characteristics of glutathione peroxidase, Dokl. Biochem. Biophys, 475, 287-290, doi: 10.1134/S1607672917040123.
  11. Sharapov, M. G., Gudkov, S. V., and Lankin, V. Z. (2021) Hydroperoxide reducing enzymes in the regulation of free radical processes, Biochemistry (Moscow), 86, 1256-1274, doi: 10.1134/S0006297921100084.
  12. Witztum, J. L., and Steinberg, D. (1991) Role of oxidized low-density lipoprotein in atherogenesis, J. Clin. Invest., 88, 1785-1792, doi: 10.1172/JCI115499.
  13. Yla-Herttuala, S. (1994) Role of lipid and lipoprotein oxidation in the pathogenesis of atherosclerosis, Drugs Today, 30, 507-514.
  14. Steinberg, D. (1995) Role of oxydized LDL and antioxidants in atherosclerosis, Adv. Exp. Med. Biol., 369, 39-48, doi: 10.1007/978-1-4615-1957-7_5.
  15. Lankin, V., Viigimaa, M., Tikhaze, A., Kumskova, E., Konovalova, G., Abina, J., Zemtsovskaya, G., Kotkina, T., Yanushevskaya, E., and Vlasik, T. (2011) Cholesterol-rich low-density lipoproteins are also more oxidized, Mol. Cell. Biochem., 355, 187-191, doi: 10.1007/s11010-011-0853-y.
  16. Viigimaa, M., Abina, J., Zemtsovskaya, G., Tikhaze, A., Konovalova, G., Kumskova, E., and Lankin, V. (2010) Malondialdehyde modified low-density lipoproteins as biomarker for atherosclerosis, Blood Press, 19, 164-168, doi: 10.3109/08037051.2010.484158.
  17. Sharapov, M. G., Goncharov, R. G., Gordeeva, A. E., Novoselov, V. I., Antonova, O. A., Tikhaze, A. K., and Lankin, V. Z. (2016) Enzymatic antioxidant system of endotheliocytes, Dokl. Biochem. Biophys., 471, 410-412, doi: 10.1134/S1607672916060090.
  18. Lankin, V. Z., Sharapov, M. G., Goncharov, R. G., Tikhaze, A. K., and Novoselov, V. I. (2019) Natural dicarbonyls inhibit peroxidase activity of peroxiredoxins, Dokl. Biochem. Biophys., 485, 132-134, doi: 10.1134/S1607672919020157.
  19. Rubio-Gayosso, I., Platts, S. H., and Duling, B. R. (2006) Reactive oxygen species mediate modification of glycocalyx during ischemia-reperfusion injury, Am. J. Physiol. Heart Circ. Physiol., 290, H2247-H2256, doi: 10.1152/ajpheart.00796.2005.
  20. Pirillo, A., Norata, G. D., and Catapano, A. L. (2013) LOX-1, OxLDL, and atherosclerosis, Mediat. Inflamm., 2013, 152786, doi: 10.1155/2013/152786.
  21. Lubrano, V., and Balzan, S. (2014) LOX-1 and ROS, inseparable factors in the process of endothelial damage, Free Radic. Res., 48, 841-848, doi: 10.3109/10715762.2014.929122.
  22. Chistiakov, D. A., Orekhov, A. N., and Bobryshev, Yu. V. (2016) LOX-1-mediated effects on vascular cells in atherosclerosis, Cell. Physiol. Biochem., 38, 1851-1859, doi: 10.1159/000443123.
  23. Kattoor, A. J., Kanuri, S. H., and Mehta, J. L. (2019) Role of Ox-LDL and LOX-1 in atherogenesis, Curr. Med. Chem., 26, 1693-1700, doi: 10.2174/0929867325666180508100950.
  24. Galle, J., Schneider, R., Heinloth, A., Wanner, C., Galle, P. R., Conzelmann, E., Dimmeler, S., and Heermeier, K. (1999) Lp(a) and LDL induce apoptosis in human endothelial cells and in rabbit aorta: role of oxidative stress, Kidney Int., 55, 1450-1461, doi: 10.1046/j.1523-1755.1999.00351.
  25. Lankin, V. Z., Tikhaze, A. K., Kapel'ko, V. I., Shepel'kova, G. S., Shumaev, K. B., Panasenko, O. M., Konovalova, G. G., and Belenkov, Y. N. (2007) Mechanisms of oxidative modification of low-density lipoproteins under conditions of oxidative and carbonyl stress, Biochemistry (Moscow), 72, 1081-1090, doi: 10.1134/S0006297907100069.
  26. Lankin, V. Z., Tikhaze, A. K., and Kumskova, E. M. (2012) Macrophages actively accumulate malonyldialdehyde-modified but not enzymatically oxidized low density lipoprotein, Mol. Cell. Biochem., 365, 93-98, doi: 10.1007/s11010-012-1247-5.
  27. Lankin, V. Z., Tikhaze, A. K., and Konovalova, G. G. (2023) Oxidized lipoproteins: definition of the term and pathophysiologic effects, Biochemistry (Moscow), 88, 1910-1919, doi: 10.1134/S0006297923110196.
  28. Antonov, A. S., Nikolaeva, M. A., Klueva, T. S., Romanov, Y. A., Babaev, V. R., Bystrevskaya, V. B., Perov, N. A., Repin, V. S., and Smirnov, V. N. (1986) Primary culture of endothelial cells from atherosclerotic human aorta. Part 1. Identification, morphological and ultrastructural characteristics of two endothelial cell subpopulations, Atherosclerosis, 59, 1-19, doi: 10.1016/0021-9150(86)90027-4.
  29. Tertov, V. V., Kaplun, V. V., Dvoryantsev, S. N., and Orekhov, A. N. (1995) Apolipoprotein B-bound lipids as a marker for evaluation of low-density lipoprotein oxidation in vivo, Biochem. Biophys. Res. Commun., 214, 608-613, doi: 10.1006/bbrc.1995.2329.
  30. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265-275, doi: 10.1016/S0021-9258(19)52451-6.
  31. Requena, J. R., Fu, M. X., Ahmed, M. U., Jenkins, A. J., Lyons, T. J., Baynes, J. W., and Thorpe, S. R. (1997) Quantification of malondialdehyde and 4-hydroxynonenal adducts to lysine residues in native and oxidized human low-density lipoprotein, Biochem. J., 322, 317-325, doi: 10.1042/bj3220317.
  32. Tikhaze, A. K., Domogatsky, S. P., and Lankin, V. Z. (2021) Clearance of carbonyl-modified low-density lipoproteins in rabbits, Biochemistry (Moscow) Suppl. Ser. B Biomed. Chem., 15, 119-124, doi: 10.1134/S1990750821020104.
  33. Lankin, V. Z., Konovalova, G. G., Domogatsky, S. P., Tikhaze, A. K., Klots, I. N., and Ezhov, M. V. (2023) Clearance and utilization of dicarbonyl-modified LDL in monkeys and humans, Int. J. Mol. Sci., 24, 10471, doi: 10.3390/ijms241310471.
  34. Schalkwijk, C. G., Vermeer, M. A., Stehouwer, C. D., te Koppele, J., Princen, H. M., and van Hinsbergh, V. W. (1998) Effect of methylglyoxal on the physico-chemical and biological properties of low-density lipoprotein, Biochim. Biophys. Acta, 1394, 187-198, doi: 10.1016/s0005-2760(98)00112-x.
  35. Sharapov, M. G., Glushkova, O. V., Parfenyuk, S. B., Gudkov, S. V., Lunin, S. M., and Novoselova, E. G. (2021) The role of TLR4/NF-κB signaling in the radioprotective effects of exogenous Prdx6, Arch. Biochem. Biophys., 702, 108830, doi: 10.1016/j.abb.2021.108830.
  36. Schmittgen, T. D., and Livak, K. J. (2008) Analyzing real-time PCR data by the comparative CT method, Nat. Protoc., 3, 1101-1108, doi: 10.1038/nprot.2008.73.
  37. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248-254, doi: 10.1006/abio.1976.9999.
  38. Sharapov, M. G., Goncharov, R. G., Parfenyuk, S. B., and Glushkova, O. V. (2022) Effect of peroxiredoxin 6 on p53 transcription factor level, Biochemistry (Moscow), 87, 839-849, doi: 10.1134/S0006297922080156.
  39. Aoyama, T., Fujiwara, H., Masaki, T., and Sawamura, T. (1999) Induction of lectin-like oxidized LDL receptor by oxidized LDL and lysophosphatidylcholine in cultured endothelial cells, J. Mol. Cell. Cardiol., 31, 2101-2114, doi: 10.1006/jmcc.1999.1041.
  40. Hong, D., Bai, Y. P., Gao, H. C., Wang, X., Li, L. F., Zhang, G. G., and Hu, C. P. (2014) Ox-LDL induces endothelial cell apoptosis via the LOX-1-dependent endoplasmic reticulum stress pathway, Atherosclerosis, 235, 310-317, doi: 10.1016/j.atherosclerosis.2014.04.028.
  41. Wang, Y. C., Lee, A. S., Lu, L. S., Ke, L. Y., Chen, W. Y., Dong, J. W., Lu, J., Chen, Z., Chu, C. S., Chan, H. C., Kuzan, T. Y., Tsai, M. H., Hsu, W. L., Dixon, R. A. F., Sawamura, T., Chang, K. C., and Chen, C. H. (2018) Human electronegative LDL induces mitochondrial dysfunction and premature senescence of vascular cells in vivo, Aging cell, 17, e12792, doi: 10.1111/acel.12792.
  42. Bagci, E. Z., Vodovotz, Y., Billiar, T. R., Ermentrout, G. B., and Bahar, I. (2006) Bistability in apoptosis: roles of bax, bcl-2, and mitochondrial permeability transition pores, Biophys. J., 90, 1546-1559, doi: 10.1529/biophysj.105.068122.
  43. Batty, M., Bennett, M. R., and Yu, E. (2022) The role of oxidative stress in atherosclerosis, Cells, 11, 3843, doi: 10.3390/cells11233843.
  44. Kohlgrüber, S., Upadhye, A., Dyballa-Rukes, N., McNamara, C. A., and Altschmied, J. (2017) Regulation of transcription factors by reactive oxygen species and nitric oxide in vascular physiology and pathology, Antioxid. Redox Signal, 26, 679-699, doi: 10.1089/ars.2016.6946.
  45. Leonarduzzi, G., Sottero, B., and Poli, G. (2010) Targeting tissue oxidative damage by means of cell signaling modulators: the antioxidant concept revisited, Pharmacol. Ther., 128, 336-374, doi: 10.1016/j.pharmthera.2010.08.003.
  46. Szalóki, N., Krieger, J. W., Komáromi, I., Tóth, K., and Vámosi, G. (2015) Evidence for homodimerization of the c-Fos transcription factor in live cells revealed by fluorescence microscopy and computer modeling, Mol. Cell. Biol., 35, 3785-3798, doi: 10.1128/MCB.00346-15.
  47. Hirota, K., Matsui, M., Iwata, S., Nishiyama, A., Mori, K., and Yodoi, J. (1997) AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1, Proc. Natl. Acad. Sci. USA, 94, 3633-3638, doi: 10.1073/pnas.94.8.3633.
  48. Shi, T., and Dansen, T. B. (2020) Reactive oxygen species induced p53 activation: DNA damage, redox signaling, or both? Antioxid. Redox Signal., 33, 839-859, doi: 10.1089/ars.2020.8074.
  49. Ji, Z., He, L., Regev, A., and Struhl, K. (2019) Inflammatory regulatory network mediated by the joint action of NF-κB, STAT3, and AP-1 factors is involved in many human cancers, Proc. Natl. Acad. Sci. USA, 116, 9453-9462, doi: 10.1073/pnas.1821068116.
  50. Kielian, T., Haney, A., Mayes, P. M., Garg, S., and Esen, N. (2005) Toll-like receptor 2 modulates the proinflammatory milieu in Staphylococcus aureus-induced brain abscess, Infect. Immun., 73, 7428-7435, doi: 10.1128/IAI.73.11.7428-7435.
  51. Ohgi, K., Kajiya, H., Goto-T, K., Okamoto, F., Yoshinaga, Y., Okabe, K., and Sakagami, R. (2018) Toll-like receptor 2 activation primes and upregulates osteoclastogenesis via lox-1, Lipids Health Dis., 17, 132, doi: 10.1186/s12944-018-0787-4.
  52. Lee, W.-J., Ou, H.-C., Hsu, W.-C., Chou, M.-M., Tseng, J.-J., Hsu, S.-L., Tsai, K.-L., and Sheu, W. H.-S. (2010) Ellagic acid inhibits oxidized LDL-mediated LOX-1 expression, ROS generation, and inflammation in human endothelial cells, J. Vasc. Surg., 52, 1290-1300, doi: 10.1016/j.jvs.2010.04.085.
  53. Chan, S. H., Hung, C. H., Shih, J. Y., Chu, P. M., Cheng, Y. H., Lin, H. C., Hsieh, P. L., and Tsai, K. L. (2018) Exercise intervention attenuates hyperhomocysteinemia-induced aortic endothelial oxidative injury by regulating SIRT1 through mitigating NADPH oxidase/LOX-1 signaling, Redox Biol., 14, 116-125, doi: 10.1016/j.redox.2017.08.016.
  54. Zhao, R., Ma, X., Xie, X., and Shen, G. X. (2009) Involvement of NADPH oxidase in oxidized LDL-induced upregulation of heat shock factor-1 and plasminogen activator inhibitor-1 in vascular endothelial cells, Am. J. Physiol. Endocrinol. Metab., 297, E104-E111, doi: 10.1152/ajpendo.91023.2008.
  55. Furman, C., Martin-Nizard, F., Fruchart, J. C., Duriez, P., and Teissier, E. (1999) Differential toxicities of air (mO-LDL) or copper-oxidized LDLs (Cu-LDL) toward endothelial cells, J. Biochem. Mol. Toxicol., 13, 316-323, doi: 10.1002/(sici)1099-0461(1999)13:6<316::aid-jbt5>3.0.co;2-o.
  56. Sangle, G. V., Zhao, R., and Shen, G. X. (2008) Transmembrane signaling pathway mediates oxidized low-density lipoprotein-induced expression of plasminogen activator inhibitor-1 in vascular endothelial cells, Am. J. Physiol. Endocrinol. Metab., 295, E1243-E1254, doi: 10.1152/ajpendo.90415.2008.
  57. Galvani, S., Coatrieux, C., Elbaz, M., Grazide, M. H., Thiers, J. C., Parini, A., Uchida, K., Kamar, N., Rostaing, L., Baltas, M., Salvayre, R., and Nègre-Salvayre, A. (2008) Carbonyl scavenger and antiatherogenic effects of hydrazine derivatives, Free. Radic. Biol. Med., 45, 1457-1467, doi: 10.1016/j.freeradbiomed.2008.08.026.
  58. Belkheiri, N., Bouguerne, B., Bedos-Belval, F., Duran, H., Bernis, C., Salvayre, R., Nègre-Salvayre, A., and Baltas, M. (2010) Synthesis and antioxidant activity evaluation of a syringic hydrazones family, Eur. J. Med. Chem., 45, 3019-3026, doi: 10.1016/j.ejmech.2Yla-HerttualaL010.03.031.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies