Effect of dexamethasone on human neutrophil adhesion and concomitant secretion

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Neutrophils play a dual role in protecting the body. They are able to penetrate infected tissues and destroy pathogens there, releasing aggressive bactericidal substances. Getting into the surrounding tissues, aggressive secretion products of neutrophils initiate the development of inflammatory processes. Invasion of neutrophils into tissues is observed during the development of pneumonia in patients with lung diseases of various etiologies, including acute respiratory distress syndrome caused by coronavirus disease. The synthetic corticosteroid hormone dexamethasone has a therapeutic effect in the treatment of lung diseases, including reducing mortality in patients with severe Covid-19. The acute (short-term) effect of dexamethasone on neutrophil adhesion to fibrinogen and concomitant secretion was studied. Dexamethasone did not affect either the attachment of neutrophils to the substrate or their morphology. The production of reactive oxygen species (ROS) and nitric oxide (NO) by neutrophils during adhesion also did not change in the presence of dexamethasone. Dexamethasone stimulated the release of metalloproteinases in addition to proteins secreted by neutrophil adhesion under control conditions, and selectively stimulated the release of the free amino acid hydroxylysine, a product of lysyl hydroxylase. Metalloproteinases play a key role and closely interact with lysyl hydroxylase in the processes of rearrangement of the extracellular matrix. The therapeutic effect of dexamethasone may be associated with its ability, by changing the composition of neutrophil secretions, to reorganize the extracellular matrix in tissues, which can lead to improved gas exchange in patients with severe lung diseases.

About the authors

S. I Galkina

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: galkina@genebee.msu.ru
119991 Moscow, Russia

E. A Golenkina

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119991 Moscow, Russia

N. V Fedorova

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119991 Moscow, Russia

A. L Ksenofontov

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119991 Moscow, Russia

M. V Serebryakova

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119991 Moscow, Russia

V. I Stadnichuk

Faculty of Physics, Lomonosov Moscow State University

119991 Moscow, Russia

L. A Baratova

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119991 Moscow, Russia

G. F Sud'ina

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: sudina@genebee.msu.ru
119991 Moscow, Russia

References

  1. Schofield, Z. V., Woodruff, T. M., Halai, R., Wu, M. C., and Cooper, M. A. (2013) Neutrophils - a key component of ischemia reperfusion injury, Shock, 40, 463-470, doi: 10.1097/SHK.0000000000000044.
  2. Patel, N. (2009) Targeting leukostasis for the treatment of early diabetic retinopathy, Cardiovasc. Hematol. Disord. Drug Targets, 9, 222-229, doi: 10.2174/187152909789007052.
  3. Liu, W., Cronin, C. G., Cao, Z., Wang, C., Ruan, J., Pulikkot, S., Hall, A., Sun, H., Groisman, A., Chen, Y., Vella, A. T., Hu, L., Liang, B. T., and Fan, Z. (2022) Nexinhib20 inhibits neutrophil adhesion and β2 integrin activation by antagonizing Rac-1-guanosine 5′-triphosphate interaction, J. Immunol., 209, 1574-1585, doi: 10.4049/jimmunol.2101112.
  4. Giacalone, V. D., Margaroli, C., Mall, M. A., and Tirouvanziam, R. (2020) Neutrophil adaptations upon recruitment to the lung: new concepts and implications for homeostasis and disease, Int. J. Mol. Sci., 21, 851, doi: 10.3390/ijms21030851.
  5. Laval, J., Ralhan, A., and Hartl, D. (2016) Neutrophils in cystic fibrosis, Biol. Chem., 397, 485-496, doi: 10.1515/hsz-2015-0271.
  6. Russell, D. W., Gaggar, A., and Solomon, G. M. (2016) Neutrophil fates in bronchiectasis and alpha-1 antitrypsin deficiency, Ann. Am. Thoracic Soc., 13, S123-S129, doi: 10.1513/AnnalsATS.201512-805KV.
  7. Chiang, C. C., Korinek, M., Cheng, W. J., and Hwang, T. L. (2020) Targeting neutrophils to treat acute respiratory distress syndrome in coronavirus disease, Front. Pharmacol., 11, 572009, doi: 10.3389/fphar.2020.572009.
  8. Meizlish, M. L., Pine, A. B., Bishai, J. D., Goshua, G., Nadelmann, E. R., Simonov, M., Chang, C. H., Zhang, H., Shallow, M., Bahel, P., Owusu, K., Yamamoto, Y., Arora, T., Atri, D. S., Patel, A., Gbyli, R., Kwan, J., Won, C. H., Dela Cruz, C., Price, C., et al. (2021) A neutrophil activation signature predicts critical illness and mortality in COVID-19, Blood Adv., 5, 1164-1177, doi: 10.1182/bloodadvances.2020003568.
  9. Ahmed, M. H., and Hassan, A. (2020) Dexamethasone for the treatment of coronavirus disease (COVID-19): a review, SN Comprehensive Clin. Med., 2, 2637-2646, doi: 10.1007/s42399-020-00610-8.
  10. Nhean, S., Varela, M. E., Nguyen, Y. N., Juarez, A., Huynh, T., Udeh, D., and Tseng, A. L. (2023) COVID-19: a review of potential treatments (corticosteroids, remdesivir, tocilizumab, bamlanivimab/etesevimab, and casirivimab/imdevimab) and pharmacological considerations, J. Pharm. Pract., 36, 407-417, doi: 10.1177/08971900211048139.
  11. Hong, S., Wang, H., Li, S., Liu, J., and Qiao, L. (2023) A systematic review and meta-analysis of glucocorticoids treatment in severe COVID-19: methylprednisolone versus dexamethasone, BMC Infect. Diseases, 23, 290, doi: 10.1186/s12879-023-08280-2.
  12. Mohammed, M. A. (2023) Fighting cytokine storm and immunomodulatory deficiency: by using natural products therapy up to now, Front. Pharmacol., 14, 1111329, doi: 10.3389/fphar.2023.1111329.
  13. Hafkamp, F. M. J., Mol, S., Waque, I., and De Jong, E. C. (2022) Dexamethasone, but not vitamin D or A, dampens the inflammatory neutrophil response to protect at-risk COVID-19 patients, Immune Netw., 22, e36, doi: 10.4110/in.2022.22.e36.
  14. Sinha, S., Rosin, N. L., Arora, R., Labit, E., Jaffer, A., Cao, L., Farias, R., Nguyen, A. P., de Almeida, L. G. N., Dufour, A., Bromley, A., McDonald, B., Gillrie, M. R., Fritzler, M. J., Yipp, B. G., and Biernaskie, J. (2022) Dexamethasone modulates immature neutrophils and interferon programming in severe COVID-19, Nat. Med., 28, 201-211, doi: 10.1038/s41591-021-01576-3.
  15. Urbach, V., Verriere, V., Grumbach, Y., Bousquet, J., and Harvey, B. J. (2006) Rapid anti-secretory effects of glucocorticoids in human airway epithelium, Steroids, 71, 323-328, doi: 10.1016/j.steroids.2005.09.014.
  16. Panettieri, R. A., Schaafsma, D., Amrani, Y., Koziol-White, C., Ostrom, R., and Tliba, O. (2019) Non-genomic effects of glucocorticoids: an updated view, Trends Pharmacol. Sci., 40, 38-49, doi: 10.1016/j.tips.2018.11.002.
  17. Ronchetti, S., Ricci, E., Migliorati, G., Gentili, M., and Riccardi, C. (2018) How glucocorticoids affect the neutrophil life, Int. J. Mol. Sci., 19, 4090, doi: 10.3390/ijms19124090.
  18. Subrahmanyam, Y. V., Yamaga, S., Prashar, Y., Lee, H. H., Hoe, N. P., Kluger, Y., Gerstein, M., Goguen, J. D., Newburger, P. E., and Weissman, S. M. (2001) RNA expression patterns change dramatically in human neutrophils exposed to bacteria, Blood, 97, 2457-2468, doi: 10.1182/blood.v97.8.2457.
  19. Monteseirin, J., Chacon, P., Vega, A., El Bekay, R., Alvarez, M., Alba, G., Conde, M., Jimenez, J., Asturias, J. A., Martinez, A., Conde, J., Pintado, E., Bedoya, F. J., and Sobrino, F. (2004) Human neutrophils synthesize IL-8 in an IgE-mediated activation, J. Leukoc. Biol., 76, 692-700, doi: 10.1189/jlb.0903441.
  20. Galkina, S. I., Fedorova, N. V., Serebryakova, M. V., Romanova, J. M., Golyshev, S. A., Stadnichuk, V. I., Baratova, L. A., Sud'ina, G. F., and Klein, T. (2012) Proteome analysis identified human neutrophil membrane tubulovesicular extensions (cytonemes, membrane tethers) as bactericide trafficking, Biochim. Biophys. Acta, 1820, 1705-1714, doi: 10.1016/j.bbagen.2012.06.016.
  21. Menegazzi, R., Busetto, S., Decleva, E., Cramer, R., Dri, P., and Patriarca, P. (1999) Triggering of chloride ion efflux from human neutrophils as a novel function of leukocyte beta 2 integrins: relationship with spreading and activation of the respiratory burst, J. Immunol., 162, 423-434, doi: 10.4049/jimmunol.162.1.423.
  22. Umanskiy, K., Robinson, C., Cave, C., Williams, M. A., Lentsch, A. B., Cuschieri, J., and Solomkin, J. S. (2003) NADPH oxidase activation in fibronectin adherent human neutrophils: A potential role for beta1 integrin ligation, Surgery, 134, 378-383, doi: 10.1067/msy.2003.253.
  23. Galkina, S. I., Golenkina, E. A., Serebryakova, M. V., Fedorova, N. V., Ksenofontov, A. L., Stadnichuk, V. I., and Sud'ina, G. F. (2022) Ivermectin affects neutrophil-induced inflammation through inhibition of hydroxylysine but stimulation of cathepsin G and phenylalanine secretion, Biomedicines, 10, 3284, doi: 10.3390/biomedicines10123284.
  24. Golenkina, E. A., Galkina, S. I., Viryasova, G. M., and Sud'ina, G. F. (2023) The pro-oxidant effect of class A CpG ODNs on human neutrophils includes both non-specific Stimulation of ROS production and structurally determined induction of NO synthesis, Oxygen, 3, 20-31, doi: 10.3390/oxygen3010002.
  25. Galkina, S. I., Fedorova, N. V., Serebryakova, M. V., Arifulin, E. A., Stadnichuk, V. I., Baratova, L. A., and Sud'ina, G. F. (2017) Mold alkaloid cytochalasin D modifies the morphology and secretion of fMLP-, LPS-, or PMA-stimulated neutrophils upon adhesion to fibronectin, Mediat. Inflamm., 2017, 4308684, doi: 10.1155/2017/4308684.
  26. Fedorova, N. V., Ksenofontov, A. L., Serebryakova, M. V., Stadnichuk, V. I., Gaponova, T. V., Baratova, L. A., Sud'ina, G. F., and Galkina, S. I. (2018) Neutrophils release metalloproteinases during adhesion in the presence of insulin, but cathepsin G in the presence of glucagon, Mediat. Inflamm., 2018, 1574928, doi: 10.1155/2018/1574928.
  27. Galkina, S. I., Fedorova, N. V., Ksenofontov, A. L., Serebryakova, M. V., Golenkina, E. A., Stadnichuk, V. I., Baratova, L. A., and Sud'ina, G. F. (2021) Neutrophil adhesion and the release of the free amino acid hydroxylysine, Cells, 10, 563, doi: 10.3390/cells10030563.
  28. Galkina, S. I., Fedorova, N. V., Ksenofontov, A. L., Stadnichuk, V. I., Baratova, L. A., and Sud'ina, G. F. (2019) Neutrophils as a source of branched-chain, aromatic and positively charged free amino acids, Cell Adhes. Migrat., 13, 98-105, doi: 10.1080/19336918.2018.1540903.
  29. Song, Y., Zheng, S., Wang, J., Long, H., Fang, L., Wang, G., Li, Z., Que, T., Liu, Y., Li, Y., Zhang, X., Fang, W., and Qi, S. (2017) Hypoxia-induced PLOD2 promotes proliferation, migration and invasion via PI3K/Akt signaling in glioma, Oncotarget, 8, 41947-41962, doi: 10.18632/oncotarget.16710.
  30. Qi, Q., Huang, W., Zhang, H., Zhang, B., Sun, X., Ma, J., Zhu, C., and Wang, C. (2021) Bioinformatic analysis of PLOD family member expression and prognostic value in non-small cell lung cancer, Transl. Cancer Res., 10, 2707-2724, doi: 10.21037/tcr-21-73.
  31. Wan, J., Qin, J., Cao, Q., Hu, P., Zhong, C., and Tu, C. (2020) Hypoxia-induced PLOD2 regulates invasion and epithelial-mesenchymal transition in endometrial carcinoma cells, Genes Genomics, 42, 317-324, doi: 10.1007/s13258-019-00901-y.
  32. Ngo, T. T., and Lenhoff, H. M. (1980) A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions, Anal. Biochemi., 105, 389-397, doi: 10.1016/0003-2697(80)90475-3.
  33. Petrov, Iu. P., Neguliaev, Iu. A., and Tsupkina, N. V. (2014) Morphology of NCTC cells upon a contact with type I collagen added to culture medium [in Russian], Tsitologiia, 56, 591-598.
  34. Hafezi-Moghadam, A., Simoncini, T., Yang, Z., Limbourg, F. P., Plumier, J. C., Rebsamen, M. C., Hsieh, C. M., Chui, D. S., Thomas, K. L., Prorock, A. J., Laubach, V. E., Moskowitz, M. A., French, B. A., Ley, K., and Liao, J. K. (2002) Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase, Nat. Med., 8, 473-479, doi: 10.1038/nm0502-473.
  35. Yukawa, H., Shen, J., Harada, N., Cho-Tamaoka, H., and Yamashita, T. (2005) Acute effects of glucocorticoids on ATP-induced Ca2+ mobilization and nitric oxide production in cochlear spiral ganglion neurons, Neuroscience, 130, 485-496, doi: 10.1016/j.neuroscience.2004.09.037.
  36. Matsuda, K., Sasaki, M., Baba, H., and Kamiya, Y. (2022) Neuronal nitric oxide synthase suppression confers the prolonged analgesic effect of sciatic nerve block with perineural dexamethasone in postoperative pain model mice, J. Pain, 23, 1765-1778, doi: 10.1016/j.jpain.2022.06.001.
  37. Calzetta, L., Chetta, A., Aiello, M., Pistocchini, E., and Rogliani, P. (2022) The impact of corticosteroids on human airway smooth muscle contractility and airway hyperresponsiveness: a systematic review, Int. J. Mol. Sci., 23, 15285, doi: 10.3390/ijms232315285.
  38. Jia, W. Y., and Zhang, J. J. (2022) Effects of glucocorticoids on leukocytes: genomic and non-genomic mechanisms, World J. Clin. Cases, 10, 7187-7194, doi: 10.12998/wjcc.v10.i21.7187.
  39. Nunez, F. J., Johnstone, T. B., Corpuz, M. L., Kazarian, A. G., Mohajer, N. N., Tliba, O., Panettieri, R. A., Jr., Koziol-White, C., Roosan, M. R., and Ostrom, R. S. (2020) Glucocorticoids rapidly activate cAMP production via G(alphas) to initiate non-genomic signaling that contributes to one-third of their canonical genomic effects, FASEB J., 34, 2882-2895, doi: 10.1096/fj.201902521R.
  40. Hynes, D., and Harvey, B. J. (2019) Dexamethasone reduces airway epithelial Cl- secretion by rapid non-genomic inhibition of KCNQ1, KCNN4 and KATP K+ channels, Steroids, 151, 108459, doi: 10.1016/j.steroids.2019.108459.
  41. Freischlag, J. A., Colburn, M. D., Quinones-Baldrich, W. J., and Moore, W. S. (1992) Alteration of neutrophil (PMN) function by heparin, dexamethasone, and enalapril, J. Surg. Res., 52, 523-529, doi: 10.1016/0022-4804(92)90322-q.
  42. Liu, D., Xiong, R., Chen, X., Li, P., Ning, Y., Peng, Y., Zhao, Y., Yang, N., and Zhou, Y. (2014) The glucocorticoid dexamethasone inhibits U937 cell adhesion and neutrophil release via RhoA/ROCK1-dependent and independent pathways, Cell. Physiol. Biochem., 33, 1654-1662, doi: 10.1159/000362948.
  43. Wallerath, T., Gath, I., Aulitzky, W. E., Pollock, J. S., Kleinert, H., and Forstermann, U. (1997) Identification of the NO synthase isoforms expressed in human neutrophil granulocytes, megakaryocytes and platelets, Thromb. Haemost., 77, 163-167, doi: 10.1055/s-0038-1655925.
  44. Bellefontaine, N., Hanchate, N. K., Parkash, J., Campagne, C., de Seranno, S., Clasadonte, J., d'Anglemont de Tassigny, X., and Prevot, V. (2011) Nitric oxide as key mediator of neuron-to-neuron and endothelia-to-glia communication involved in the neuroendocrine control of reproduction, Neuroendocrinology, 93, 74-89, doi: 10.1159/000324147.
  45. Urbach, V., Walsh, D. E., Mainprice, B., Bousquet, J., and Harvey, B. J. (2002) Rapid non-genomic inhibition of ATP-induced Cl- secretion by dexamethasone in human bronchial epithelium, J. Physiol., 545, 869-878, doi: 10.1113/jphysiol.2002.028183.
  46. Risteli, M., Ruotsalainen, H., Salo, A. M., Sormunen, R., Sipila, L., Baker, N. L., Lamande, S. R., Vimpari-Kauppinen, L., and Myllyla, R. (2009) Reduction of lysyl hydroxylase 3 causes deleterious changes in the deposition and organization of extracellular matrix, J. Biol. Chem., 284, 28204-28211, doi: 10.1074/jbc.M109.038190.
  47. Salo, A. M., Wang, C., Sipila, L., Sormunen, R., Vapola, M., Kervinen, P., Ruotsalainen, H., Heikkinen, J., and Myllyla, R. (2006) Lysyl hydroxylase 3 (LH3) modifies proteins in the extracellular space, a novel mechanism for matrix remodeling, J. Cell. Physiol., 207, 644-653, doi: 10.1002/jcp.20596.
  48. Chen, Y., Guo, H., Terajima, M., Banerjee, P., Liu, X., Yu, J., Momin, A. A., Katayama, H., Hanash, S. M., Burns, A. R., Fields, G. B., Yamauchi, M., and Kurie, J. M. (2016) Lysyl hydroxylase 2 is secreted by tumor cells and can modify collagen in the extracellular space, J. Biol. Chem., 291, 25799-25808, doi: 10.1074/jbc.M116.759803.
  49. Wang, C., Ristiluoma, M. M., Salo, A. M., Eskelinen, S., and Myllyla, R. (2012) Lysyl hydroxylase 3 is secreted from cells by two pathways, J. Cell. Physiol., 227, 668-675, doi: 10.1002/jcp.22774.
  50. Faurschou, M., and Borregaard, N. (2003) Neutrophil granules and secretory vesicles in inflammation, Microbes Infect., 5, 1317-1327, doi: 10.1016/j.micinf.2003.09.008.
  51. Sheng, Y., Peng, W., Huang, Y., Cheng, L., Meng, Y., Kwantwi, L. B., Yang, J., Xu, J., Xiao, H., Kzhyshkowska, J., and Wu, Q. (2023) Tumor-activated neutrophils promote metastasis in breast cancer via the G-CSF-RLN2-MMP-9 axis, J. Leukoc. Biol., 113, 383-399, doi: 10.1093/jleuko/qiad004.
  52. Bostanci Durmus, A., Dincer Cengiz, S., Yilmaz, H., Candar, T., Gursoy, A. Y., and Sinem Caglar, G. (2019) The levels of matrix metalloproteinase-9 and neutrophil gelatinase-associated lipocalin in different stages of endometriosis, J. Obstetrics Gynaecol., 39, 991-995, doi: 10.1080/01443615.2019.1584889.
  53. He, Z., Paule, M. G., and Ferguson, S. A. (2012) Low oral doses of bisphenol A increase volume of the sexually dimorphic nucleus of the preoptic area in male, but not female, rats at postnatal day 21, Neurotoxicol. Teratol., 34, 331-337, doi: 10.1016/j.ntt.2012.03.004.
  54. Jiguet-Jiglaire, C., Boissonneau, S., Denicolai, E., Hein, V., Lasseur, R., Garcia, J., Romain, S., Appay, R., Graillon, T., Mason, W., Carpentier, A. F., Brandes, A. A., Ouafik, L., Wick, W., Baaziz, A., Gigan, J. P., Arguello, R. J., Figarella-Branger, D., Chinot, O., and Tabouret, E. (2022) Plasmatic MMP9 released from tumor-infiltrating neutrophils is predictive for bevacizumab efficacy in glioblastoma patients: an AVAglio ancillary study, Acta Neuropathol. Commun., 10, 1, doi: 10.1186/s40478-021-01305-4.
  55. Fujita, M., Harada, E., Ikegame, S., Ye, Q., Ouchi, H., Inoshima, I., and Nakanishi, Y. (2007) Doxycycline attenuated lung injury by its biological effect apart from its antimicrobial function, Pulmonary Pharmacol. Ther., 20, 669-675, doi: 10.1016/j.pupt.2006.08.006.
  56. Moon, A., Gil, S., Gill, S. E., Chen, P., and Matute-Bello, G. (2012) Doxycycline impairs neutrophil migration to the airspaces of the lung in mice exposed to intratracheal lipopolysaccharide, J. Inflamm., 9, 31, doi: 10.1186/1476-9255-9-31.
  57. Zhang, F., Hu, L., Wu, Y. X., Fan, L., Liu, W. T., Wang, J., Sun, H., and Zhang, J. S. (2019) Doxycycline alleviates paraquat-induced acute lung injury by inhibiting neutrophil-derived matrix metalloproteinase 9, Int. Immunopharmacol., 72, 243-251, doi: 10.1016/j.intimp.2019.04.015.
  58. Feng, S., Cen, J., Huang, Y., Shen, H., Yao, L., Wang, Y., and Chen, Z. (2011) Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins, PLoS One, 6, e20599, doi: 10.1371/journal.pone.0020599.
  59. Ong, C. W., Pabisiak, P. J., Brilha, S., Singh, P., Roncaroli, F., Elkington, P. T., and Friedland, J. S. (2017) Complex regulation of neutrophil-derived MMP-9 secretion in central nervous system tuberculosis, J. Neuroinflamm., 14, 31, doi: 10.1186/s12974-017-0801-1.
  60. Hamada, T., Fondevila, C., Busuttil, R. W., and Coito, A. J. (2008) Metalloproteinase-9 deficiency protects against hepatic ischemia/reperfusion injury, Hepatology, 47, 186-198, doi: 10.1002/hep.21922.
  61. Dayer, C., and Stamenkovic, I. (2015) Recruitment of matrix metalloproteinase-9 (MMP-9) to the fibroblast cell surface by lysyl hydroxylase 3 (LH3) triggers transforming Growth factor-beta (TGF-beta) activation and fibroblast differentiation, J. Biol. Chem., 290, 13763-13778, doi: 10.1074/jbc.M114.622274.
  62. Yu, Q., and Stamenkovic, I. (1999) Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion, Genes Dev., 13, 35-48, doi: 10.1101/gad.13.1.35.
  63. Dorschner, R. A., Lee, J., Cohen, O., Costantini, T., Baird, A., and Eliceiri, B. P. (2020) ECRG4 regulates neutrophil recruitment and CD44 expression during the inflammatory response to injury, Sci. Adv., 6, eaay0518, doi: 10.1126/sciadv.aay0518.
  64. Shao, Y., Li, L., Liu, L., Yang, Y., Huang, J., Ji, D., Zhou, Y., Chen, Y., Zhu, Z., and Sun, B. (2022) CD44/ERM/F-actin complex mediates targeted nuclear degranulation and excessive neutrophil extracellular trap formation during sepsis, J. Cell. Mol. Med., 26, 2089-2103, doi: 10.1111/jcmm.17231.
  65. Yu, Q., and Stamenkovic, I. (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis, Genes Dev., 14, 163-176, doi: 10.1101/gad.14.2.163.
  66. Chintala, S. K., Sawaya, R., Aggarwal, B. B., Majumder, S., Giri, D. K., Kyritsis, A. P., Gokaslan, Z. L., and Rao, J. S. (1998) Induction of matrix metalloproteinase-9 requires a polymerized actin cytoskeleton in human malignant glioma cells, J. Biol. Chem., 273, 13545-13551.
  67. Samanna, V., Ma, T., Mak, T. W., Rogers, M., and Chellaiah, M. A. (2007) Actin polymerization modulates CD44 surface expression, MMP-9 activation, and osteoclast function, J. Cell. Physiol., 213, 710-720, doi: 10.1002/jcp.21137.
  68. Garvin, M. R., Alvarez, C., Miller, J. I., Prates, E. T., Walker, A. M., Amos, B. K., Mast, A. E., Justice, A., Aronow, B., and Jacobson, D. (2020) A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm, eLife, 9, e59177, doi: 10.7554/eLife.59177.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies