Role of ubiquitin-proteasome system in stem cell biology

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Selective degradation of cellular proteins by the ubiquitin -proteasome system is one of the key regulatory mechanisms in eukaryotic cells. Accumulating data indicate that the ubiquitin - proteasome system is involved in the regulation of fundamental processes in mammalian stem cells, including proliferation, differentiation, cell migration, aging and programmed cell death. Regulation can be carried out either by proteolytic degradation of key transcription factors and signaling pathway proteins, or by posttranslational modifications of target proteins with ubiquitin or other ubiquitin-like modifiers. Studies of the molecular mechanisms of proteostasis maintenance in stem cells are of great importance for the development of new therapeutic approaches aimed at the treatment of autoimmune and neurodegenerative diseases, cancer and other socially significant pathologies. This review covers current data on the function of the ubiquitin-proteasome system in stem cells.

About the authors

A. V Burov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

119991 Moscow, Russia

A. A Rodin

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

119991 Moscow, Russia

V. L Karpov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

119991 Moscow, Russia

A. V Morozov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: runkel@inbox.ru
119991 Moscow, Russia

References

  1. Kolios, G., and Moodley, Y. (2013) Introduction to stem cells and regenerative medicine, Respiration, 85, 3-10, doi: 10.1159/000345615.
  2. Zakrzewski, W., Dobrzyński, M., Szymonowicz, M., and Rybak, Z. (2019) Stem cells: past, present, and future, Stem Cell Res. Ther., 10, 68, doi: 10.1186/s13287-019-1165-5.
  3. Selenina, A. V., Tsimokha, A. S., and Tomilin, A. N. (2017) Proteasomes in protein homeostasis of pluripotent stem cells, Acta Naturae, 9, 39-47, doi: 10.32607/20758251-2017-9-3-39-47.
  4. Chagastelles, P. C., and Nardi, N. B. (2011) Biology of stem cells: an overview, Kidney Int. Suppl., 1, 63-67, doi: 10.1038/kisup.2011.15.
  5. Preston, S. L., Alison, M. R., Forbes, S. J., Direkze, N. C., Poulsom, R., and Wright, N. A. (2003) The new stem cell biology: something for everyone, Mol. Pathol., 56, 86-96, doi: 10.1136/mp.56.2.86.
  6. Lim, S. K., and Khoo, B. Y. (2021) An overview of mesenchymal stem cells and their potential therapeutic benefits in cancer therapy, Oncol. Lett., 22, 785, doi: 10.3892/ol.2021.13046.
  7. Apostolou, E., Blau, H., Chien, K., Lancaster, M. A., Tata, P. R., Trompouki, E., Watt, F. M., Zeng, Y. A., and Zernicka-Goetz, M. (2023) Progress and challenges in stem cell biology, Nat. Cell Biol., 25, 203-206, doi: 10.1038/s41556-023-01087-y.
  8. Naujokat, C., and Sarić, T. (2007) Concise review: role and function of the ubiquitin-proteasome system in mammalian stem and progenitor cells, Stem Cells, 25, 2408-2418, doi: 10.1634/stemcells.2007-0255.
  9. Okita, Y., and Nakayama, K. I. (2012) UPS delivers pluripotency, Cell Stem Cell, 11, 728-730, doi: 10.1016/j.stem.2012.11.009.
  10. Bax, M., McKenna, J., Do-Ha, D., Stevens, C. H., Higginbottom, S., Balez, R., Cabral-da-Silva, M. E. C., Farrawell, N. E., Engel, M., Poronnik, P., Yerbury, J. J., Saunders, D. N., and Ooi, L. (2019) The ubiquitin proteasome system is a key regulator of pluripotent stem cell survival and motor neuron differentiation, Cells, 8, 581, doi: 10.3390/cells8060581.
  11. Choi, J., and Baek, K. H. (2018) Cellular functions of stem cell factors mediated by the ubiquitin-proteasome system, Cell. Mol. Life Sci., 75, 1947-1957, doi: 10.1007/s00018-018-2770-7.
  12. Hu, C., Fan, L., Cen, P., Chen, E., Jiang, Z., and Li, L. (2016) Energy metabolism plays a critical role in stem cell maintenance and differentiation, Int. J. Mol. Sci., 17, 253, doi: 10.3390/ijms17020253.
  13. Birket, M. J., Orr, A. L., Gerencser, A. A., Madden, D. T., Vitelli, C., Swistowski, A., Brand, M. D., and Zeng, X. (2011) A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells, J. Cell. Sci., 124, 348-358, doi: 10.1242/jcs.072272.
  14. Fillmore, N., Huqi, A., Jaswal, J. S., Mori, J., Paulin, R., Haromy, A., Onay-Besikci, A., Ionescu, L., Thébaud, B., Michelakis, E., and Lopaschuk, G. D. (2015) Effect of fatty acids on human bone marrow mesenchymal stem cell energy metabolism and survival, PLoS One, 10, e0120257, doi: 10.1371/journal.pone.0120257.
  15. Morozov, A., Astakhova, T., Erokhov, P., and Karpov, V. (2022) The ATP/Mg2+ balance affects the degradation of short fluorogenic substrates by the 20S proteasome, Methods Protoc., 5, 15, doi: 10.3390/mps5010015.
  16. Dikic, I. (2017) Proteasomal and autophagic degradation systems, Annu. Rev. Biochem., 86, 193-224, doi: 10.1146/annurev-biochem-061516-044908.
  17. Cohen-Kaplan, V., Livneh, I., Avni, N., Cohen-Rosenzweig, C., and Ciechanover, A. (2016) The ubiquitin-proteasome system and autophagy: coordinated and independent activities, Int. J. Biochem. Cell Biol., 79, 403-418, doi: 10.1016/j.biocel.2016.07.019.
  18. Finley, D., and Varshavsky, A. (1985) The ubiquitin system: functions and mechanisms, Trends Biochem. Sci., 10, 343-347, doi: 10.1016/0968-0004(85)90108-2.
  19. Ciechanover, A., and Kwon, Y. (2015) Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies, Exp. Mol. Med., 47, e147, doi: 10.1038/emm.2014.117.
  20. Yau, R., and Rape, M. (2016) The increasing complexity of the ubiquitin code, Nat. Cell Biol., 18, 579-586, doi: 10.1038/ncb3358.
  21. Swatek, K. N., and Komander, D. (2016) Ubiquitin modifications, Cell Res., 26, 399-422, doi: 10.1038/cr.2016.39.
  22. Braten, O., Livneh, I., Ziv, T., Admon, A., Kehat, I., Caspi, L. H., Gonen, H., Bercovich, B., Godzik, A., Jahandideh, S., Jaroszewski, L., Sommer, T., Kwon, Y. T., Guharoy, M., Tompa, P., and Ciechanover, A. (2016) Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination, Proc. Natl. Acad. Sci. USA, 113, E4639-E4647, doi: 10.1073/pnas.1608644113.
  23. Collins, G. A., and Goldberg, A. L. (2017) The logic of the 26S proteasome, Cell, 169, 792-806, doi: 10.1016/j.cell.2017.04.023.
  24. Reits, E., Griekspoor, A., Neijssen, J., Groothuis, T., Jalink, K., Van Veelen, P., Janssen, H., Calafat, J., Drijfhout, J. W., and Neefjes, J. (2003) Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I, Immunity, 18, 97-108, doi: 10.1016/s1074-7613(02)00511-3.
  25. De Araujo, C. B., Heimann, A. S., Remer, R. A., Russo, L. C., Colquhoun, A., Forti, F. L., and Ferro, E. S. (2019) Intracellular peptides in cell biology and pharmacology, Biomolecules, 9, 150, doi: 10.3390/biom9040150.
  26. Ramachandran, K. V., and Margolis, S. S. (2017) A mammalian nervous-system-specific plasma membrane proteasome complex that modulates neuronal function, Nat. Struct. Mol. Biol., 24, 419-430, doi: 10.1038/nsmb.3389.
  27. Finley, D., Chen, X., and Walters, K. J. (2016) Gates, channels, and switches: elements of the proteasome machine, Trends Biochem. Sci., 41, 77-93, doi: 10.1016/j.tibs.2015.10.009.
  28. Humbard, M. A., and Maupin-Furlow, J. A. (2013) Prokaryotic proteasomes: nanocompartments of degradation, J. Mol. Microbiol. Biotechnol., 23, 321-334, doi: 10.1159/000351348.
  29. Budenholzer, L., Cheng, C. L., Li, Y., and Hochstrasser, M. (2017) Proteasome structure and assembly, J. Mol. Biol., 429, 3500-3524, doi: 10.1016/j.jmb.2017.05.027.
  30. Groll, M., Ditzel, L., Löwe, J., Stock, D., Bochtler, M., Bartunik, H. D., and Huber, R. (1997) Structure of 20S proteasome from yeast at 2.4 A resolution, Nature, 386, 463-471, doi: 10.1038/386463a0.
  31. Glickman, M. H., and Ciechanover, A. (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction, Physiol. Rev., 82, 373-428, doi: 10.1152/physrev.00027.2001.
  32. Rousseau, A., and Bertolotti, A. (2018) Regulation of proteasome assembly and activity in health and disease, Nat. Rev. Mol. Cell Biol., 19, 697-712, doi: 10.1038/s41580-018-0040-z.
  33. Tanaka, K. (2009) The proteasome: overview of structure and functions, Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 85, 12-36, doi: 10.2183/pjab.85.12.
  34. Lu, Y., Lee, B. H., King, R. W., Finley, D., and Kirschner, M. W. (2015) Substrate degradation by the proteasome: a single-molecule kinetic analysis, Science, 348, 1250834, doi: 10.1126/science.1250834.
  35. Liu, C. W., and Jacobson, A. D. (2013) Functions of the 19S complex in proteasomal degradation, Trends Biochem. Sci., 38, 103-110, doi: 10.1016/j.tibs.2012.11.009.
  36. Blickwedehl, J., Agarwal, M., Seong, C., Pandita, R. K., Melendy, T., Sung, P., Pandita, T. K., and Bangia, N. (2008) Role for proteasome activator PA200 and postglutamyl proteasome activity in genomic stability, Proc. Natl. Acad. Sci. USA, 105, 16165-16170, doi: 10.1073/pnas.0803145105.
  37. Bochmann, I., Ebstein, F., Lehmann, A., Wohlschlaeger, J., Sixt, S. U., Kloetzel, P. M., and Dahlmann, B. (2014) T lymphocytes export proteasomes by way of microparticles: a possible mechanism for generation of extracellular proteasomes, J. Cell Mol. Med., 18, 59-68, doi: 10.1111/jcmm.12160.
  38. Morozov, A. V., and Karpov, V. L. (2018) Biological consequences of structural and functional proteasome diversity, Heliyon, 4, e00894, doi: 10.1016/j.heliyon.2018.e00894.
  39. Ferrington, D. A., and Gregerson, D. S. (2012) Immunoproteasomes: structure, function, and antigen presentation, Prog. Mol. Biol. Transl. Sci., 109, 75-112, doi: 10.1016/B978-0-12-397863-9.00003-1.
  40. Kammerl, I. E., and Meiners, S. (2016) Proteasome function shapes innate and adaptive immune responses, Am. J. Physiol. Lung Cell Mol. Physiol., 311, L328-L336, doi: 10.1152/ajplung.00156.2016.
  41. Murata, S., Takahama, Y., Kasahara, M., and Tanaka, K. (2018) The immunoproteasome and thymoproteasome: functions, evolution and human disease, Nat. Immunol., 19, 923-931, doi: 10.1038/s41590-018-0186-z.
  42. Kimura, H., Caturegli, P., Takahashi, M., and Suzuki, K. (2015) New Insights into the function of the immunoproteasome in immune and nonimmune cells, J. Immunol. Res., 2015, 541984, doi: 10.1155/2015/541984.
  43. Lundh, M., Bugliani, M., Dahlby, T., Chou, D. H., Wagner, B., Ghiasi, S. M., De Tata, V., Chen, Z., Lund, M. N., Davies, M. J., Marchetti, P., and Mandrup-Poulsen, T. (2017) The immunoproteasome is induced by cytokines and regulates apoptosis in human islets, J. Endocrinol., 233, 369-379, doi: 10.1530/JOE-17-0110.
  44. Johnston-Carey, H. K., Pomatto, L. C., and Davies, K. J. (2015) The immunoproteasome in oxidative stress, aging, and disease, Crit. Rev. Biochem. Mol. Biol., 51, 268-281, doi: 10.3109/10409238.2016.1172554.
  45. Ebstein, F., Textoris-Taube, K., Keller, C., Golnik, R., Vigneron, N., Van den Eynde, B. J., Schuler-Thurner, B., Schadendorf, D., Lorenz, F. K., Uckert, W., Urban, S., Lehmann, A., Albrecht-Koepke, N., Janek, K., Henklein, P., Niewienda, A., Kloetzel, P. M., and Mishto, M. (2016) Proteasomes generate spliced epitopes by two different mechanisms and as efficiently as non-spliced epitopes, Sci. Rep., 6, 24032, doi: 10.1038/srep24032.
  46. Rodin, A., Morozov, A., Andreeva, N., Funikov, S., Burov, A., Belyavsky, A., and Karpov, V. (2021) Reorganization of the proteasome pool in mesenchymal stem cellsduring aging in culture. Abstract, FEBS Open Bio, 11, 345, doi: 10.1002/2211-5463.13205.
  47. Kniepert, A., and Groettrup, M. (2014) The unique functions of tissue-specific proteasomes, Trends Biochem. Sci., 39, 17-24, doi: 10.1016/j.tibs.2013.10.004.
  48. Murata, S., Sasaki, K., Kishimoto, T., Niwa, S., Hayashi, H., Takahama, Y., and Tanaka, K. (2007) Regulation of CD8+ T cell development by thymus-specific proteasomes, Science, 316, 1349-1353, doi: 10.1126/science.1141915.
  49. Kincaid, E. Z., Murata, S., Tanaka, K., and Rock, K. L. (2016) Specialized proteasome subunits have an essential role in the thymic selection of CD8+ T cells, Nat Immunol., 17, 938-945, doi: 10.1038/ni.3480.
  50. Widjaja, C. E., Olvera, J. G., Metz, P. J., Phan, A. T., Savas, J. N., de Bruin, G., Leestemaker, Y., Berkers, C. R., de Jong, A., Florea, B. I., Fisch, K., Lopez, J., Kim, S. H., Garcia, D. A., Searles, S., Bui, J. D., Chang, A. N., Yates, J. R., Goldrath, A. W., Overkleeft, H. S., Ovaa, H., and Chang, J. T. (2017) Proteasome activity regulates CD8+ T lymphocyte metabolism and fate specification, J. Clin. Invest., 127, 3609-3623, doi: 10.1172/JCI90895.
  51. Bikorimana, J. P., El-Hachem, N., El-Kadiry, A. E., Abusarah, J., Salame, N., Shammaa, R., and Rafei, M. (2021) Thymoproteasome-expressing mesenchymal stromal cells confer protective anti-tumor immunity via cross-priming of endogenous dendritic cells, Front. Immunol., 11, 596303, doi: 10.3389/fimmu.2020.596303.
  52. Ciechanover, A. (2005) Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting, Cell Death Differ., 12, 1178-1190, doi: 10.1038/sj.cdd.4401692.
  53. Yamanaka, S. (2012) Induced pluripotent stem cells: past, present, and future, Cell Stem Cell, 10, 678-684, doi: 10.1016/j.stem.2012.05.005.
  54. Kim, S. H., Kim, M. O., Cho, Y. Y., Yao, K., Kim, D. J., Jeong, C. H., Yu, D. H., Bae, K. B., Cho, E. J., Jung, S. K., Lee, M. H., Chen, H., Kim, J. Y., Bode, A. M., and Dong, Z. (2014) ERK1 phosphorylates Nanog to regulate protein stability and stem cell self-renewal, Stem Cell Res., 13, 1-11, doi: 10.1016/j.scr.2014.04.001.
  55. Buckley, S. M., Aranda-Orgilles, B., Strikoudis, A., Apostolou, E., Loizou, E., Moran-Crusio, K., Farnsworth, C. L., Koller, A. A., Dasgupta, R., Silva, J. C., Stadtfeld, M., Hochedlinger, K., Chen, E. I., and Aifantis, I. (2012) Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system, Cell Stem Cell, 11, 783-798, doi: 10.1016/j.stem.2012.09.011.
  56. Vilchez, D., Boyer, L., Morantte, I., Lutz, M., Merkwirth, C., Joyce, D., Spencer, B., Page, L., Masliah, E., Berggren, W. T., Gage, F. H., and Dillin, A. (2012) Increased proteasome activity in human embryonic stem cells is regulated by PSMD11, Nature, 489, 304-308, doi: 10.1038/nature11468.
  57. Kitajima, Y., Suzuki, N., Nunomiya, A., Osana, S., Yoshioka, K., Tashiro, Y., Takahashi, R., Ono, Y., Aoki, M., and Nagatomi, R. (2018) The ubiquitin-proteasome system is indispensable for the maintenance of muscle stem cells, Stem Cell Rep., 11, 1523-1538, doi: 10.1016/j.stemcr.2018.10.009.
  58. Saez, I., Koyuncu, S., Gutierrez-Garcia, R., Dieterich, C., and Vilchez, D. (2018) Insights into the ubiquitin-proteasome system of human embryonic stem cells, Sci. Rep., 8, 4092, doi: 10.1038/s41598-018-22384-9.
  59. Jin, J., Liu, J., Chen, C., Liu, Z., Jiang, C., Chu, H., Pan, W., Wang, X., Zhang, L., Li, B., Jiang, C., Ge, X., Xie, X., and Wang, P. (2016) The deubiquitinase USP21 maintains the stemness of mouse embryonic stem cells via stabilization of Nanog, Nat. Commun., 7, 13594, doi: 10.1038/ncomms13594.
  60. Huang, Z., Wu, Q., Guryanova, O. A., Cheng, L., Shou, W., Rich, J. N., and Bao, S. (2011) Deubiquitylase HAUSP stabilizes REST and promotes maintenance of neural progenitor cells, Nat. Cell. Biol., 13, 142-152, doi: 10.1038/ncb2153.
  61. Fuchs, G., Shema, E., Vesterman, R., Kotler, E., Wolchinsky, Z., Wilder, S., Golomb, L., Pribluda, A., Zhang, F., Haj-Yahya, M., Feldmesser, E., Brik, A., Yu, X., Hanna, J., Aberdam, D., Domany, E., and Oren, M. (2015) RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation, Mol. Cell., 46, 662-673, doi: 10.1016/j.molcel.2012.05.023.
  62. Sussman, R. T., Stanek, T. J., Esteso, P., Gearhart, J. D., Knudsen, K. E., and McMahon, S. B. (2013) The epigenetic modifier ubiquitin-specific protease 22 (USP22) regulates embryonic stem cell differentiation via transcriptional repression of sex-determining region Y-box 2 (SOX2), J. Biol. Chem., 288, 24234-24246, doi: 10.1074/jbc.M113.469783.
  63. Raynes, R., Pomatto, L. C., and Davies, K. J. (2016) Degradation of oxidized proteins by the proteasome: distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways, Mol. Aspects Med., 50, 41-55, doi: 10.1016/j.mam.2016.05.001.
  64. Lu, L., Song, H. F., Zhang, W. G., Liu, X. Q., Zhu, Q., Cheng, X. L., Yang, G. J., Li, A., and Xiao, Z. C. (2012) Potential role of 20S proteasome in maintaining stem cell integrity of human bone marrow stromal cells in prolonged culture expansion, Biochem. Biophys. Res. Commun., 422, 121-127, doi: 10.1016/j.bbrc.2012.04.119.
  65. Vacanti, V., Kong, E., Suzuki, G., Sato, K., Canty, J. M., and Lee, T. (2005) Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture, J. Cell. Physiol., 205, 194-201, doi: 10.1002/jcp.20376.
  66. Kapetanou, M., Chondrogianni, N., Petrakis, S., Koliakos, G., and Gonos, E. S. (2017) Proteasome activation enhances stemness and lifespan of human mesenchymal stem cells, Free Radic. Biol. Med., 103, 226-235, doi: 10.1016/j.freeradbiomed.2016.12.035.
  67. Strikoudis, A., Guillamot, M., and Aifantis, I. (2014) Regulation of stem cell function by protein ubiquitylation, EMBO Rep., 15, 365-382, doi: 10.1002/embr.201338373.
  68. Rathinam, C., Thien, C. B., Langdon, W. Y., Gu, H., and Flavell, R. A. (2008) The E3 ubiquitin ligase c-Cbl restricts development and functions of hematopoietic stem cells, Genes Dev., 22, 992-997, doi: 10.1101/gad.1651408.
  69. Han, G., Li, A. G., Liang, Y. Y., Owens, P., He, W., Lu, S., Yoshimatsu, Y., Wang, D., Ten Dijke, P., Lin, X., and Wang, X. J. (2006) Smad7-induced beta-catenin degradation alters epidermal appendage development, Dev. Cell, 11, 301-312, doi: 10.1016/j.devcel.2006.06.014.
  70. Karpiuk, O., Najafova, Z., Kramer, F., Hennion, M., Galonska, C., König, A., Snaidero, N., Vogel, T., Shchebet, A., Begus-Nahrmann, Y., Kassem, M., Simons, M., Shcherbata, H., Beissbarth, T., and Johnsen, S. A. (2012) The histone H2B monoubiquitination regulatory pathway is required for differentiation of multipotent stem cells, Mol. Cell, 46, 705-713, doi: 10.1016/j.molcel.2012.05.022.
  71. Shema, E., Tirosh, I., Aylon, Y., Huang, J., Ye, C., Moskovits, N., Raver-Shapira, N., Minsky, N., Pirngruber, J., Tarcic, G., Hublarova, P., Moyal, L., Gana-Weisz, M., Shiloh, Y., Yarden, Y., Johnsen, S. A., Vojtesek, B., Berger, S. L., and Oren, M. (2008) The histone H2B-specific ubiquitin ligase RNF20/hBRE1 acts as a putative tumor suppressor through selective regulation of gene expression, Genes Dev., 22, 2664-2476, doi: 10.1101/gad.1703008.
  72. Hernebring, M., Fredriksson, Å., Liljevald, M., Cvijovic, M., Norrman, K., Wiseman, J., Semb, H., and Nyström, T. (2013) Removal of damaged proteins during ES cell fate specification requires the proteasome activator PA28, Sci. Rep., 3, 1381, doi: 10.1038/srep01381.
  73. Balayan, V., and Guddati, A. K. (2022) Tumor dormancy: biologic and therapeutic implications, World J. Oncol., 13, 8-19, doi: 10.14740/wjon1419.
  74. Lenos, K. J., and Vermeulen, L. (2016) Cancer stem cells don't waste their time cleaning-low proteasome activity, a marker for cancer stem cell function, Ann. Transl. Med., 4, 519, doi: 10.21037/atm.2016.11.81.
  75. Voutsadakis, I. A. (2017) Proteasome expression and activity in cancer and cancer stem cells, Tumour Biol., 39, 1010428317692248, doi: 10.1177/1010428317692248.
  76. Mossallam, G. I., Fattah, R. A., Bokhary, M., Moneer, M., and Mahmoud, H. K. (2021) LMP7 polymorphism may modify the presentation and clinical impact of minor histocompatibility antigens in matched related hematopoietic stem cell transplantation, Cell Immunol., 364, 104329, doi: 10.1016/j.cellimm.2021.104329.
  77. Schröter, F., and Adjaye, J. (2014) The proteasome complex and the maintenance of pluripotency: sustain the fate by mopping up? Stem Cell Res. Ther., 5, 24, doi: 10.1186/scrt413.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies