Proteomic approach to investigate the expression, localization, and functions of the protein product of the SOWAHD gene during granulocytic differentiation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Cataloging human proteins, determining their level of content, cellular localization, function performed, and potential medical significance are important tasks facing the global proteomic community. At present, the localization and functions of protein products for almost half of the protein-coding genes are unknown or poorly understood. The study of the organelle proteome is a promising approach to reveal the localization and functions of human proteins. The nuclear proteome is of particular interest because many nuclear-localized proteins, such as transcription factors, perform regulatory functions that determine cell fate. According to the results of a meta-analysis of the nuclear proteome, or nucleome, of HL-60 cells treated by all-trans-retinoic acid (ATRA), it was revealed that the function and localization of the protein product of the SOWAHD gene is poorly understood, in addition, there is no comprehensive information on the expression of SOWAHD at the protein level. In HL-60 cells for the protein-coding gene SOWAHD, mRNA expression was determined at the level of 6.4 ± 0.7 transcripts per million molecules. Using targeted mass spectrometry, the content of SOWAHD protein was measured in the range of 0.27-1.25 fmol/µg of total protein. Using stable isotope pulse-chase labeling, the half-life for the protein product of the SOWAHD gene was determined to be approximately 19 h. Proteomic profiling of the nuclear fraction of HL-60 cells showed that the SOWAHD protein content increased during ATRA-induced granulocytic differentiation, peaking at 9 h after the addition of the inductor and followed by a decrease at later time points. The results of the study indicate for the first time the nuclear localization and involvement of the protein product of the SOWAHD gene in induced granulocytic differentiation.

作者简介

S. Novikova

Institute of Biomedical Chemistry

Email: novikova.s.e3101@gmail.com
119121 Moscow, Russia

T. Tolstova

Institute of Biomedical Chemistry

119121 Moscow, Russia

N. Soloveva

Institute of Biomedical Chemistry

119121 Moscow, Russia

T. Farafonova

Institute of Biomedical Chemistry

119121 Moscow, Russia

O. Tikhonova

Institute of Biomedical Chemistry

119121 Moscow, Russia

L. Kurbatov

Institute of Biomedical Chemistry

119121 Moscow, Russia

A. Rusanov

Institute of Biomedical Chemistry

119121 Moscow, Russia

V. Zgoda

Institute of Biomedical Chemistry

Email: victor.zgoda@gmail.com
119121 Moscow, Russia

参考

  1. Consortium UniProt (2023) UniProt: The Universal Protein Knowledgebase in 2023, Nucleic Acids Res., 51, D523-D531, doi: 10.1093/nar/gkac1052.
  2. Lane, L., Argoud-Puy, G., Britan, A., Cusin, I., Duek, P. D., Evalet, O., Gateau, A., Gaudet, P., Gleizes, A., Masselot, A., et al. (2012) NeXtProt: a knowledge platform for human proteins, Nucleic Acids Res., 40, D76-83, doi: 10.1093/nar/gkr1179.
  3. Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A., et al. (2015) Proteomics. Tissue-based map of the human proteome, Science, 347, 1260419, doi: 10.1126/science.1260419.
  4. Kim, M. S., Pinto, S. M., Getnet, D., Nirujogi, R. S., Manda, S. S., Chaerkady, R., Madugundu, A. K., Kelkar, D. S., Isserlin, R., Jain, S., et al. (2014) A draft map of the human proteome, Nature, 509, 575-581, doi: 10.1038/nature13302.
  5. Adhikari, S., Nice, E. C., Deutsch, E. W., Lane, L., Omenn, G. S., Pennington, S. R., Paik, Y. K., Overall, C. M., Corrales, F. J., Cristea, I. M., et al. (2020) A high-stringency blueprint of the human proteome, Nat. Commun., 11, 5301, doi: 10.1038/s41467-020-19045-9.
  6. Salzberg, S. L. (2018) Open questions: how many genes do we have? BMC Biol., 16, 94, doi: 10.1186/s12915-018-0564-x.
  7. Kopylov, A. T., Ponomarenko, E. A., Ilgisonis, E. V., Pyatnitskiy, M. A., Lisitsa, A. V., Poverennaya, E. V., Kiseleva, O. I., Farafonova, T. E., Tikhonova, O. V., Zavialova, M. G., et al. (2019) 200+ protein concentrations in healthy human blood plasma: targeted quantitative SRM SIS screening of chromosomes 18, 13, Y, and the mitochondrial chromosome encoded proteome, J. Proteome Res., 18, 120-129, doi: 10.1021/acs.jproteome.8b00391.
  8. Poverennaya, E., Kiseleva, O., Ilgisonis, E., Novikova, S., Kopylov, A., Ivanov, Y., Kononikhin, A., Gorshkov, M., Kushlinskii, N., Archakov, A., et al. (2020) Is it possible to find needles in a haystack? Meta-analysis of 1000+ MS/MS files provided by the Russian proteomic consortium for mining missing proteins, Proteomes, 8, 12, doi: 10.3390/PROTEOMES8020012.
  9. Paik, Y. K., Overall, C. M., Corrales, F., Deutsch, E. W., Lane, L., and Omenn, G. S. (2018) toward completion of the human proteome parts list: progress uncovering proteins that are missing or have unknown function and developing analytical methods, J. Proteome Res., 17, 4023-4030, doi: 10.1021/acs.jproteome.8b00885.
  10. Thul, P. J., and Lindskog, C. (2018) The human protein atlas: a spatial map of the human proteome, Protein Sci., 27, 233-244, doi: 10.1002/pro.3307.
  11. Van Bortle, K., and Corces, V. G. (2012) Nuclear organization and genome function, Annu. Rev. Cell Dev. Biol., 28, 163-187, doi: 10.1146/annurev-cellbio-101011-155824.
  12. Vakhrushev, I. V., Novikova, S. E., Tsvetkova, A. V., Karalkin, P. A., Pyatnitskii, M. A., Zgoda, V. G., and Yarygin, K. N. (2018) Proteomic profiling of HL-60 cells during ATRA-induced differentiation, Bull. Exp. Biol. Med., 165, 530-543, doi: 10.1007/s10517-018-4210-y.
  13. Novikova, S., Tolstova, T., Kurbatov, L., Farafonova, T., Tikhonova, O., Soloveva, N., Rusanov, A., Archakov, A., and Zgoda, V. (2022) Nuclear proteomics of induced leukemia cell differentiation, Cells, 11, 3221, doi: 10.3390/cells11203221.
  14. Zheng, P. Z., Wang, K. K., Zhang, Q. Y., Huang, Q. H., Du, Y. Z., Zhang, Q. H., Xiao, D. K., Shen, S. H., Imbeaud, S., Eveno, E., et al. (2005) Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation apoptosis of promyelocytic leukemia, Proc. Natl. Acad. Sci. USA, 102, 7653-7658, doi: 10.1073/pnas.0502825102.
  15. Wang, W.-J., Tang, W., and Qiu, Z.-Y. (2009) Comparative proteomics analysis on differentiation of human promyelocytic leukemia HL-60 cells into granulocyte and monocyte lineages, Chinese J. Cancer, 28, 117-121.
  16. Novikova, S., Tikhonova, O., Kurbatov, L., Farafonova, T., Vakhrushev, I., Lupatov, A., Yarygin, K., and Zgoda, V. (2021) Omics technologies to decipher regulatory networks in granulocytic cell differentiation, Biomolecules, 11, 907, doi: 10.3390/biom11060907.
  17. Jian, P., Li, Z. W., Fang, T. Y., Jian, W., Zhuan, Z., Mei, L. X., Yan, W. S., and Jian, N. (2011) Retinoic acid induces HL-60 cell differentiation via the upregulation of MiR-663, J. Hematol. Oncol., 4, 20, doi: 10.1186/1756-8722-4-20.
  18. Schwanhäusser, B., Gossen, M., Dittmar, G., and Selbach, M. (2009) Global analysis of cellular protein translation by pulsed SILAC, Proteomics, 9, 205-209, doi: 10.1002/pmic.200800275.
  19. Claydon, A. J., and Beynon, R. (2012) Proteome dynamics: revisiting turnover with a global perspective, Mol. Cell. Proteomics, 11, 1551-1565, doi: 10.1074/mcp.O112.022186.
  20. Ross, A. B., Langer, J. D., and Jovanovic, M. (2021) Proteome turnover in the spotlight: approaches, applications, and perspectives, Mol. Cell. Proteomics, 20, doi: 10.1074/mcp.R120.002190.
  21. Holman, S. W., Hammond, D. E., Simpson, D. M., Waters, J., Hurst, J. L., and Beynon, R. J. (2016) Protein turnover measurement using selected reaction monitoring-mass spectrometry (SRM-MS), Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 374, 20150362, doi: 10.1098/rsta.2015.0362.
  22. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., and Kingsford, C. (2017) Salmon provides fast and bias-aware quantification of transcript expression, Nat. Methods, 14, 417-419, doi: 10.1038/nmeth.4197.
  23. Novikova, S. E., Vakhrushev, I. V., Tsvetkova, A. V., Shushkova, N. A., Farafonova, T. E., Yarygin, K. N., and Zgoda, V. G. (2019) Proteomics of transcription factors: identification of pool of HL-60 cell line-specific regulatory proteins [in Russian], Biomed. Khim., 65, doi: 10.18097/PBMC20196504294.
  24. Wiśniewski, J. R., Zougman, A., Nagaraj, N., and Mann, M. (2009) Universal sample preparation method for proteome analysis, Nat. Methods, 6, 359-362, doi: 10.1038/nmeth.1322.
  25. Mohammad, N. S., Nazli, R., Zafar, H., and Fatima, S. (2022) Effects of lipid based multiple micronutrients supplement on the birth outcome of underweight pre-eclamptic women: a randomized clinical trial, Pak. J. Med. Sci., 38, 219-226, doi: 10.12669/pjms.38.1.4396.
  26. Liu, Y., Mi, Y., Mueller, T., Kreibich, S., Williams, E. G., Van Drogen, A., Borel, C., Frank, M., Germain, P.-L., Bludau, I., et al. (2019) Multi-omic measurements of heterogeneity in HeLa cells across laboratories, Nat. Biotechnol., 37, 314-322, doi: 10.1038/s41587-019-0037-y.
  27. Zhu, Q., Wang, J., Zhang, Q., Wang, F., Fang, L., Song, B., Xie, C., and Liu, J. (2020) Methylation-driven Genes PMPCAP1, SOWAHC and ZNF454 as potential prognostic biomarkers in lung squamous cell carcinoma, Mol. Med. Rep., 21, 1285-1295, doi: 10.3892/mmr.2020.10933.
  28. Ruan, B., Feng, X., Chen, X., Dong, Z., Wang, Q., Xu, K., Tian, J., Liu, J., Chen, Z., Shi, W., et al. (2020) Identification of a set of genes improving survival prediction in kidney renal clear cell carcinoma through integrative reanalysis of transcriptomic data, Dis. Markers, 2020, 8824717, doi: 10.1155/2020/8824717.
  29. Mori, Y., Yokota, H., Hoshino, I., Iwatate, Y., Wakamatsu, K., Uno, T., and Suyari, H. (2021) Deep learning-based gene selection in comprehensive gene analysis in pancreatic cancer, Sci. Rep., 11, 16521, doi: 10.1038/s41598-021-95969-6.
  30. Gillespie, M., Jassal, B., Stephan, R., Milacic, M., Rothfels, K., Senff-Ribeiro, A., Griss, J., Sevilla, C., Matthews, L., Gong, C., et al. (2022) The reactome pathway knowledgebase, Nucleic Acids Res., 50, D687-D692, doi: 10.1093/nar/gkab1028.
  31. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. (2016) KEGG as a reference resource for gene and protein annotation, Nucleic Acids Res., 44, D457-62, doi: 10.1093/nar/gkv1070.
  32. Han, H., Shim, H., Shin, D., Shim, J. E., Ko, Y., Shin, J., Kim, H., Cho, A., Kim, E., Lee, T., et al. (2015) TRRUST: a reference database of human transcriptional regulatory interactions, Sci. Rep., 5, 11432, doi: 10.1038/srep11432.
  33. Lin, Y., Mehta, S., Küçük-McGinty, H., Turner, J. P., Vidovic, D., Forlin, M., Koleti, A., Nguyen, D.-T., Jensen, L. J., Guha, R., et al. (2017) Drug target ontology to classify and integrate drug discovery data, J. Biomed. Semantics, 8, 50, doi: 10.1186/s13326-017-0161-x.
  34. Mathieson, T., Franken, H., Kosinski, J., Kurzawa, N., Zinn, N., Sweetman, G., Poeckel, D., Ratnu, V. S., Schramm, M., Becher, I., et al. (2018) Systematic analysis of protein turnover in primary cells, Nat. Commun., 9, 689, doi: 10.1038/s41467-018-03106-1.
  35. Gomez, G., Lee, J. H., Veldman, M. B., Lu, J., Xiao, X., and Lin, S. (2012) Identification of vascular and hematopoietic genes downstream of etsrp by deep sequencing in zebrafish, PLoS One, 7, e31658, doi: 10.1371/journal.pone.0031658.
  36. Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., Gable, A. L., Fang, T., Doncheva, N. T., Pyysalo, S., et al. (2023) The STRING database in 2023: protein-protein association networks and functional Enrichment analyses for any sequenced genome of interest, Nucleic Acids Res., 51, D638-D646, doi: 10.1093/nar/gkac1000.
  37. Kang, Y., Xie, H., and Zhao, C. (2019) Ankrd45 is a novel ankyrin repeat protein required for cell proliferation, Genes (Basel), 10, 462, doi: 10.3390/genes10060462.
  38. Kumar, A., and Balbach, J. (2021) Folding and stability of ankyrin repeats control biological protein function, Biomolecules, 11, 840, doi: 10.3390/biom11060840.

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##