Протеомный подход для исследования экспрессии, локализации и функций белкового продукта гена SOWAHD в процессе гранулоцитарной дифференцировки

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Каталогизация белков человека, определение уровня их содержания, клеточной локализации, выполняемой функции и потенциальной медицинской значимости являются важными задачами, стоящими перед мировым протеомным сообществом. В настоящее время локализация и функции белковых продуктов для почти половины белок-кодирующих генов неизвестны или слабо изучены. Исследование протеома органелл является многообещающим подходом для выявления локализации и функций белков человека. Протеом клеточного ядра представляет особый интерес, поскольку многие белки с ядерной локализацией, например, транскрипционные факторы, выполняют регуляторные функции, определяющие судьбу клеток. По результатам метаанализа ядерного протеома, или нуклеома, клеток линии HL-60 под действием полностью-транс-ретиноевой кислоты (ATRA) выявили, что функция и локализация белкового продукта гена SOWAHD слабо изучена, кроме того, отсутствует исчерпывающая информация об экспрессии SOWAHD на уровне белка. В клетках линии HL-60 для белок-кодирующего гена SOWAHD определили экспрессию мРНК на уровне 6,4 ± 0,7 транскриптов на миллион молекул. С помощью направленной масс-спектрометрии измерили содержание белка SOWAHD (белок 58, содержащий домен анкириновых повторов) в диапазоне 0,27-1,25 фмоль/мкг общего белка. С применением пульсового мечения стабильными изотопами определили, что время полураспада для белкового продукта гена SOWAHD составляет приблизительно 19 ч. Протеомное профилирование ядерной фракции клеток линии HL-60 показало, что содержание белка SOWAHD увеличивалось в процессе ATRA-индуцированной гранулоцитарной дифференцировки, с пиком в 9 ч после добавления индуктора и с последующим снижением в более поздние временные точки. Результаты исследования впервые указывают на ядерную локализацию и вовлечённость белкового продукта гена SOWAHD в индуцированную гранулоцитарную дифференцировку.

Об авторах

С. Е Новикова

НИИ биомедицинской химии имени В.Н. Ореховича

Email: novikova.s.e3101@gmail.com
119121 Москва, Россия

Т. В Толстова

НИИ биомедицинской химии имени В.Н. Ореховича

119121 Москва, Россия

Н. А Соловьева

НИИ биомедицинской химии имени В.Н. Ореховича

119121 Москва, Россия

Т. Е Фарафонова

НИИ биомедицинской химии имени В.Н. Ореховича

119121 Москва, Россия

О. В Тихонова

НИИ биомедицинской химии имени В.Н. Ореховича

119121 Москва, Россия

Л. К Курбатов

НИИ биомедицинской химии имени В.Н. Ореховича

119121 Москва, Россия

А. Л Русанов

НИИ биомедицинской химии имени В.Н. Ореховича

119121 Москва, Россия

В. Г Згода

НИИ биомедицинской химии имени В.Н. Ореховича

Email: victor.zgoda@gmail.com
119121 Москва, Россия

Список литературы

  1. Consortium UniProt (2023) UniProt: The Universal Protein Knowledgebase in 2023, Nucleic Acids Res., 51, D523-D531, doi: 10.1093/nar/gkac1052.
  2. Lane, L., Argoud-Puy, G., Britan, A., Cusin, I., Duek, P. D., Evalet, O., Gateau, A., Gaudet, P., Gleizes, A., Masselot, A., et al. (2012) NeXtProt: a knowledge platform for human proteins, Nucleic Acids Res., 40, D76-83, doi: 10.1093/nar/gkr1179.
  3. Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A., et al. (2015) Proteomics. Tissue-based map of the human proteome, Science, 347, 1260419, doi: 10.1126/science.1260419.
  4. Kim, M. S., Pinto, S. M., Getnet, D., Nirujogi, R. S., Manda, S. S., Chaerkady, R., Madugundu, A. K., Kelkar, D. S., Isserlin, R., Jain, S., et al. (2014) A draft map of the human proteome, Nature, 509, 575-581, doi: 10.1038/nature13302.
  5. Adhikari, S., Nice, E. C., Deutsch, E. W., Lane, L., Omenn, G. S., Pennington, S. R., Paik, Y. K., Overall, C. M., Corrales, F. J., Cristea, I. M., et al. (2020) A high-stringency blueprint of the human proteome, Nat. Commun., 11, 5301, doi: 10.1038/s41467-020-19045-9.
  6. Salzberg, S. L. (2018) Open questions: how many genes do we have? BMC Biol., 16, 94, doi: 10.1186/s12915-018-0564-x.
  7. Kopylov, A. T., Ponomarenko, E. A., Ilgisonis, E. V., Pyatnitskiy, M. A., Lisitsa, A. V., Poverennaya, E. V., Kiseleva, O. I., Farafonova, T. E., Tikhonova, O. V., Zavialova, M. G., et al. (2019) 200+ protein concentrations in healthy human blood plasma: targeted quantitative SRM SIS screening of chromosomes 18, 13, Y, and the mitochondrial chromosome encoded proteome, J. Proteome Res., 18, 120-129, doi: 10.1021/acs.jproteome.8b00391.
  8. Poverennaya, E., Kiseleva, O., Ilgisonis, E., Novikova, S., Kopylov, A., Ivanov, Y., Kononikhin, A., Gorshkov, M., Kushlinskii, N., Archakov, A., et al. (2020) Is it possible to find needles in a haystack? Meta-analysis of 1000+ MS/MS files provided by the Russian proteomic consortium for mining missing proteins, Proteomes, 8, 12, doi: 10.3390/PROTEOMES8020012.
  9. Paik, Y. K., Overall, C. M., Corrales, F., Deutsch, E. W., Lane, L., and Omenn, G. S. (2018) toward completion of the human proteome parts list: progress uncovering proteins that are missing or have unknown function and developing analytical methods, J. Proteome Res., 17, 4023-4030, doi: 10.1021/acs.jproteome.8b00885.
  10. Thul, P. J., and Lindskog, C. (2018) The human protein atlas: a spatial map of the human proteome, Protein Sci., 27, 233-244, doi: 10.1002/pro.3307.
  11. Van Bortle, K., and Corces, V. G. (2012) Nuclear organization and genome function, Annu. Rev. Cell Dev. Biol., 28, 163-187, doi: 10.1146/annurev-cellbio-101011-155824.
  12. Vakhrushev, I. V., Novikova, S. E., Tsvetkova, A. V., Karalkin, P. A., Pyatnitskii, M. A., Zgoda, V. G., and Yarygin, K. N. (2018) Proteomic profiling of HL-60 cells during ATRA-induced differentiation, Bull. Exp. Biol. Med., 165, 530-543, doi: 10.1007/s10517-018-4210-y.
  13. Novikova, S., Tolstova, T., Kurbatov, L., Farafonova, T., Tikhonova, O., Soloveva, N., Rusanov, A., Archakov, A., and Zgoda, V. (2022) Nuclear proteomics of induced leukemia cell differentiation, Cells, 11, 3221, doi: 10.3390/cells11203221.
  14. Zheng, P. Z., Wang, K. K., Zhang, Q. Y., Huang, Q. H., Du, Y. Z., Zhang, Q. H., Xiao, D. K., Shen, S. H., Imbeaud, S., Eveno, E., et al. (2005) Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation apoptosis of promyelocytic leukemia, Proc. Natl. Acad. Sci. USA, 102, 7653-7658, doi: 10.1073/pnas.0502825102.
  15. Wang, W.-J., Tang, W., and Qiu, Z.-Y. (2009) Comparative proteomics analysis on differentiation of human promyelocytic leukemia HL-60 cells into granulocyte and monocyte lineages, Chinese J. Cancer, 28, 117-121.
  16. Novikova, S., Tikhonova, O., Kurbatov, L., Farafonova, T., Vakhrushev, I., Lupatov, A., Yarygin, K., and Zgoda, V. (2021) Omics technologies to decipher regulatory networks in granulocytic cell differentiation, Biomolecules, 11, 907, doi: 10.3390/biom11060907.
  17. Jian, P., Li, Z. W., Fang, T. Y., Jian, W., Zhuan, Z., Mei, L. X., Yan, W. S., and Jian, N. (2011) Retinoic acid induces HL-60 cell differentiation via the upregulation of MiR-663, J. Hematol. Oncol., 4, 20, doi: 10.1186/1756-8722-4-20.
  18. Schwanhäusser, B., Gossen, M., Dittmar, G., and Selbach, M. (2009) Global analysis of cellular protein translation by pulsed SILAC, Proteomics, 9, 205-209, doi: 10.1002/pmic.200800275.
  19. Claydon, A. J., and Beynon, R. (2012) Proteome dynamics: revisiting turnover with a global perspective, Mol. Cell. Proteomics, 11, 1551-1565, doi: 10.1074/mcp.O112.022186.
  20. Ross, A. B., Langer, J. D., and Jovanovic, M. (2021) Proteome turnover in the spotlight: approaches, applications, and perspectives, Mol. Cell. Proteomics, 20, doi: 10.1074/mcp.R120.002190.
  21. Holman, S. W., Hammond, D. E., Simpson, D. M., Waters, J., Hurst, J. L., and Beynon, R. J. (2016) Protein turnover measurement using selected reaction monitoring-mass spectrometry (SRM-MS), Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 374, 20150362, doi: 10.1098/rsta.2015.0362.
  22. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., and Kingsford, C. (2017) Salmon provides fast and bias-aware quantification of transcript expression, Nat. Methods, 14, 417-419, doi: 10.1038/nmeth.4197.
  23. Novikova, S. E., Vakhrushev, I. V., Tsvetkova, A. V., Shushkova, N. A., Farafonova, T. E., Yarygin, K. N., and Zgoda, V. G. (2019) Proteomics of transcription factors: identification of pool of HL-60 cell line-specific regulatory proteins [in Russian], Biomed. Khim., 65, doi: 10.18097/PBMC20196504294.
  24. Wiśniewski, J. R., Zougman, A., Nagaraj, N., and Mann, M. (2009) Universal sample preparation method for proteome analysis, Nat. Methods, 6, 359-362, doi: 10.1038/nmeth.1322.
  25. Mohammad, N. S., Nazli, R., Zafar, H., and Fatima, S. (2022) Effects of lipid based multiple micronutrients supplement on the birth outcome of underweight pre-eclamptic women: a randomized clinical trial, Pak. J. Med. Sci., 38, 219-226, doi: 10.12669/pjms.38.1.4396.
  26. Liu, Y., Mi, Y., Mueller, T., Kreibich, S., Williams, E. G., Van Drogen, A., Borel, C., Frank, M., Germain, P.-L., Bludau, I., et al. (2019) Multi-omic measurements of heterogeneity in HeLa cells across laboratories, Nat. Biotechnol., 37, 314-322, doi: 10.1038/s41587-019-0037-y.
  27. Zhu, Q., Wang, J., Zhang, Q., Wang, F., Fang, L., Song, B., Xie, C., and Liu, J. (2020) Methylation-driven Genes PMPCAP1, SOWAHC and ZNF454 as potential prognostic biomarkers in lung squamous cell carcinoma, Mol. Med. Rep., 21, 1285-1295, doi: 10.3892/mmr.2020.10933.
  28. Ruan, B., Feng, X., Chen, X., Dong, Z., Wang, Q., Xu, K., Tian, J., Liu, J., Chen, Z., Shi, W., et al. (2020) Identification of a set of genes improving survival prediction in kidney renal clear cell carcinoma through integrative reanalysis of transcriptomic data, Dis. Markers, 2020, 8824717, doi: 10.1155/2020/8824717.
  29. Mori, Y., Yokota, H., Hoshino, I., Iwatate, Y., Wakamatsu, K., Uno, T., and Suyari, H. (2021) Deep learning-based gene selection in comprehensive gene analysis in pancreatic cancer, Sci. Rep., 11, 16521, doi: 10.1038/s41598-021-95969-6.
  30. Gillespie, M., Jassal, B., Stephan, R., Milacic, M., Rothfels, K., Senff-Ribeiro, A., Griss, J., Sevilla, C., Matthews, L., Gong, C., et al. (2022) The reactome pathway knowledgebase, Nucleic Acids Res., 50, D687-D692, doi: 10.1093/nar/gkab1028.
  31. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. (2016) KEGG as a reference resource for gene and protein annotation, Nucleic Acids Res., 44, D457-62, doi: 10.1093/nar/gkv1070.
  32. Han, H., Shim, H., Shin, D., Shim, J. E., Ko, Y., Shin, J., Kim, H., Cho, A., Kim, E., Lee, T., et al. (2015) TRRUST: a reference database of human transcriptional regulatory interactions, Sci. Rep., 5, 11432, doi: 10.1038/srep11432.
  33. Lin, Y., Mehta, S., Küçük-McGinty, H., Turner, J. P., Vidovic, D., Forlin, M., Koleti, A., Nguyen, D.-T., Jensen, L. J., Guha, R., et al. (2017) Drug target ontology to classify and integrate drug discovery data, J. Biomed. Semantics, 8, 50, doi: 10.1186/s13326-017-0161-x.
  34. Mathieson, T., Franken, H., Kosinski, J., Kurzawa, N., Zinn, N., Sweetman, G., Poeckel, D., Ratnu, V. S., Schramm, M., Becher, I., et al. (2018) Systematic analysis of protein turnover in primary cells, Nat. Commun., 9, 689, doi: 10.1038/s41467-018-03106-1.
  35. Gomez, G., Lee, J. H., Veldman, M. B., Lu, J., Xiao, X., and Lin, S. (2012) Identification of vascular and hematopoietic genes downstream of etsrp by deep sequencing in zebrafish, PLoS One, 7, e31658, doi: 10.1371/journal.pone.0031658.
  36. Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., Gable, A. L., Fang, T., Doncheva, N. T., Pyysalo, S., et al. (2023) The STRING database in 2023: protein-protein association networks and functional Enrichment analyses for any sequenced genome of interest, Nucleic Acids Res., 51, D638-D646, doi: 10.1093/nar/gkac1000.
  37. Kang, Y., Xie, H., and Zhao, C. (2019) Ankrd45 is a novel ankyrin repeat protein required for cell proliferation, Genes (Basel), 10, 462, doi: 10.3390/genes10060462.
  38. Kumar, A., and Balbach, J. (2021) Folding and stability of ankyrin repeats control biological protein function, Biomolecules, 11, 840, doi: 10.3390/biom11060840.

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах