Mitochondrial network: electric cable and more

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Mitochondria in a cell can unite and organize complex extended structures that extend over the entire cellular volume, ensuring a uniform supply of energy to cellular compartments with ATP synthesized in the mitochondria. In accordance with the chemiosmotic concept, the energy of oxidation of respiratory substrates is largely stored in the form of an electrical potential difference on the inner membrane of mitochondria. The theory of the functioning of extended mitochondrial structures as intracellular electrical wires suggests that mitochondria provide the fast delivery of electrical energy through the cellular volume, with following use of this energy for ATP synthesis, thereby speeding up the process of ATP delivery compared to the rather slow diffusion of ATP in the cell. The analytical review gives the history of the cable theory, solved and unsolved critical problems, the lability of the mitochondrial network and the role of oxidative stress in this process. In addition to the already proven functioning of extended mitochondrial structures as electrical cables, a few of additional functions are proposed, in particular, the hypothesis is put forward that mitochondrial networks provide a uniform distribution of redox potential throughout the cell, which can change in pathological conditions during fragmentation of the mitochondrial reticulum. A few of pathologies accompanied by a violation of the redox status and the participation of mitochondria in them are considered.

About the authors

P. A Abramicheva

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119991 Moscow, Russia

N. V Andrianova

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119991 Moscow, Russia

V. A Babenko

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University;Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology

119991 Moscow, Russia;117997 Moscow, Russia

L. D Zorova

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University;Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology

119991 Moscow, Russia;117997 Moscow, Russia

S. D Zorov

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University;Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University

119991 Moscow, Russia;119991 Moscow, Russia

I. B Pevzner

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University;Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology

119991 Moscow, Russia;117997 Moscow, Russia

V. A Popkov

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University;Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology

119991 Moscow, Russia;117997 Moscow, Russia

D. S Semenovich

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119991 Moscow, Russia

E. I Yakupova

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119991 Moscow, Russia

References

  1. Mitchell, P. (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism, Nature, 191, 144-148, doi: 10.1038/191144a0.
  2. Mitchell, P. (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Biol. Rev. Camb. Philos. Soc., 41, 445-502, doi: 10.1111/j.1469-185X.1966.tb01501.x.
  3. Mitchell, P. (2011) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. 1966, Biochim Biophys Acta, 1807, 1507-1538, doi: 10.1016/j.bbabio.2011.09.018.
  4. Mitchell, P. (1979) David Keilin's respiratory chain concept and its chemiosmotic consequences, Science, 206, 1148-1159, doi: 10.1126/science.388618.
  5. Juhaszova, M., Kobrinsky, E., Zorov, D. B., Aon, M. A., Cortassa, S., and Sollott, S. J. (2022) Setting the record straight: a new twist on the chemiosmotic mechanism of oxidative Phosphorylation, Function (Oxf), 3, zqac018, doi: 10.1093/function/zqac018.
  6. Juhaszova, M., Kobrinsky, E., Zorov, D. B., Nuss, H. B., Yaniv, Y., Fishbein, K. W., de Cabo, R., Montoliu, L., Gabelli, S. B., Aon, M.A., Cortassa, S., and Sollott, S. J. (2021) ATP synthase K+- and H+-fluxes drive ATP synthesis and enable mitochondrial K+-"Uniporter" function: I. Characterization of ion fluxes, Function (Oxf), 3, zqab065, doi: 10.1093/function/zqab065.
  7. Juhaszova, M., Kobrinsky, E., Zorov, D. B., Nuss, H. B., Yaniv, Y., Fishbein, K. W., de Cabo, R., Montoliu, L., Gabelli, S. B., Aon, M. A., Cortassa, S., and Sollott, S. J. (2022) ATP synthase K+- and H+-fluxes drive ATP synthesis and enable mitochondrial K+-"Uniporter" function: II. Ion and ATP synthase flux regulation, Function (Oxf), 3, zqac001, doi: 10.1093/function/zqac001.
  8. Зоров Д. Б. (2022) Окно в калиевый мир. Открытие калиевой энергетики в митохондриях и идентичности митохондриального ATP-зависимого K+-канала, Биохимия, 87, 1007-1013, doi: 10.31857/S0320972522080024.
  9. Cortassa, S., Aon, M. A., Juhaszova, M., Kobrinsky, E., Zorov, D. B., and Sollott, S. J. (2022) Computational modeling of mitochondrial K+- and H+-driven ATP synthesis, J. Mol. Cell Cardiol., 165, 9-18, doi: 10.1016/j.yjmcc.2021.12.005.
  10. Williams, R. J. P. (1961) Possible functions of chains of catalysts, J. Theor. Biol., 1, 1-13, doi: 10.1016/0022-5193(61)90023-6.
  11. Williams, R. J. P. (1962) Possible functions of chains of catalysts II, J. Theor. Biol., 3, 209-220, doi: 10.1016/S0022-5193(62)80015-0.
  12. Williams, R. J. P. (1978) The multifarious couplings of energy transduction, Biochim. Biophys. Acta, 505, 1-44, doi: 10.1016/0304-4173(78)90007-1.
  13. Williams, R. J. P. (2001) The structures of organelles and reticula: localised bioenergetics and metabolism, Chembiochem, 2, 637-641, doi: 10.1002/1439-7633(20010903)2:9<637::AID-CBIC637>3.0.CO;2-7.
  14. Kell, D. B. (1979) On the functional proton current pathway of electron transport phosphorylation. An electrodic view, Biochim. Biophys. Acta, 549, 55-99, doi: 10.1016/0304-4173(79)90018-1.
  15. Mulkidjanian, A. Y., Heberle, J., and Cherepanov, D. A. (2006) Protons and interfaces: implications for biological energy conversion, Biochim. Biophys. Acta, 1757, 913-930, doi: 10.1016/j.bbabio.2006.02.015.
  16. Zorova, L. D., Popkov, V. A., Plotnikov, E. Y., Silachev, D. N., Pevzner, I. B., Jankauskas, S. S., Babenko, V. A., Zorov, S. D., Balakireva, A. V., Juhaszova, M, Sollott, S. J., and Zorov, D. B. (2018) Mitochondrial membrane potential, Anal. Biochem., 552, 50-59, doi: 10.1016/j.ab.2017.07.009.
  17. Skulachev, V. P. (1971) Energy transformations in the respiratory chain, Curr. Top. Bioenergetics, 4, 127-190, doi: 10.1016/B978-0-12-152504-0.50010-1.
  18. Bakeeva, L. E., Chentsov, Y. S., and Skulachev, V. P. (1978) Mitochondrial framework (reticulum mitochondriale) in rat diaphragm muscle, Biochim. Biophys. Acta, 501, 349-369, doi: 10.1016/0005-2728(78)90104-4.
  19. Bakeeva, L. E., Chentsov, Y. S., and Skulachev, V. P. (1981) Ontogenesis of mitochondrial reticulum in rat diaphragm muscle, Eur. J. Cell Biol., 25, 175-181.
  20. Johnson, L. V., Walsh, M. L., and Chen, L. B. (1980) Localization of mitochondria in living cells with rhodamine 123, Proc. Natl. Acad. Sci. USA, 77, 990-994, doi: 10.1073/pnas.77.2.990.
  21. Bereiter-Hahn, J., and Vöth, M. (1994) Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria, Microsc. Res. Tech., 27, 198-219, doi: 10.1002/jemt.1070270303.
  22. Bensley, R. R. (1911) Studies on the pancreas of the guinea pig, Am. J. Anat., 12, 297-388, doi: 10.1002/aja.1000120304.
  23. Мурванидзе Г. В., Северина И. И., Скулачев В. П. (1981) Этилродамин - проникающий катион и флуоресцентный индикатор мембранного потенциала цианобактерий in vivo, Докл. Акад. Наук СССР, 261, 1252-1254.
  24. Vorobjev, I. A., and Zorov, D. B. (1983) Diazepam inhibits cell respiration and induces fragmentation of mitochondrial reticulum, FEBS Lett., 163, 311-314, doi: 10.1016/0014-5793(83)80842-4.
  25. Avad, A. S., Vorobjev, I. A., and Zorov, D. B. (1984) Fragmentation of mitochondrial reticulum, Proceedings of the XVI Congress of FEBS, abst. XI-80.
  26. Полякова И. А., Зоров Д. Б., Лейкина М. И. (1995) Структурно-функциональные изменения хондриома культивированных клеток при нарушении энергетического метаболизма, Докл. Акад. Наук СССР, 342, 553-555.
  27. Skulachev, V. P., Bakeeva, L. E., Chernyak, B. V., Domnina, L. V., Minin, A. A., Pletjushkina, O. Y., Saprunova, V. B., Skulachev, I. V., Tsyplenkova, V. G., Vasiliev, J. M., Yaguzhinsky, L. S., and Zorov, D. B. (2004) Thread-grain transition of mitochondrial reticulum as a step of mitoptosis and apoptosis, Mol. Cell. Biochem., 256-257, 341-358, doi: 10.1023/B:MCBI.0000009880.94044.49.
  28. Plotnikov, E. Y., Vasileva, A. K., Arkhangelskaya, A. A., Pevzner, I. B., Skulachev, V. P., and Zorov, D. B. (2008) Interrelations of mitochondrial fragmentation and cell death under ischemia/reoxygenation and UV-irradiation: protective effects of SkQ1, lithium ions and insulin, FEBS Lett., 582, 3117-3124, doi: 10.1016/j.febslet.2008.08.002.
  29. Zorov, D. B., Vorobjev, I. A., Popkov, V. A., Babenko, V. A., Zorova, L. D., Pevzner, I. B., Silachev, D. N., Zorov, S. D., Andrianova, N. V., and Plotnikov, E. Y. (2019) Lessons from the discovery of mitochondrial fragmentation (fission): a review and update, Cells, 8, 175, doi: 10.3390/cells8020175.
  30. Pletjushkina, O. Y., Lyamzaev, K. G., Popova, E. N., Nepryakhina, O. K., Ivanova, O. Y., Domnina, L. V., Chernyak, B. V., and Skulachev, V. P. (2006) Effect of oxidative stress on dynamics of mitochondrial reticulum, Biochim. Biophys. Acta, 1757, 518-524, doi: 10.1016/j.bbabio.2006.03.018.
  31. Giacomello, M., Pyakurel, A., Glytsou, C., and Scorrano, L. (2020) The cell biology of mitochondrial membrane dynamics, Nat. Rev. Mol. Cell Biol., 21, 204-224, doi: 10.1038/s41580-020-0210-7.
  32. Twig, G., Elorza, A., Molina, A. J. A., Mohamed, H., Wikstrom, J. D., Walzer, G., Stiles, L., Haigh, S. E., Katz, S., Las, G., Alroy, J., Wu, M., Py, B. F., Yuan, J., Deeney, J. T., Corkey, B. E., and Shirihai, O. S. (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy, EMBO J., 27, 433-446, doi: 10.1038/sj.emboj.7601963.
  33. Zorov, D. B., Popkov, V. A., Zorova, L. D., Vorobjev, I. A., Pevzner, I. B., Silachev, D. N., Zorov, S. D., Jankauskas, S. S., Babenko, V. A., and Plotnikov, E. Y. (2017) Mitochondrial aging: is there a mitochondrial clock? J. Gerontol. A Biol. Sci. Med. Sci., 72, 1171-1179, doi: 10.1093/gerona/glw184.
  34. Попков В. А., Плотников Е. Ю., Лямзаев К. Г., Силачев Д. Н., Зорова Л. Д., Певзнер И. Б., Янкаускас С. С., Зоров С. Д., Бабенко В. А., Зоров Д. Б. (2015) Миторазнообразие, Биохимия, 80, 631-641.
  35. Hoffman, H. P., and Avers, C. H. (1973) Mitochondrion of yeast: ultrastructural evidence for one giant, branched organelle per cell, Science, 181, 749-751, doi: 10.1126/science.181.4101.749.
  36. Heasman, J., Quarmby, J., and Wylie, C. C. (1984) The mitochondrial cloud of Xenopus oocytes: the source of germinal granule material, Dev. Biol., 105, 458-469, doi: 10.1016/0012-1606(84)90303-8.
  37. Pratt, S. A. (1968) An electron microscope study of nebenkern formation and differentiation in spermatids of Murgantia histrionica (Hemiptera, Pentatomidae), J. Morphol., 126, 31-65, doi: 10.1002/jmor.1051260104.
  38. Andre, J. (1962) Contribution to the knowledge of the chondrioma study of its ultrastructural modifications during spermatogenesis [in French], J. Ultrastruct. Res., Suppl. 3, 1-185.
  39. Fawcett, D. W. (1958) The structure of the mammalian spermatozoon, Int. Rev. Cytol., 7, 195-234, doi: 10.1016/S0074-7696(08)62688-1.
  40. Eddy, E. M. (1974) Fine structural observations on the form and distribution of nuage in germ cells of the rat, Anat. Rec., 178, 731-757, doi: 10.1002/ar.1091780406.
  41. Motta, P. M., Nottola, S. A., Makabe, S., and Heyn, R. (2000) Mitochondrial morphology in human fetal and adult female germ cells, Hum. Reprod., 15 Suppl 2, 129-147, doi: 10.1093/humrep/15.suppl_2.129.
  42. Bakeeva, L.E., Chentsov, Y.S., and Skulachev, V. P. (1983) Intermitochondrial contacts in myocardiocytes, J. Mol. Cell Cardiol., 15, 413-420, doi: 10.1016/0022-2828(83)90261-4.
  43. Bleck, C. K. E., Kim, Y., Willingham, T. B., and Glancy, B. (2018) Subcellular connectomic analyses of energy networks in striated muscle, Nat. Commun., 9, 5111, doi: 10.1038/s41467-018-07676-y.
  44. Kim, Y., Ajayi, P. T., Bleck, C. K. E., and Glancy, B. (2022) Three-dimensional remodelling of the cellular energy distribution system during postnatal heart development, Philos. Trans. R. Soc. Lond. B Biol. Sci., 377, 20210322, doi: 10.1098/rstb.2021.0322.
  45. Yaniv, Y., Juhaszova, M., Nuss, H. B., Wang, S., Zorov, D. B., Lakatta, E. G., and Sollott, S. J. (2010) Matching ATP supply and demand in mammalian heart: in vivo, in vitro, and in silico perspectives, Ann. N Y Acad. Sci., 1188, 133-142, doi: 10.1111/j.1749-6632.2009.05093.x.
  46. Boardman N. T., Trani, G., Scalabrin, M., Romanello, V., and Wüst, R. C. I. (2023) Intra-cellular to inter-organ mitochondrial communication in striated muscle in health and disease, Endocr. Rev., 44, 668-692, doi: 10.1210/endrev/bnad004,doi: 10.1210/endrev/bnad004.
  47. Plotnikov, E. Y., Silachev, D. N., Popkov, V. A., Zorova, L. D., Pevzner, I. B., Zorov, S. D., Jankauskas, S. S, Babenko, V. A., Sukhikh, G. T., and Zorov, D. B. (2017) Intercellular signalling cross-talk: to kill, to heal and to rejuvenate, Heart Lung Circ., 26, 648-659, doi: 10.1016/j.hlc.2016.12.002.
  48. Turovsky, E. A., Golovicheva, V. V., Varlamova, E. G., Danilina, T. I., Goryunov, K. V., Shevtsova, Y. A., Pevzner, I. B., Zorova, L. D., Babenko, V. A., Evtushenko, E. A., Zharikova, A. A., Khutornenko, A. A., Kovalchuk, S. I., Plotnikov, E. Y., Zorov, D. B., Sukhikh, G. T., and Silachev, D. N. (2022) Mesenchymal stromal cell-derived extracellular vesicles afford neuroprotection by modulating PI3K/AKT pathway and calcium oscillations, Int. J. Biol. Sci., 18, 5345-5368, doi: 10.7150/ijbs.73747.
  49. Zorova, L. D., Kovalchuk, S. I., Popkov, V. A., Chernikov, V. P., Zharikova, A. A., Khutornenko, A. A., Zorov, S. D., Plokhikh, K. S., Zinovkin, R. A., Evtushenko, E. A., Babenko, V. A., Pevzner, I. B., Shevtsova, Y. A., Goryunov, K. V., Plotnikov, E. Y., Silachev, D. N., Sukhikh, G. T., and Zorov, D. B. (2022) Do Extracellular vesicles derived from mesenchymal stem cells contain functional mitochondria? Int. J. Mol. Sci., 23, 7408, doi: 10.3390/ijms23137408.
  50. Драчев В. А., Зоров Д. Б. (1986) Митохондрия как электрический кабель. Экспериментальная проверка гипотезы, Докл. Акад. Наук СССР, 287, 1237-1238.
  51. Amchenkova, A. A., Bakeeva, L. E., Chentsov, Y. S., Skulachev, V. P., and Zorov, D. B. (1988) Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes, J. Cell. Biol., 107, 481-495, doi: 10.1083/jcb.107.2.481.
  52. Picard, M., McManus, M. J., Csordás, G., Várnai, P., Dorn, G. W., 2nd, Williams, D., Hajnóczky, G., and Wallace, D. C. (2015) Trans-mitochondrial coordination of cristae at regulated membrane junctions, Nat. Commun., 6, 6259, doi: 10.1038/ncomms7259.
  53. Konstantinova, S. A., Mannella, C. A., Skulachev, V. P., and Zorov, D. B. (1995) Immunoelectron microscopic study of the distribution of porin on outer membranes of rat heart mitochondria, J. Bioenerg. Biomembr., 27, 93-99, doi: 10.1007/BF02110336.
  54. Zorov, D. B., Skulachev, V. P., and Halangk, V. (1990) Membranous electric cable. 4. Mitochondrial helix of the rat spermatozoa, Biol. Membr., 7, 243-249.
  55. Severina, I. I., Skulachev, V. P., and Zorov, D. B. (1988) Coupling membranes as energy-transmitting cables. II. Cyanobacterial trichomes, J. Cell Biol., 107, 497-501, doi: 10.1083/jcb.107.2.497.
  56. Glancy, B., Hartnell, L. M., Malide, D., Yu, Z. X., Combs, C. A., Connelly, P. S., Subramaniam, S., and Balaban, R. S. (2015) Mitochondrial reticulum for cellular energy distribution in muscle, Nature, 523, 617-620, doi: 10.1038/nature14614.
  57. Glancy, B., Hartnell, L. M., Combs, C. A., Femnou, A., Sun, J., Murphy, E., Subramaniam, S., and Balaban, R. S. (2017) Power grid protection of the muscle mitochondrial reticulum, Cell Rep., 19, 487-496, doi: 10.1016/j.celrep.2017.03.063.
  58. Wolf, D. M., Segawa, M., Kondadi, A. K., Anand, R., Bailey, S. T., Reichert, A. S., van der Bliek, A. M., Shackelford, D. B., Liesa, M., and Shirihai, O. S. (2019) Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent, EMBO J., 38, e101056, doi: 10.15252/embj.2018101056.
  59. Зоров Д. Б., Плотников Е. Ю., Силачев Д. Н., Зорова Л. Д., Певзнер И. Б., Зоров С. Д., Бабенко В. А., Янкаускас С. С., Попков В. А., Савина П. С. (2014) Микробиота и митобиота. Поставив знак равенства между митохондрией и бактерией, Биохимия, 79, 1252-1268.
  60. Daems, W. T., and Wisse, E. (1966) Shape and attachment of the cristae mitochondriales in mouse hepatic cell mitochondria, J. Ultrastruct. Res., 16, 123-140, doi: 10.1016/S0022-5320(66)80027-8.
  61. Mannella, C. A., Marko, M., and Buttle, K. (1997) Reconsidering mitochondrial structure: new views of an old organelle, Trends Biochem. Sci., 22, 37-38, doi: 10.1016/S0968-0004(96)30050-9.
  62. Smiley, S. T., Reers, M., Mottola-Hartshorn, C., Lin, M., Chen, A., Smith, T. W., Steele, G. D., Jr., and Chen, L. B. (1991) Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1, Proc. Natl. Acad. Sci. USA, 88, 3671-3675, doi: 10.1073/pnas.88.9.3671.
  63. Twig, G., Graf, S. A., Wikstrom, J. D., Mohamed, H., Haigh, S. E., Elorza, A., Deutsch, M., Zurgil, N., Reynolds, N., and Shirihai, O. S. (2006) Tagging and tracking individual networks within a complex mitochondrial web with photoactivatable GFP, Am. J. Physiol. Cell Physiol., 291, C176-C184, doi: 10.1152/ajpcell.00348.2005.
  64. Collins, T. J., and Bootman, M. D. (2003) Mitochondria are morphologically heterogeneous within cells, J. Exp. Biol., 206 (Pt 12), 1993-2000, doi: 10.1242/jeb.00244.
  65. Collins, T. J., Berridge, M. J., Lipp, P., and Bootman, M. D. (2002) Mitochondria are morphologically and functionally heterogeneous within cells, EMBO J., 21, 1616-1627, doi: 10.1093/emboj/21.7.1616.
  66. Ghosh, D., Levault, K. R., and Brewer, G. J. (2014) Relative importance of redox buffers GSH and NAD(P)H in age-related neurodegeneration and Alzheimer disease-like mouse neurons, Aging Cell, 13, 631-640, doi: 10.1111/acel.12216.
  67. McGuire, B. J., and Secomb, T. W. (2001) A theoretical model for oxygen transport in skeletal muscle under conditions of high oxygen demand, J. Appl. Physiol. (1985), 91, 2255-2265, doi: 10.1152/jappl.2001.91.5.2255.
  68. De Grotthuss, C.J.T. (1806) On the decomposition of water and the bodies it holds in solution using galvanic electricity [in French], Ann. Chim. (Paris), 58, 54-73.
  69. Morelli, A. M., Ravera, S., Calzia, D., and Panfoli, I. (2019) An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane, Open Biol., 9, 180221, doi: 10.1098/rsob.180221.
  70. Mannaerts, D., Faes, E., Cos, P., Briedé, J. J., Gyselaers, W., Cornette, J., Gorbanev, Y., Bogaerts, A., Spaanderman, M., Van Craenenbroeck, E., and Jacquemyn, Y. (2018) Oxidative stress in healthy pregnancy and preeclampsia is linked to chronic inflammation, iron status and vascular function, PLoS One, 13, e0202919, doi: 10.1371/journal.pone.0202919.
  71. Toboła-Wróbel, K., Pietryga, M., Dydowicz, P., Napierała, M., Brązert, J., and Florek, E. (2020) Association of oxidative stress on pregnancy, Oxid. Med. Cell Longev., 2020, 6398520, doi: 10.1155/2020/6398520.
  72. Mert, I., Oruc, A. S., Yuksel, S., Cakar, E. S., Buyukkagnıcı, U., Karaer, A., and Danısman, N. (2012) Role of oxidative stress in preeclampsia and intrauterine growth restriction, J. Obstet. Gynaecol. Res., 38, 658-664, doi: 10.1111/j.1447-0756.2011.01771.x.
  73. Rashid, C., Bansal, A., and Simmons, R. A. (2018) Oxidative stress, intrauterine growth restriction, and developmental programming of type 2 diabetes, Physiology, 33, 348-359, doi: 10.1152/physiol.00023.2018.
  74. Lyall, F., Robson, S. C., and Bulmer, J. N. (2013) Spiral artery remodeling and trophoblast invasion in preeclampsia and fetal growth restriction: relationship to clinical outcome, Hypertension, 62, 1046-1054, doi: 10.1161/HYPERTENSIONAHA.113.01892.
  75. Ness, R. B., and Sibai, B. M. (2006) Shared and disparate components of the pathophysiologies of fetal growth restriction and preeclampsia, Am. J. Obstet. Gynecol., 195, 40-49, doi: 10.1016/j.ajog.2005.07.049.
  76. Manna, S., Ruano, C. S. M., Hegenbarth, J. C., Vaiman, D., Gupta, S., McCarthy, F. P., Méhats, C., McCarthy, C., Apicella, C., and Scheel, J. (2022) Computational models on pathological redox signalling driven by pregnancy: a review, Antioxidants (Basel), 11, 585, doi: 10.3390/antiox11030585.
  77. Holland, O., Dekker Nitert, M., Gallo, L. A., Vejzovic, M., Fisher, J. J., and Perkins, A. V. (2017) Placental mitochondrial function and structure in gestational disorders, Placenta, 54, 2-9, doi: 10.1016/j.placenta.2016.12.012.
  78. Salazar-Petres, E., Pereira-Carvalho, D., Lopez-Tello, J., and Sferruzzi-Perri, A. N. (2022) Placental structure, function, and mitochondrial phenotype relate to fetal size in each fetal sex in mice, Biol. Reprod., 106, 1292-1311, doi: 10.1093/biolre/ioac056.
  79. Vangrieken, P., Al-Nasiry, S., Bast, A., Leermakers, P. A., Tulen, C. B. M., Schiffers, P. M. H., van Schooten, F. J., and Remels, A. H. V. (2021) Placental mitochondrial abnormalities in preeclampsia, Reprod. Sci., 28, 2186-2199, doi: 10.1007/s43032-021-00464-y.
  80. Vangrieken, P., Al-Nasiry, S., Bast, A., Leermakers, P. A., Tulen, C. B. M., Janssen, G. M. J., Kaminski, I., Geomini, I., Lemmens, T., Schiffers, P. M. H., van Schooten, F. J., and Remels, A. H. V. (2012) Hypoxia-induced mitochondrial abnormalities in cells of the placenta, PLoS One, 16, e0245155, doi: 10.1371/journal.pone.0245155.
  81. Bartho, L. A., Fisher, J. J., Cuffe, J. S. M., and Perkins, A. V. (2020) Mitochondrial transformations in the aging human placenta, Am. J. Physiol. Endocrinol. Metab., 319, E981-E994, doi: 10.1152/ajpendo.00354.2020.
  82. Kolac, U. K., Kurek Eken, M., Ünübol, M., Donmez Yalcin, G., and Yalcin, A. (2021) The effect of gestational diabetes on the expression of mitochondrial fusion proteins in placental tissue, Placenta, 115, 106-114, doi: 10.1016/j.placenta.2021.09.015.
  83. McCarthy, C., and Kenny, L. C. (2016) Therapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia, Sci. Rep., 6, 32683, doi: 10.1038/srep32683.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies