Biochemical features of X or Y chromosome bearing spermatozoa for sperm sexing

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This review presents information on the biochemical features of spermatozoa bearing an X or Y chromosome, enabling to obtain a sperm fraction with a pre-defined sex chromosome. Almost the only technology currently used for such separation (called sexing) is based on sperm fluorescence-activated cell sorting in regard to DNA content. Besides its applications, this technology made it possible to analyze the properties of isolated populations of spermatozoa bearing an X or Y chromosome. In recent years, a number of works have appeared proving the existence of differences between these populations at the transcriptome and proteome level. It is noteworthy that these differences are primarily related to energy metabolism and structural proteins of the flagellum. New methods of sperm enrichment with X or Y chromosome cells are based on the differences in motility between spermatozoa with different sex chromosomes. Sperm sexing is a widespread part of the protocol of artificial insemination of cows with cryopreserved semen, it allows to increase the proportion of offspring of the required sex. In addition, advances in the separation of X and Y spermatozoa may allow this approach to be applied in clinical practice to avoid sex-linked diseases.

About the authors

D. V Pozdyshev

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: denispoz@gmail.com
119992 Moscow, Russia

N. A Kombarova

Head Center for Reproduction of Agricultural Animals

Email: denispoz@gmail.com
142143 Bykovo, Moscow Region, Russia

V. I Muronetz

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University;Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University

Email: denispoz@gmail.com
119992 Moscow, Russia;119234 Moscow, Russia

References

  1. Morrell, J. M. (2011) Artificial Insemination: Current and Future Trends (Manafi, M., ed) InTechOpen, London, doi: 10.5772/17943.
  2. Johnson, L. A., Welch, G. R., and Rens, W. (1999) The Beltsville sperm sexing technology: high-speed sperm sorting gives improved sperm output for in vitro fertilization and AI, J. Anim. Sci., 77, 213-220, doi: 10.2527/1999.77suppl_2213x.
  3. Reese, S., Pirez, M. C., Steele, H., and Kölle, S. (2021) The reproductive success of bovine sperm after sex-sorting: a meta-analysis, Sci. Rep., 11, 17366, doi: 10.1038/s41598-021-96834-2.
  4. Seidel, G. E., Schenk, J. L., Herickhoff, L. A., Doyle, S. P., Brink, Z., Green, R. D., and Cran, D. G. (1999) Insemination of heifers with sexed sperm, Theriogenology, 52, 1407-1420, doi: 10.1016/s0093-691x(99)00226-5.
  5. Vishwanath, R., and Moreno, J. F. (2018) Review: Semen sexing - current state of the art with emphasis on bovine species, Animal, 12, s85-s96, doi: 10.1017/S1751731118000496.
  6. Gu, N.-H., Zhao, W.-L., Wang, G.-S., and Sun, F. (2019) Comparative analysis of mammalian sperm ultrastructure reveals relationships between sperm morphology, mitochondrial functions and motility, Reprod. Biol. Endocrinol., 17, 66, doi: 10.1186/s12958-019-0510-y.
  7. Gervasi, M. G., and Visconti, P. E. (2017) Molecular changes and signaling events occurring in spermatozoa during epididymal maturation, Andrology, 5, 204-218, doi: 10.1111/andr.12320.
  8. Katz, D. F., and Vanagimachi, R. (1980) Movement characteristics of hamster spermatozoa within the oviduct, Biol. Reprod., 22, 759-764, doi: 10.1095/biolreprod22.4.759.
  9. Achikanu, C., Correia, J., Guidobaldi, H. A., Giojalas, L. C., Barratt, C. L. R., Da Silva, S. M., and Publicover, S. (2019) Continuous behavioural "switching" in human spermatozoa and its regulation by Ca2+-mobilising stimuli, Mol. Hum. Reprod., 25, 423-432, doi: 10.1093/molehr/gaz034.
  10. Fraser, L. R. (1977) Motility patterns in mouse spermatozoa before and after capacitation, J. Exp. Zool., 202, 439-444, doi: 10.1002/jez.1402020314.
  11. Eisenbach, M., and Giojalas, L. C. (2006) Sperm guidance in mammals - an unpaved road to the egg, Nat. Rev. Mol. Cell Biol., 7, 276-285, doi: 10.1038/nrm1893.
  12. Morisawa, M., and Yoshida, M. (2005) Activation of motility and chemotaxis in the spermatozoa: from invertebrates to humans, Reprod. Med. Biol., 4, 101-114, doi: 10.1111/j.1447-0578.2005.00099.x.
  13. Vyklicka, L., and Lishko, P. V. (2020) Dissecting the signaling pathways involved in the function of sperm flagellum, Curr. Opin. Cell Biol., 63, 154-161, doi: 10.1016/j.ceb.2020.01.015.
  14. Kaupp, U. B., and Strünker, T. (2017) Signaling in sperm: more different than similar, Trends Cell Biol., 27, 101-109, doi: 10.1016/j.tcb.2016.10.002.
  15. Marquez, B., and Suarez, S. S. (2004) Different signaling pathways in bovine sperm regulate capacitation and hyperactivation, Biol. Reprod., 70, 1626-1633, doi: 10.1095/biolreprod.103.026476.
  16. Rudneva, S. A., and Chernykh, V. B. (2018) A mechanism of sperm cilia beating, Androl. Genital Surg., 19, 15-26, doi: 10.17650/2070-9781-2018-19-3-15-26.
  17. Miki, K. (2007) Energy metabolism and sperm function, Soc. Reprod. Fertil. Suppl., 65, 309-325.
  18. Mukai, C., and Okuno, M. (2004) Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement, Biol. Reprod., 71, 540-547, doi: 10.1095/biolreprod.103.026054.
  19. Muronetz, V. I., Kuravsky, M. L., Barinova, K. V., and Schmalhausen, E. V. (2015) Sperm-specific glyceraldehyde-3-phosphate dehydrogenase - an evolutionary acquisition of mammals, Biochemistry (Moscow), 80, 1672-1689, doi: 10.1134/S0006297915130040.
  20. Du Plessis, S. S., Agarwal, A., Mohanty, G., and van der Linde, M. (2015) Oxidative phosphorylation versus glycolysis: what fuel do spermatozoa use? Asian J. Androl., 17, 230-235, doi: 10.4103/1008-682X.135123.
  21. Elkina, Y. L., Kuravsky, M. L., El'darov, M. A., Stogov, S. V., Muronetz, V. I., and Schmalhausen, E. V. (2010) Recombinant human sperm-specific glyceraldehyde-3-phosphate dehydrogenase: structural basis for enhanced stability, Biochim. Biophys. Acta, 1804, 2207-2212, doi: 10.1016/j.bbapap.2010.09.002.
  22. Ford, W. C. (2006) Glycolysis and sperm motility: does a spoonful of sugar help the flagellum go round? Hum. Reprod. Update, 12, 269-274, doi: 10.1093/humupd/dmi053.
  23. King, W. A., Yadav, B. R., Xu, K. P., Picard, L., Sirard, M. A., Verini Supplizi, A., et al. (1991) The sex ratios of bovine embryos produced in vivo and in vitro, Theriogenology, 36, 779-788, doi: 10.1016/0093-691x(91)90343-c.
  24. Machado, G. M., Ferreira, A. R., Guardieiro, M. M., Bastos, M. R., Carvalho, J. O., Lucci, C. M., et al. (2013) Morphology, sex ratio and gene expression of Day 14 in vivo and in vitro bovine embryos, Reprod. Fertil. Dev., 25, 600, doi: 10.1071/RD11282.
  25. Abecia, J.-A., Arrébola, F., and Palacios, C. (2017) Offspring sex ratio in sheep, cattle, goats and pigs: influence of season and lunar phase at conception, Biol. Rhythm Res., 48, 417-424, doi: 10.1080/09291016.2016.1268325.
  26. Ellis, P. J. I., Yu, Y., and Zhang, S. (2011) Transcriptional dynamics of the sex chromosomes and the search for offspring sex-specific antigens in sperm, Reproduction, 142, 609-619, doi: 10.1530/REP-11-0228.
  27. Turner, J. M. A., Mahadevaiah, S. K., Ellis, P. J. I., Mitchell, M. J., and Burgoyne, P. S. (2006) Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids, Dev. Cell, 10, 521-529, doi: 10.1016/j.devcel.2006.02.009.
  28. Ventelä, S., Toppari, J., and Parvinen, M. (2003) Intercellular organelle traffic through cytoplasmic bridges in early spermatids of the rat: mechanisms of haploid gene product sharing, Mol. Biol. Cell, 14, 2768-2780, doi: 10.1091/mbc.e02-10-0647.
  29. Bhutani, K., Stansifer, K., Ticau, S., Bojic, L., Villani, A.-C., Slisz, J., et al. (2021) Widespread haploid-biased gene expression enables sperm-level natural selection, Science, 371, eabb1723, doi: 10.1126/science.abb1723.
  30. Chen, X., Yue, Y., He, Y., Zhu, H., Hao, H., Zhao, X., et al. (2014) Identification and characterization of genes differentially expressed in X and Y sperm using suppression subtractive hybridization and cDNA microarray, Mol. Reprod. Dev., 81, 908-917, doi: 10.1002/mrd.22386.
  31. Zhou, H., Liu, J., Sun, W., Ding, R., Li, X., Shangguan, A., et al. (2020) Differences in small noncoding RNAs profile between bull X and Y sperm, PeerJ, 8, e9822, doi: 10.7717/peerj.9822.
  32. Chen, X., Zhu, H., Wu, C., Han, W., Hao, H., Zhao, X., et al. (2012) Identification of differentially expressed proteins between bull X and Y spermatozoa, J. Proteomics, 77, 59-67, doi: 10.1016/j.jprot.2012.07.004.
  33. De Canio, M., Soggiu, A., Piras, C., Bonizzi, L., Galli, A., Urbani, A., et al. (2014) Differential protein profile in sexed bovine semen: shotgun proteomics investigation, Mol. Biosyst., 10, 1264-1271, doi: 10.1039/c3mb70306a.
  34. Scott, C., de Souza, F. F., Aristizabal, V. H. V., Hethrington, L., Krisp, C., Molloy, M., et al. (2018) Proteomic profile of sex-sorted bull sperm evaluated by SWATH-MS analysis, Anim. Reprod. Sci., 198, 121-128, doi: 10.1016/j.anireprosci.2018.09.010.
  35. Sang, L., Yang, W. C., Han, L., Liang, A. X., Hua, G. H., Xiong, J. J., et al. (2011) An immunological method to screen sex-specific proteins of bovine sperm, J. Dairy Sci., 94, 2060-2070, doi: 10.3168/jds.2010-3350.
  36. Shen, D., Zhou, C., Cao, M., Cai, W., Yin, H., Jiang, L., et al. (2021) Differential membrane protein profile in bovine X- and Y-Sperm, J. Proteome Res., 20, 3031-3042, doi: 10.1021/acs.jproteome.0c00358.
  37. Umehara, T., Tsujita, N., and Shimada, M. (2019) Activation of Toll-like receptor 7/8 encoded by the X chromosome alters sperm motility and provides a novel simple technology for sexing sperm, PLoS Biol., 17, e3000398, doi: 10.1371/journal.pbio.3000398.
  38. Laxmivandana, R., Patole, C., Sharma, T. R., Sharma, K. K., and Naskar, S. (2021) Differential proteins associated with plasma membrane in X- and/or Y-chromosome bearing spermatozoa in indicus cattle, Reprod. Dom. Anim., 56, 928-935, doi: 10.1111/rda.13936.
  39. Thaworn, W., Hongsibsong, S., Thongkham, M., Mekchay, S., Pattanawong, W., and Sringarm, K. (2022) Production of single-chain fragment variable (scFv) antibodies specific to plasma membrane epitopes on bull Y-bearing sperm, Anim. Biotechnol., 33, 508-518, doi: 10.1080/10495398.2020.1811294.
  40. Soleymani, B., Parvaneh, S., and Mostafaie, A. (2019) Goat polyclonal antibody against the sex determining region Y to separate X- and Y-chromosome bearing spermatozoa, Rep. Biochem. Mol. Biol., 8, 326-334.
  41. Sharma, V., Verma, A. K., Sharma, P., Pandey, D., and Sharma, M. (2022) Differential proteomic profile of X- and Y-sorted Sahiwal bull semen, Res. Vet. Sci., 144, 181-189, doi: 10.1016/j.rvsc.2021.11.013.
  42. Zhu, Z., Umehara, T., Okazaki, T., Goto, M., Fujita, Y., Hoque, S. A. M., et al. (2019) Gene Expression and protein synthesis in mitochondria enhance the duration of high-speed linear motility in boar sperm, Front. Physiol., 10, 252, doi: 10.3389/fphys.2019.00252.
  43. Capra, E., Turri, F., Lazzari, B., Cremonesi, P., Gliozzi, T. M., Fojadelli, I., et al. (2017) Small RNA sequencing of cryopreserved semen from single bull revealed altered miRNAs and piRNAs expression between High- and Low-motile sperm populations, BMC Genomics, 18, 14, doi: 10.1186/s12864-016-3394-7.
  44. Hendriksen, P. J. M. (1999) Do X and Y spermatozoa differ in proteins? Theriogenology, 52, 1295-1307, doi: 10.1016/S0093-691X(99)00218-6.
  45. Elkina, Y. L., Atroshchenko, M. M., Bragina, E. E., Muronetz, V. I., and Schmalhausen, E. V. (2011) Oxidation of glyceraldehyde-3-phosphate dehydrogenase decreases sperm motility, Biochemistry (Moscow), 76, 268-272, doi: 10.1134/s0006297911020143.
  46. Shimada, K., Park, S., Miyata, H., Yu, Z., Morohoshi, A., Oura, S., et al. (2021) ARMC12 regulates spatiotemporal mitochondrial dynamics during spermiogenesis and is required for male fertility, Proc. Natl. Acad. Sci. USA, 118, e2018355118, doi: 10.1073/pnas.2018355118.
  47. Hoppe, P. C., and Koo, G. C. (1984) Reacting mouse sperm with monoclonal H-Y antibodies does not influence sex ratio of eggs fertilized in vitro, J. Reprod. Immunol., 6, 1-9, doi: 10.1016/0165-0378(84)90036-6.
  48. Ren, F., Xi, H., Ren, Y., Li, Y., Wen, F., Xian, M., et al. (2021) TLR7/8 signalling affects X-sperm motility via the GSK3 α/β-hexokinase pathway for the efficient production of sexed dairy goat embryos, J. Anim. Sci. Biotechnol., 12, 89, doi: 10.1186/s40104-021-00613-y.
  49. Hinsch, E., Boehm, J. G., Groeger, S., Mueller-Schloesser, F., and Hinsch, K. D. (2003) Identification of cytokeratins in bovine sperm outer dense fibre fractions, Reprod. Domest. Anim., 38, 155-160, doi: 10.1046/j.1439-0531.2003.00408.x.
  50. Feugang, J. M., Rodriguez-Osorio, N., Kaya, A., Wang, H., Page, G., Ostermeier, G. C., et al. (2010) Transcriptome analysis of bull spermatozoa: implications for male fertility, Reprod. Biomed. Online, 21, 312-324, doi: 10.1016/j.rbmo.2010.06.022.
  51. Hashemitabar, M., Sabbagh, S., Orazizadeh, M., Ghadiri, A., and Bahmanzadeh, M. (2015) A proteomic analysis on human sperm tail: comparison between normozoospermia and asthenozoospermia, J. Assist. Reprod. Genet., 32, 853-863, doi: 10.1007/s10815-015-0465-7.
  52. Rivkin, E., Eddy, E. M., Willis, W. D., Goulding, E. H., Suganuma, R., Yanagimachi, R., et al. (2005) Sperm tail abnormalities in mutant mice withneor gene insertion into an intron of the keratin 9 gene, Mol. Reprod. Dev., 72, 259-271, doi: 10.1002/mrd.20335.
  53. Sringarm, K., Thongkham, M., Mekchay, S., Lumsangkul, C., Thaworn, W., Pattanawong, W., et al. (2022) High-efficiency bovine sperm sexing used magnetic-activated cell sorting by coupling scFv antibodies specific to Y-chromosome-bearing sperm on magnetic microbeads, Biology (Basel), 11, 715, doi: 10.3390/biology11050715.
  54. Bucci, D., Galeati, G., Tamanini, C., Vallorani, C., Rodriguez-Gil, J. E., and Spinaci, M. (2012) Effect of sex sorting on CTC staining, actin cytoskeleton and tyrosine phosphorylation in bull and boar spermatozoa, Theriogenology, 77, 1206-1216, doi: 10.1016/j.theriogenology.2011.10.028.
  55. Mostek, A., Janta, A., and Ciereszko, A. (2020) Proteomic comparison of non-sexed and sexed (X-bearing) cryopreserved bull semen, Anim. Reprod. Sci., 221, 106552, doi: 10.1016/j.anireprosci.2020.106552.
  56. Garner, D. L., and Seidel Jr., G. E. (2003) Past, present and future perspectives on sexing sperm, Can. J. Anim. Sci., 83, 375-384, doi: 10.4141/A03-022.
  57. Van Munster, E. B., Stap, J., Hoebe, R. A., te Meerman, G. J., and Aten, J. A. (1999) Difference in volume of X- and Y-chromosome-bearing bovine sperm heads matches difference in DNA content, Cytometry, 35, 125-128, doi: 10.1002/(sici)1097-0320(19990201)35:2<125::aid-cyto3>3.0.co;2-h.
  58. Santolaria, P., Pauciullo, A., Silvestre, M. A., Vicente-Fiel, S., Villanova, L., Pinton, A., et al. (2016) Computer-assisted sperm morphometry fluorescence-based analysis has potential to determine progeny sex, Asian J. Androl., 18, 858-862, doi: 10.4103/1008-682X.187578.
  59. Révay, T., Nagy, S., Kovács, A., Edvi, M. E., Hidas, A., Rens, W., et al. (2004) Head area measurements of dead, live, X- and Y-bearing bovine spermatozoa, Reprod. Fertil. Dev., 16, 681-687, doi: 10.1071/rd04013.
  60. Carvalho, J. O., Silva, L. P., Sartori, R., and Dode, M. A. N. (2013) Nanoscale differences in the shape and size of X and Y chromosome-bearing bovine sperm heads assessed by atomic force microscopy, PLoS One, 8, e59387, doi: 10.1371/journal.pone.0059387.
  61. Cui, K. H., and Matthews, C. D. (1993) X larger than Y, Nature, 366, 117-118, doi: 10.1038/366117b0.
  62. Zavaczki, Z., Celik-Ozenci, C., Ovari, L., Jakab, A., Sati, G. L., Ward, D. C., et al. (2006) Dimensional assessment of X-bearing and Y-bearing haploid and disomic human sperm with the use of fluorescence in situ hybridization and objective morphometry, Fertil. Steril., 85, 121-127, doi: 10.1016/j.fertnstert.2005.07.1295.
  63. Penfold, L. M., Holt, C., Holt, W. V., Welch, G. R., Cran, D. G., and Johnson, L. A. (1998) Comparative motility of X and Y chromosome-bearing bovine sperm separated on the basis of DNA content by flow sorting, Mol. Reprod. Dev., 50, 323-327, doi: 10.1002/(SICI)1098-795(199807)50:3<323::AID-MRD8>3.0.CO;2-L.
  64. Daloglu, M. U., Lin, F., Chong, B., Chien, D., Veli, M., Luo, W., et al. (2018) 3D imaging of sex-sorted bovine spermatozoon locomotion, head spin and flagellum beating, Sci. Rep., 8, 15650, doi: 10.1038/s41598-018-34040-3.
  65. Carvalho, J. O., Sartori, R., Machado, G. M., Mourão, G. B., and Dode, M. (2010) Quality assessment of bovine cryopreserved sperm after sexing by flow cytometry and their use in in vitro embryo production, Theriogenology, 74, 1521-1530, doi: 10.1016/j.theriogenology.2010.06.030.
  66. Holden, S. A., Murphy, C., Moreno, J. F., Butler, S. T., Cromie, A. R., Lonergan, P., et al. (2017) In vitro characterisation of fresh and frozen sex-sorted bull spermatozoa, Reprod. Fertil. Dev., 29, 1415-1425, doi: 10.1071/RD16086.
  67. Park, Y. J., Kwon, K. J., Song, W. H., Pang, W. K., Ryu, D. Y., Saidur Rahman, M., and Pang, M. G. (2021) New technique of sex preselection for increasing female ratio in boar sperm model, Reprod. Domest. Anim., 56, 333-341, doi: 10.1111/rda.13870.
  68. Dominguez, E. M., Moreno-Irusta, A., Guidobaldi, H. A., Tribulo, H., and Giojalas, L. C. (2018) Improved bovine in vitro embryo production with sexed and unsexed sperm selected by chemotaxis, Theriogenology, 22, 1-8, doi: 10.1016/j.theriogenology.2018.08.023.
  69. Ericsson, R. J., Langevin, C. N., and Nishino, M. (1973) Isolation of fractions rich in human Y sperm, Nature, 246, 421-424, doi: 10.1038/246421a0.
  70. Neculai-Valeanu, A.-S., and Ariton, A. M. (2021) Game-changing approaches in sperm sex-sorting: microfluidics and nanotechnology, Animals, 11, 1182, doi: 10.3390/ani11041182.
  71. Arzondo, M. M., Caballero, J. N., Marín-Briggiler, C. I., Dalvit, G., Cetica, P. D., and Vazquez-Levin, M. H. (2012) Glass wool filtration of bull cryopreserved semen: a rapid and effective method to obtain a high percentage of functional sperm, Theriogenology, 78, 201-209, doi: 10.1016/j.theriogenology.2012.02.001.
  72. Thys, M., Vandaele, L., Morrell, J., Mestach, J., Van Soom, A., Hoogewijs, M., et al. (2009) In vitro fertilizing capacity of frozen-thawed bull spermatozoa selected by Single-layer (Glycidoxypropyltrimethoxysilane) silane-coated silica colloidal centrifugation, Reprod. Domest. Anim., 44, 390-394, doi: 10.1111/j.1439-0531.2008.01081.x.
  73. Meitei, H. Y., Uppangala, S., Sharan, K., Chandraguthi, S. G., Radhakrishnan, A., Kalthur, G., et al. (2021) A simple, centrifugation-free, sperm-sorting device eliminates the risks of centrifugation in the swim-up method while maintaining functional competence and DNA integrity of selected spermatozoa, Reprod. Sci., 28, 134-143, doi: 10.1007/s43032-020-00269-5.
  74. Azizeddin, A., Ashkar, F., King, W., and Revay, T. (2014) Enrichment of Y-chromosome-bearing bull spermatozoa by swim-up through a column, Reprod. Dom. Anim., 49, 1-4, doi: 10.1111/rda.12252.
  75. Promthep, K., Satitmanwiwat, S., Kitiyanant, N., Tantiwattanakul, P., Jirajaroenrat, K., Sitthigripong, R., et al. (2016) Practical use of percoll density gradient centrifugation on sperm sex determination in commercial dairy farm in Thailand, IJAR, 50, 310-313, doi: 10.18805/ijar.8427.
  76. Bhat, Y., and Sharma, M. (2020) X-sperm enrichment of bovine semen by Percoll density gradient method and its effect on semen quality, sex ratio and conception rate, IJAR, 54, 1181-1187.
  77. Lucio, A. C., Resende, M. V., Dernowseck-Meirelles, J. A., Perini, A. P., Oliveira, L. Z., Miguel, M. C. V., et al. (2012) Assessment of swim-up and discontinuous density gradient in sperm sex preselection for bovine embryo production, Arq. Bras. Med. Vet. Zootec., 64, 525-532, doi: 10.1590/S0102-09352012000300001.
  78. Kobayashi, J., Oguro, H., Uchida, H., Kohsaka, T., Sasada, H., and Sato, E. (2004) Assessment of bovine X- and Y-bearing spermatozoa in fractions by discontinuous percoll gradients with rapid fluorescence in situ hybridization, J. Reprod. Dev., 50, 463-469, doi: 10.1262/jrd.50.463.
  79. Machado, G. M., Carvalho, J. O., Filho, E. S., Caixeta, E. S., Franco, M. M., Rumpf, R., et al. (2009) Effect of Percoll volume, duration and force of centrifugation, on in vitro production and sex ratio of bovine embryos, Theriogenology, 71, 1289-1297, doi: 10.1016/j.theriogenology.2009.01.002.
  80. Wolf, C. A., Brass, K., Rubin, M. I. B., Pozzobon, S. E., Mozzaquatro, F., and De la Côrte, F. D. (2008) The effect of sperm selection by Percoll or swim-up on the sex ratio of in vitro produced bovine embryos, Anim. Reprod., 5, 110-115.
  81. Madrid-Bury, N., Fernández, R., Jiménez, A., Pérez-Garnelo, S., Nuno Moreira, P., Pintado, B., et al. (2003) Effect of ejaculate, bull, and a double swim-up sperm processing method on sperm sex ratio, Zygote, 11, 229-235, doi: 10.1017/S0967199403002272.
  82. Resende, M. V., Lucio, A. C., Perini, A. P., Oliveira, L. Z., Almeida, A. O., Alves, B. C. A., et al. (2011) Comparative validation using quantitative real-time PCR (qPCR) and conventional PCR of bovine semen centrifuged in continuous density gradient, Arq. Bras. Med. Vet. Zootec., 63, 544-551, doi: 10.1590/S0102-09352011000300002.
  83. Asma-ul-Husna, Awan, M. A., Mehmood, A., Sultana, T., Shahzad, Q., Ansari, M. S., et al. (2017) Sperm sexing in Nili-Ravi buffalo through modified swim up: Validation using SYBR green real-time PCR, Anim. Reprod. Sci., 182, 69-76, doi: 10.1016/j.anireprosci.2017.04.011.
  84. Meles, D. K., Mustofa, I., Hariadi, M., Wurlina, W., Susilowati, S., Amaliya, A., et al. (2022) The enriched Y-bearing sperm combined with delayed fixed-time artificial insemination for obtaining male Simmental crossbred offspring, Vet. World, 15, 102-109, doi: 10.14202/vetworld.2022.102-109.
  85. Umehara, T., Tsujita, N., Zhu, Z., Ikedo, M., and Shimada, M. (2020) A simple sperm-sexing method that activates TLR7/8 on X sperm for the efficient production of sexed mouse or cattle embryos, Nat. Protoc., 15, 2645-2667, doi: 10.1038/s41596-020-0348-y.
  86. Huang, M., Cao, X. Y., He, Q. F., Yang, H. W., Chen, Y. Z., Zhao, J. L., et al. (2022) Alkaline semen diluent combined with R848 for separation and enrichment of dairy goat X-sperm, J. Dairy Sci., 105, 10020-10032, doi: 10.3168/jds.2022-22115.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies