Nucleoid-associated proteins HU and IHF: oligomerization in solution and hydrodynamic properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The structure and function of the bacterial nucleoid is controlled by nucleoid-associated NAP proteins. In any phase of growth, various NAPs, acting sequentially, condense the nucleoid and provide its transcriptionally active structure. However, in the late stationary phase, only one of the NAPs, the Dps protein, is strongly expressed, and DNA-protein crystals are formed that transform the nucleoid into a static, transcriptionally inactive structure, effectively protected from external influences. The discovery of crystal structures in living cells and the association of this phenomenon with bacterial resistance to antibiotics has aroused great interest in studying this phenomenon. The aim of this work is to obtain and compare the structures of two related NAPs (HU and IHF), since they are the ones that accumulate in the cell at the late stationary stage of growth, which precedes the formation of the protective DNA-Dps crystalline complex. For structural studies, two complementary methods were used in the work: small-angle X-ray scattering (SAXS) as the main method for studying the structure of proteins in solution and dynamic light scattering as an additional one. Various approaches and computer programs were used to interpret the SAXS data, which made it possible to determine the macromolecular characteristics and obtain reliable structural 3D models of various oligomeric forms of the HU and IHF proteins. It was shown that these proteins oligomerize in solution to varying degrees, and IHF is characterized by the presence of large oligomers consisting of initial dimers arranged in a chain. It was suggested that just before Dps expression, it is this protein that forms the toroidal structures previously observed in vivo and prepares the platform for the formation of DNA-Dps crystals. The results obtained are necessary for further study of the phenomenon of biocrystal formation in bacterial cells and finding ways to overcome the resistance of various pathogens to external conditions.

About the authors

L. A Dadinova

Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences

Email: shtykova@ns.crys.ras.ru
119333 Moscow, Russia

M. V Petoukhov

Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences

Email: shtykova@ns.crys.ras.ru
119333 Moscow, Russia

A. M Gordienko

Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences

Email: shtykova@ns.crys.ras.ru
119333 Moscow, Russia

V. A Manuvera

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency;Moscow Institute of Physics and Technology (State University)

Email: shtykova@ns.crys.ras.ru
119435 Moscow, Russia;141701 Dolgoprudny, Moscow Region, Russia

V. N Lazarev

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency;Moscow Institute of Physics and Technology (State University)

Email: shtykova@ns.crys.ras.ru
119435 Moscow, Russia;141701 Dolgoprudny, Moscow Region, Russia

T. V Rakitina

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences;NRC “Kurchatov Institute”

Email: shtykova@ns.crys.ras.ru
117997 Moscow, Russia;123182 Moscow, Russia

A. A Mozhaev

Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences;Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: shtykova@ns.crys.ras.ru
119333 Moscow, Russia;117997 Moscow, Russia

G. S Peters

NRC “Kurchatov Institute”

Email: shtykova@ns.crys.ras.ru
123182 Moscow, Russia

E. V Shtykova

Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences

Email: shtykova@ns.crys.ras.ru
119333 Moscow, Russia

References

  1. Dame, R. T. (2005) The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin, Mol. Microbiol., 56, 858-870, doi: 10.1111/j.1365-2958.2005.04598.x.
  2. Johnson, R. C., Johnson, L. M., Schmidt, J. W., and Gardner, J. F. (2005) Major Nucleoid Proteins in the Structure and Function of the Escherichia coli Chromosome, in The Bacterial Chromosome (Patrick Higgins, N., ed.) ACM Press, Washington, DC, pp. 65-131.
  3. Travers, A., and Muskhelishvili, G. (2005) Bacterial chromatin, Curr. Opin. Genet. Dev., 15, 507-514, doi: 10.1016/j.gde.2005.08.006.
  4. Dillon, S. C., and Dorman, C. J. (2010) Bacterial nucleoid-associated proteins, nucleoid structure and gene expression, Nat. Rev. Microbiol., 8, 185-195, doi: 10.1038/nrmicro2261.
  5. Glinkowska, M., Waldminghaus, T., and Riber, L. (2021) Editorial: bacterial chromosomes under changing environmental conditions, Front. Microbiol., 12, 633466, doi: 10.3389/fmicb.2021.633466.
  6. Norris, V., Kayser, C., Muskhelishvili, G., and Konto-Ghiorghi, Y. (2022) The roles of nucleoid-associated proteins and topoisomerases in chromosome structure, strand segregation and the generation of phenotypic heterogeneity in bacteria, FEMS Microbiol. Rev., fuac049, doi: 10.1093/femsre/fuac049.
  7. Amemiya, H. M., Schroeder, J., and Freddolino, P. L. (2021) Nucleoid-associated proteins shape chromatin structure and transcriptional regulation across the bacterial kingdom, Transcription, 12, 182-218, doi: 10.1080/21541264.2021.1973865.
  8. Wold, S., Crooke, E., and Skarstad, K. (1996) The Escherichia coli Fis protein prevents initiation of DNA replication from oriC in vitro, Nucleic Acids Res., 24, 3527-3532, doi: 10.1093/nar/24.18.3527.
  9. Atlung, T., and Ingmer, H. (1997) H-NS: a modulator of environmentally regulated gene expression, Mol. Microbiol., 24, 7-17, doi: 10.1046/j.1365-2958.1997.3151679.x.
  10. Kamashev, D., and Rouviere-Yaniv, J. (2000) The histone-like protein HU binds specifically to DNA recombination and repair intermediates, EMBO J., 19, 6527-6535, doi: 10.1093/emboj/19.23.6527.
  11. Shahul Hameed, U. F., Liao, C., Radhakrishnan, A. K., Huser, F., Aljedani, S. S., Zhao, X., Momin, A. A., Melo, F. A., Guo, X., Brooks, C., Li, Y., Cui, X., Gao, X., Ladbury, J. E., Jaremko, L., Jaremko, M., Li, J., and Arold, S. T. (2019) H-NS uses an autoinhibitory conformational switch for environment-controlled gene silencing, Nucleic Acids Res., 47, 2666-2680, doi: 10.1093/nar/gky1299.
  12. Holowka, J., and Zakrzewska-Czerwinska, J. (2020) Nucleoid associated proteins: the small organizers that help to cope with stress, Front. Microbiol., 11, 590, doi: 10.3389/fmicb.2020.00590.
  13. Luijsterburg, M. S., Noom, M. C., Wuite, G. J., and Dame, R. T. (2006) The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective, J. Struct. Biol., 156, 262-272, doi: 10.1016/j.jsb.2006.05.006.
  14. Wang, W., Li, G. W., Chen, C., Xie, X. S., and Zhuang, X. (2011) Chromosome organization by a nucleoid-associated protein in live bacteria, Science, 333, 1445-1449, doi: 10.1126/science.1204697.
  15. Hommais, F., Krin, E., Laurent-Winter, C., Soutourina, O., Malpertuy, A., Le Caer, J. P., Danchin, A., and Bertin, P. (2001) Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS, Mol. Microbiol., 40, 20-36, doi: 10.1046/j.1365-2958.2001.02358.x.
  16. Tendeng, C., and Bertin, P. N. (2003) H-NS in Gram-negative bacteria: a family of multifaceted proteins, Trends Microbiol., 11, 511-518, doi: 10.1016/j.tim.2003.09.005.
  17. Dorman, C. J., Hinton, J. C., and Free, A. (1999) Domain organization and oligomerization among H-NS-like nucleoid-associated proteins in bacteria, Trends Microbiol., 7, 124-128, doi: 10.1016/s0966-842x(99)01455-9.
  18. Thanbichler, M., Wang, S. C., and Shapiro, L. (2005) The bacterial nucleoid: a highly organized and dynamic structure, J. Cell. Biochem., 96, 506-521, doi: 10.1002/jcb.20519.
  19. Leonard, P. M., Smits, S. H., Sedelnikova, S. E., Brinkman, A. B., de Vos, W. M., van der Oost, J., Rice, D. W., and Rafferty, J. B. (2001) Crystal structure of the Lrp-like transcriptional regulator from the archaeon Pyrococcus furiosus, EMBO J., 20, 990-997, doi: 10.1093/emboj/20.5.990.
  20. Beloin, C., Jeusset, J., Revet, B., Mirambeau, G., Le Hegarat, F., and Le Cam, E. (2003) Contribution of DNA conformation and topology in right-handed DNA wrapping by the Bacillus subtilis LrpC protein, J. Biol. Chem., 278, 5333-5342, doi: 10.1074/jbc.M207489200.
  21. Calvo, J. M., and Matthews, R. G. (1994) The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli, Microbiol. Rev., 58, 466-490, doi: 10.1128/mr.58.3.466-490.1994.
  22. Brinkman, A. B., Ettema, T. J., de Vos, W. M., and van der Oost, J. (2003) The Lrp family of transcriptional regulators, Mol. Microbiol., 48, 287-294, doi: 10.1046/j.1365-2958.2003.03442.x.
  23. Losada, A., and Hirano, T. (2005) Dynamic molecular linkers of the genome: the first decade of SMC proteins, Genes Dev., 19, 1269-1287, doi: 10.1101/gad.1320505.
  24. Nasmyth, K., and Haering, C. H. (2005) The structure and function of SMC and kleisin complexes, Annu. Rev. Biochem., 74, 595-648, doi: 10.1146/annurev.biochem.74.082803.133219.
  25. Strunnikov, A. V. (2006) SMC complexes in bacterial chromosome condensation and segregation, Plasmid, 55, 135-144, doi: 10.1016/j.plasmid.2005.08.004.
  26. Swinger, K. K., and Rice, P. A. (2004) IHF and HU: flexible architects of bent DNA, Curr. Opin. Struct. Biol., 14, 28-35, doi: 10.1016/j.sbi.2003.12.003.
  27. Kamashev, D. E., Rakitina, T. V., Matyushkina, D. S., Evsyutina, D. V., Vanyushkina, A. A., Agapova, Y. K., Anisimova, V. E., Drobyshev, A. L., Butenko, I. O., Pobeguts, O. V., and Fisunov, G. Y. (2019) Proteome of HU-Lacking E. coli studied by means of 2D Gel electrophoresis, Russ. J. Bioorg. Chem., 45, 366-373, doi: 10.1134/S1068162019050029.
  28. Kamashev, D., Agapova, Y., Rastorguev, S., Talyzina, A. A., Boyko, K. M., Korzhenevskiy, D. A., Vlaskina, A., Vasilov, R., Timofeev, V. I., and Rakitina, T. V. (2017) Comparison of histone-like HU protein DNA-binding properties and HU/IHF protein sequence alignment, PLoS One, 12, e0188037, doi: 10.1371/journal.pone.0188037.
  29. Stojkova, P., Spidlova, P., and Stulik, J. (2019) Nucleoid-associated protein HU: A lilliputian in gene regulation of bacterial virulence, Front. Cell. Infect. Microbiol., 9, 159, doi: 10.3389/fcimb.2019.00159.
  30. Prieto, A. I., Kahramanoglou, C., Ali, R. M., Fraser, G. M., Seshasayee, A. S., and Luscombe, N. M. (2012) Genomic analysis of DNA binding and gene regulation by homologous nucleoid-associated proteins IHF and HU in Escherichia coli K12, Nucleic Acids Res., 40, 3524-3537, doi: 10.1093/nar/gkr1236.
  31. Remesh, S. G., Verma, S. C., Chen, J. H., Ekman, A. A., Larabell, C. A., Adhya, S., and Hammel, M. (2020) Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling, Nat. Commun., 11, 2905, doi: 10.1038/s41467-020-16724-5.
  32. Hales, L. M., Gumport, R. I., and Gardner, J. F. (1994) Determining the DNA sequence elements required for binding integration host factor to two different target sites, J. Bacteriol., 176, 2999-3006, doi: 10.1128/jb.176.10.2999-3006.1994.
  33. Kostrewa, D., Granzin, J., Koch, C., Choe, H. W., Raghunathan, S., Wolf, W., Labahn, J., Kahmann, R., and Saenger, W. (1991) Three-dimensional structure of the E. coli DNA-binding protein FIS, Nature, 349, 178-180, doi: 10.1038/349178a0.
  34. Pan, C. Q., Finkel, S. E., Cramton, S. E., Feng, J. A., Sigman, D. S., and Johnson, R. C. (1996) Variable structures of Fis-DNA complexes determined by flanking DNA-protein contacts, J. Mol. Biol., 264, 675-695, doi: 10.1006/jmbi.1996.0669.
  35. Shao, Y., Feldman-Cohen, L. S., and Osuna, R. (2008) Biochemical identification of base and phosphate contacts between Fis and a high-affinity DNA binding site, J. Mol. Biol., 380, 327-339, doi: 10.1016/j.jmb.2008.04.075.
  36. Azam, T. A., and Ishihama, A. (1999) Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity, J. Biol. Chem., 274, 33105-33113, doi: 10.1074/jbc.274.46.33105.
  37. Almiron, M., Link, A. J., Furlong, D., and Kolter, R. (1992) A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli, Genes Dev., 6, 2646-2654, doi: 10.1101/gad.6.12b.2646.
  38. Nair, S., and Finkel, S. E. (2004) Dps protects cells against multiple stresses during stationary phase, J. Bacteriol., 186, 4192-4198, doi: 10.1128/JB.186.13.4192-4198.2004.
  39. Frenkiel-Krispin, D., and Minsky, A. (2006) Nucleoid organization and the maintenance of DNA integrity in E. coli, B. subtilis and D. radiodurans, J. Struct. Biol., 156, 311-319, doi: 10.1016/j.jsb.2006.05.014.
  40. Martinez, A., and Kolter, R. (1997) Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps, J. Bacteriol., 179, 5188-5194, doi: 10.1128/jb.179.16.5188-5194.1997.
  41. Reich, Z., Wachtel, E. J., and Minsky, A. (1994) Liquid-crystalline mesophases of plasmid DNA in bacteria, Science, 264, 1460-1463, doi: 10.1126/science.8197460.
  42. Wolf, S. G., Frenkiel, D., Arad, T., Finkel, S. E., Kolter, R., and Minsky, A. (1999) DNA protection by stress-induced biocrystallization, Nature, 400, 83-85, doi: 10.1038/21918.
  43. Frenkiel-Krispin, D., Ben-Avraham, I., Englander, J., Shimoni, E., Wolf, S. G., and Minsky, A. (2004) Nucleoid restructuring in stationary-state bacteria, Mol. Microbiol., 51, 395-405, doi: 10.1046/j.1365-2958.2003.03855.x.
  44. Dadinova, L. A., Chesnokov, Y. M., Kamyshinsky, R. A., Orlov, I. A., Petoukhov, M. V., Mozhaev, A. A., Soshinskaya, E. Y., Lazarev, V. N., Manuvera, V. A., Orekhov, A. S., Vasiliev, A. L., and Shtykova, E. V. (2019) Protective Dps-DNA co-crystallization in stressed cells: an in vitro structural study by small-angle X-ray scattering and cryo-electron tomography, FEBS Lett., 593, 1360-1371, doi: 10.1002/1873-3468.13439.
  45. Kamyshinsky, R., Chesnokov, Y., Dadinova, L., Mozhaev, A., Orlov, I., Petoukhov, M., Orekhov, A., Shtykova, E., and Vasiliev, A. (2019) Polymorphic protective Dps-DNA co-crystals by cryo electron tomography and small Angle X-Ray scattering, Biomolecules, 10, 39, doi: 10.3390/biom10010039.
  46. Dadinova, L., Kamyshinsky, R., Chesnokov, Y., Mozhaev, A., Matveev, V., Gruzinov, A., Vasiliev, A., and Shtykova, E. (2021) Structural rearrangement of Dps-DNA complex caused by divalent Mg and Fe cations, Int. J. Mol. Sci., 22, 6056, doi: 10.3390/ijms22116056.
  47. Сошинская Е. Ю., Дадинова Л. А., Можаев А. А., Штыкова Э. В. (2020) Влияние состава буфера на конформационную подвижность N-концевых фрагментов Dps и характер взаимодействия с ДНК. Исследование методом малоуглового рентгеновского рассеяния, Кристаллография, 65, 886-895, doi: 10.31857/S0023476120060338.
  48. Dubrovin, E. V., Dadinova, L. A., Petoukhov, M. V., Soshinskaya, E. Y., Mozhaev, A. A., Klinov, D. V., Schaffer, T. E., Shtykova, E. V., and Batishchev, O. V. (2021) Spatial organization of Dps and DNA-Dps complexes, J. Mol. Biol., 433, 166930, doi: 10.1016/j.jmb.2021.166930.
  49. Shtykova, E. V., Petoukhov, M. V., and Mozhaev, A. A. (2022) Formation of iron oxide nanoparticles in the internal cavity of ferritin-like Dps protein: studies by anomalous X-ray scattering, Biochemistry (Moscow), 87, 511-523, doi: 10.1134/S0006297922060037.
  50. Loiko, N., Danilova, Y., Moiseenko, A., Kovalenko, V., Tereshkina, K., Tutukina, M., El-Registan, G., Sokolova, O., and Krupyanskii, Y. (2020) Morphological peculiarities of the DNA-protein complexes in starved Escherichia coli cells, PLoS One, 15, e0231562, doi: 10.1371/journal.pone.0231562.
  51. Krupyanskii, Y. F., Kovalenko, V. V., Loiko, N. G., Generalova, A. A., Moiseenko, A. V., Tereshkin, E. V., Sokolova, O. S., Tereshkina, K. B., El'-Registan, G. I., and Popov, A. N. (2022) Architecture of condensed DNA in the nucleoid of Escherichia coli bacterium, Biophysics, 67, 506-517, doi: 10.1134/S0006350922040133.
  52. Grant, R. A., Filman, D. J., Finkel, S. E., Kolter, R., and Hogle, J. M. (1998) The crystal structure of Dps, a ferritin homolog that binds and protects DNA, Nat. Struct. Biol., 5, 294-303, doi: 10.1038/nsb0498-294.
  53. Gupta, S., and Chatterji, D. (2003) Bimodal protection of DNA by Mycobacterium smegmatis DNA-binding protein from stationary phase cells, J. Biol. Chem., 278, 5235-5241, doi: 10.1074/jbc.M208825200.
  54. Ceci, P., Cellai, S., Falvo, E., Rivetti, C., Rossi, G. L., and Chiancone, E. (2004) DNA condensation and self-aggregation of Escherichia coli Dps are coupled phenomena related to the properties of the N-terminus, Nucleic Acids Res., 32, 5935-5944, doi: 10.1093/nar/gkh915.
  55. Agapova, Y. K., Altukhov, D. A., Timofeev, V. I., Stroylov, V. S., Mityanov, V. S., Korzhenevskiy, D. A., Vlaskina, A. V., Smirnova, E. V., Bocharov, E. V., and Rakitina, T. V. (2020) Structure-based inhibitors targeting the alpha-helical domain of the Spiroplasma melliferum histone-like HU protein, Sci. Rep., 10, 15128, doi: 10.1038/s41598-020-72113-4.
  56. Svergun, D. I., Koch, M. H., Timmins, P. A., and May, R. P. (2013) Small Angle X-ray and Neutron Scattering from Solutions of Biological Macromolecules, Oxford University Press, London.
  57. Nash, H. A., Robertson, C. A., Flamm, E., Weisberg, R. A., and Miller, H. I. (1987) Overproduction of Escherichia coli integration host factor, a protein with nonidentical subunits, J. Bacteriol., 169, 4124-4127, doi: 10.1128/jb.169.9.4124-4127.1987.
  58. Klock, H. E., and Lesley, S. A. (2009) The Polymerase Incomplete Primer Extension (PIPE) method applied to high-throughput cloning and site-directed mutagenesis, Methods Mol. Biol., 498, 91-103, doi: 10.1007/978-1-59745-196-3_6.
  59. Vorgias, C. E., and Wilson, K. S. (1991) A rapid purification procedure of recombinant integration host factor from Escherichia coli, Protein Expr. Purif., 2, 317-320, doi: 10.1016/1046-5928(91)90089-2.
  60. Peters, G. S., Zakharchenko, O. A., Konarev, P. V., Karmazikov, Y. V., Smirnov, M. A., Zabelin, A. V., Mukhamedzhanov, E. H., Veligzhanin, A. A., Blagov, A. E., and Kovalchuk, M. V. (2019) The small-angle X-ray scattering beamline BioMUR at the Kurchatov synchrotron radiation source, Nuclear Instr. Methods Phys. Res. Sec. A Accelerat. Spectrom. Detect. Assoc. Equip., 945, 162616, doi: 10.1016/j.nima.2019.162616.
  61. Peters, G. S., Gaponov, Y. A., Konarev, P. V., Marchenkova, M. A., Ilina, K. B., Volkov, V. V., Pisarevskiy, Y. V., and Kovalchuk, M. V. (2022) Upgrade of the BioMUR beamline at the Kurchatov synchrotron radiation source for serial small-angle X-ray scattering experiments in solutions, Nuclear Instr. Methods Phys. Res. Sec. A Accelerat. Spectrom. Detect. Assoc. Equip., 1025, 166170, doi: 10.1016/j.nima.2021.166170.
  62. Hammersley, A. P. (2016) FIT2D: a multi-purpose data reduction, analysis and visualization program, J. Appl. Cryst., 49, 646-652, doi: 10.1107/S1600576716000455.
  63. Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. J., and Svergun, D. I. (2003) PRIMUS - a Windows-PC based system for small-angle scattering data analysis, J. Appl. Cryst., 36, 1277-1282, doi: 10.1107/S0021889803012779.
  64. Manalastas-Cantos, K., Konarev, P. V., Hajizadeh, N. R., Kikhney, A. G., Petoukhov, M. V., Molodenskiy, D. S., Panjkovich, A., Mertens, H. D. T., Gruzinov, A., Borges, C., Jeffries, C. M., Svergun, D. I., and Franke, D. (2021) ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis, J. Appl. Cryst., 54, 343-355, doi: 10.1107/S1600576720013412.
  65. Svergun, D. I. (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria, J. Appl. Cryst., 25, 495-503, doi: 10.1107/S0021889892001663.
  66. Svergun, D. I., Barberato, C., and Koch, M. H. J. (1995) CRYSOL - a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates, J. Appl. Cryst., 28, 768-773, doi: 10.1107/S0021889895007047.
  67. Petoukhov, M. V., Billas, I. M., Takacs, M., Graewert, M. A., Moras, D., and Svergun, D. I. (2013) Reconstruction of quaternary structure from X-ray scattering by equilibrium mixtures of biological macromolecules, Biochemistry, 52, 6844-6855, doi: 10.1021/bi400731u.
  68. Winardhi, R. S., Yan, J., and Kenney, L. J. (2015) H-NS regulates gene expression and compacts the nucleoid: insights from single-molecule experiments, Biophys. J., 109, 1321-1329, doi: 10.1016/j.bpj.2015.08.016.
  69. Hammel, M., Amlanjyoti, D., Reyes, F. E., Chen, J. H., Parpana, R., Tang, H. Y., Larabell, C. A., Tainer, J. A., and Adhya, S. (2016) HU multimerization shift controls nucleoid compaction, Sci. Adv., 2, e1600650, doi: 10.1126/sciadv.1600650.
  70. Huang, L., Zhang, Z., and McMacken, R. (2021) Interaction of the Escherichia coli HU protein with various topological forms of DNA, Biomolecules, 11, 1724, doi: 10.3390/biom11111724.
  71. Frenkiel-Krispin, D., Levin-Zaidman, S., Shimoni, E., Wolf, S. G., Wachtel, E. J., Arad, T., Finkel, S. E., Kolter, R., and Minsky, A. (2001) Regulated phase transitions of bacterial chromatin: a non-enzymatic pathway for generic DNA protection, EMBO J., 20, 1184-1191, doi: 10.1093/emboj/20.5.1184.
  72. Petoukhov, M. V., Franke, D., Shkumatov, A. V., Tria, G., Kikhney, A. G., Gajda, M., Gorba, C., Mertens, H. D. T., Konarev, P. V., and Svergun, D. I. (2012) New developments in the ATSAS program package for small-angle scattering data analysis, J. Appl. Crystallogr., 45, 342-350, doi: 10.1107/S0021889812007662.
  73. Svergun, D. I. (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing, Biophys. J., 76, 2879-2886, doi: 10.1016/S0006-3495(99)77443-6.
  74. Guinier, A. (1939) La diffraction des rayons X aux tres petits angles; application a l'etude de phenomenes ultramicroscopiques, Ann. Phys. (Paris), 12, 161-237, doi: 10.1051/anphys/193911120161.
  75. Boyko, K. M., Rakitina, T. V., Korzhenevskiy, D. A., Vlaskina, A. V., Agapova, Y. K., Kamashev, D. E., Kleymenov, S. Y., and Popov, V. O. (2016) Structural basis of the high thermal stability of the histone-like HU protein from the mollicute Spiroplasma melliferum KC3, Sci. Rep., 6, 36366, doi: 10.1038/srep36366.
  76. Jacques, D. A., Guss, J. M., Svergun, D. I., and Trewhella, J. (2012) Publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution, Acta Crystallogr. Sec. D, 68, 620-626, doi: 10.1107/S0907444912012073.
  77. Krissinel, E., and Henrick, K. (2007) Inference of macromolecular assemblies from crystalline state, J. Mol. Biol., 372, 774-797, doi: 10.1016/j.jmb.2007.05.022.
  78. Stephani, K., Weichart, D., and Hengge, R. (2003) Dynamic control of Dps protein levels by ClpXP and ClpAP proteases in Escherichia coli, Mol. Microbiol., 49, 1605-1614, doi: 10.1046/j.1365-2958.2003.03644.x.
  79. Janissen, R., Arens, M. M. A., Vtyurina, N. N., Rivai, Z., Sunday, N. D., Eslami-Mossallam, B., Gritsenko, A. A., Laan, L., de Ridder, D., Artsimovitch, I., Dekker, N. H., Abbondanzieri, E. A., and Meyer, A. S. (2018) Global DNA compaction in stationary-phase bacteria does not affect transcription, Cell, 174, 1188-1199.e1114, doi: 10.1016/j.cell.2018.06.049.
  80. Ren, B., Tibbelin, G., Kajino, T., Asami, O., and Ladenstein, R. (2003) The multi-layered structure of Dps with a novel di-nuclear ferroxidase center, J. Mol. Biol., 329, 467-477, doi: 10.1016/s0022-2836(03)00466-2.
  81. Lee, S. Y., Lim, C. J., Droge, P., and Yan, J. (2016) Regulation of bacterial DNA packaging in early stationary phase by competitive DNA binding of Dps and IHF, Sci. Rep., 5, 18146, doi: 10.1038/srep18146.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies