Epigenetic mechanisms of the maternal hyperhomocysteinemia influence on the placenta functional state and the offspring nervous system plasticity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

According to modern concepts, the susceptibility to certain diseases, especially to cognitive and neuropsychiatric disorders, can be formed during the period of embryonic development. Adverse factors that affect the mother during pregnancy increase the risk of the pathology development in the postnatal period. Despite the relationship found between elevated maternal blood levels of the amino acid homocysteine (Hcy) and fetal brain formation impairments, as well as cognitive deficits in offspring, the role of brain plasticity in the development of these pathologies is still insufficiently studied. This review allows to be acquainted with the available data on the negative impact of hyperhomocysteinemia (HHcy) on the neural plasticity. An important aspect of the problem considered in the review is the possible influence of maternal HHcy on the offspring brain plasticity through the epigenetic mechanisms. Data on changes in intracellular methylation potential, activity of DNA methyltransferases, and DNA methylation in brain cells under the influence of HHcy are presented, and possible effects of HHcy on histone modifications and microRNA expression are considered. Since placenta plays a key role in the transport of nutrients and modulation of signals from mother to fetus, its dysfunction due to epigenetic mechanisms disturbances may affect the development of the fetal CNS. In this regard, the review presents data on the impact of maternal HHcy on the epigenetic regulation in the placenta. The data presented in the review are not only of theoretical significance, but are also of interest for understanding the role of epigenetic mechanisms in the pathogenesis of diseases for which HHcy is a risk factor (pregnancy pathologies accompanied by delayed fetal brain development, cognitive impairments in childhood and neuropsychiatric and neurodegenerative disorders later in life), as well as the search for approaches to their prevention using neuroprotectors.

About the authors

A. V Arutjunyan

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive medicine;St. Petersburg Institute of Bioregulation and Gerontology

Email: alexarutiunjan@gmail.com
199034 St. Petersburg, Russia;197110 St. Petersburg, Russia

Yu. P Milyutina

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive medicine;St. Petersburg State Pediatric Medical University

Email: alexarutiunjan@gmail.com
199034 St. Petersburg, Russia;194100 St. Petersburg, Russia

A. D Shcherbitskaia

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive medicine;I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: alexarutiunjan@gmail.com
199034 St. Petersburg, Russia;194223 Saint Petersburg, Russia

G. O Kerkeshko

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive medicine;St. Petersburg Institute of Bioregulation and Gerontology

Email: alexarutiunjan@gmail.com
199034 St. Petersburg, Russia;197110 St. Petersburg, Russia

I. V Zalozniaia

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive medicine

Email: alexarutiunjan@gmail.com
199034 St. Petersburg, Russia

References

  1. Irvine, N., England-Mason, G., Field, C. J., Dewey, D., and Aghajafari, F. (2022) Prenatal folate and choline levels and brain and cognitive development in children: a critical narrative review, Nutrients, 14, 364, doi: 10.3390/nu14020364.
  2. Naninck, E. F. G., Stijger, P. C., and Brouwer-Brolsma, E. M. (2019) The importance of maternal folate status for brain development and function of offspring, Adv. Nutr., 10, 502-519, doi: 10.1093/advances/nmy120.
  3. Korsmo, H. W., and Jiang, X. (2021) One carbon metabolism and early development: a diet-dependent destiny, Trends Endocrinol. Metab., 32, 579-593, doi: 10.1016/j.tem.2021.05.011.
  4. Arutjunyan, A. V., Kerkeshko, G. O., Milyutina, Y. P., Shcherbitskaia, A. D., and Zalozniaia, I. V. (2021) Prenatal stress in maternal hyperhomocysteinemia: impairments in the fetal nervous system development and placental function, Biochemistry (Moscow), 86, 716-728, doi: 10.1134/S0006297921060092.
  5. Baydas, G., Koz, S. T., Tuzcu, M., Nedzvetsky, V. S., and Etem, E. (2007) Effects of maternal hyperhomocysteinemia induced by high methionine diet on the learning and memory performance in offspring, Int. J. Dev. Neurosci., 25, 133-139, doi: 10.1016/j.ijdevneu.2007.03.001.
  6. Baydas, G., Koz, S. T., Tuzcu, M., and Nedzvetsky, V. S. (2008) Melatonin prevents gestational hyperhomocysteinemia-associated alterations in neurobehavioral developments in rats, J. Pineal Res., 44, 181-188, doi: 10.1111/j.1600-079X.2007.00506.x.
  7. Koz, S. T., Gouwy, N. T., Demir, N., Nedzvetsky, V. S., Etem, E., and Baydas, G. (2010) Effects of maternal hyperhomocysteinemia induced by methionine intake on oxidative stress and apoptosis in pup rat brain, Int. J. Dev. Neurosci., 28, 325-329, doi: 10.1016/j.ijdevneu.2010.02.006.
  8. Pustygina, A. V., Milyutina, Y. P., Zaloznyaya, I. V., and Arutyunyan, A. V. (2015) Indices of oxidative stress in the brain of newborn rats subjected to prenatal hyperhomocysteinemia, Neurochem. J., 9, 60-65, doi: 10.1134/s1819712415010079.
  9. Geoffroy, A., Kerek, R., Pourie, G., Helle, D., Gueant, J. L., Daval, J. L., and Bossenmeyer-Pourie, C. (2017) Late maternal folate supplementation rescues from methyl donor deficiency-associated brain defects by restoring Let-7 and miR-34 pathways, Mol. Neurobiol., 54, 5017-5033, doi: 10.1007/s12035-016-0035-8.
  10. Geoffroy, A., Saber-Cherif, L., Pourie, G., Helle, D., Umoret, R., Gueant, J. L., Bossenmeyer-Pourie, C., and Daval, J. L. (2019) Developmental impairments in a rat model of methyl donor deficiency: effects of a late maternal supplementation with folic acid, Int. J. Mol. Sci., 20, 973, doi: 10.3390/ijms20040973.
  11. Arutjunyan, A. V., Milyutina, Y. P., Shcherbitskaia, A. D., Kerkeshko, G. O., Zalozniaia, I. V., and Mikhel, A. V. (2020) Neurotrophins of the fetal brain and placenta in prenatal hyperhomocysteinemia, Biochemistry (Moscow), 85, 248-259, doi: 10.1134/S000629792002008X.
  12. Arutjunyan, A., Kozina, L., Stvolinskiy, S., Bulygina, Y., Mashkina, A., and Khavinson, V. (2012) Pinealon protects the rat offspring from prenatal hyperhomocysteinemia, Int. J. Clin. Exp. Med., 5, 179-185.
  13. Shcherbitskaia, A. D., Vasilev, D. S., Milyutina, Y. P., Tumanova, N. L., Mikhel, A. V., Zalozniaia, I. V., and Arutjunyan, A. V. (2021) Prenatal hyperhomocysteinemia induces glial activation and alters neuroinflammatory marker expression in infant rat hippocampus, Cells, 10, 1536, doi: 10.3390/cells10061536.
  14. Shcherbitskaia, A. D., Vasilev, D. S., Milyutina, Y. P., Tumanova, N. L., Zalozniaia, I. V., Kerkeshko, G. O., and Arutjunyan, A. V. (2020) Maternal hyperhomocysteinemia induces neuroinflammation and neuronal death in the rat offspring cortex, Neurotox Res., 38, 408-420, doi: 10.1007/s12640-020-00233-w.
  15. Jadavji, N. M., Deng, L., Malysheva, O., Caudill, M. A., and Rozen, R. (2015) MTHFR deficiency or reduced intake of folate or choline in pregnant mice results in impaired short-term memory and increased apoptosis in the hippocampus of wild-type offspring, Neuroscience, 300, 1-9, doi: 10.1016/j.neuroscience.2015.04.067.
  16. Saber Cherif, L., Pourie, G., Geoffroy, A., Julien, A., Helle, D., Robert, A., Umoret, R., Gueant, J. L., Bossenmeyer-Pourie, C., and Daval, J. L. (2019) Methyl donor deficiency during gestation and lactation in the rat affects the expression of neuropeptides and related receptors in the hypothalamus, Int. J. Mol. Sci., 20, 5097, doi: 10.3390/ijms20205097.
  17. Schweinberger, B. M., Rodrigues, A. F., Turcatel, E., Pierozan, P., Pettenuzzo, L. F., Grings, M., Scaini, G., Parisi, M. M., Leipnitz, G., Streck, E. L., Barbe-Tuana, F. M., and Wyse, A. T. S. (2018) Maternal hypermethioninemia affects neurons number, neurotrophins levels, energy metabolism, and Na+,K+-ATPase expression/content in brain of rat offspring, Mol. Neurobiol., 55, 980-988, doi: 10.1007/s12035-017-0383-z.
  18. De Crescenzo, A. H., Panoutsopoulos, A. A., Tat, L., Schaaf, Z., Racherla, S., Henderson, L., Leung, K. Y., Greene, N. D. E., Green, R., and Zarbalis, K. S. (2020) Deficient or excess folic acid supply during pregnancy alter cortical neurodevelopment in mouse offspring, Cereb. Cortex, 31, 635-649, doi: 10.1093/cercor/bhaa248.
  19. Li, W., Li, Z., Zhou, D., Zhang, X., Yan, J., and Huang, G. (2019) Maternal folic acid deficiency stimulates neural cell apoptosis via miR-34a associated with Bcl-2 in the rat foetal brain, Int. J. Dev. Neurosci., 72, 6-12, doi: 10.1016/j.ijdevneu.2018.11.002.
  20. Chen, S., Alhassen, W., Yoshimura, R., De Silva, A., Abbott, G. W., Baldi, P., and Alachkar, A. (2020) Metabolomic and transcriptomic signatures of prenatal excessive methionine support nature rather than nurture in schizophrenia pathogenesis, Commun. Biol., 3, 409, doi: 10.1038/s42003-020-01124-8.
  21. Craciunescu, C. N., Johnson, A. R., and Zeisel, S. H. (2010) Dietary choline reverses some, but not all, effects of folate deficiency on neurogenesis and apoptosis in fetal mouse brain, J. Nutr., 140, 1162-1166, doi: 10.3945/jn.110.122044.
  22. Милютина Ю. П., Щербицкая А. Д., Салтыкова Е. Д., Козина Л. С., Журавин И. А., Наливаева Н. Н., Арутюнян А. В. (2017) Метаболические нарушения в плаценте и мозге плодов беременных крыс при экспериментальной гипергомоцистеинемии, Росс. Физиол. Журн. им. И.М. Сеченова, 103, 1280-1291.
  23. Vasilev, D. S., Shcherbitskaia, A. D., Tumanova, N. L., Mikhel, A. V., Milyutina, Y. P., Kovalenko, A. A., Dubrovskaya, N. M., Inozemtseva, D. B., Zalozniaia, I. V., and Arutjunyan, A. V. (2023) Maternal hyperhomocysteinemia disturbs the mechanisms of embryonic brain development and its maturation in early postnatal ontogenesis, Cells, 12, 189, doi: 10.3390/cells12010189.
  24. Blaise, S. A., Nedelec, E., Schroeder, H., Alberto, J. M., Bossenmeyer-Pourie, C., Gueant, J. L., and Daval, J. L. (2007) Gestational vitamin B deficiency leads to homocysteine-associated brain apoptosis and alters neurobehavioral development in rats, Am. J. Pathol., 170, 667-679, doi: 10.2353/ajpath.2007.060339.
  25. Blaise, S. A., Nedelec, E., Alberto, J. M., Schroeder, H., Audonnet, S., Bossenmeyer-Pourie, C., Gueant, J. L., and Daval, J. L. (2009) Short hypoxia could attenuate the adverse effects of hyperhomocysteinemia on the developing rat brain by inducing neurogenesis, Exp. Neurol., 216, 231-238, doi: 10.1016/j.expneurol.2008.11.020.
  26. Shcherbitskaya, A. D., Milyutina, Y. P., Zaloznyaya, I. V., Arutjunyan, A. V., Nalivaeva, N. N., and Zhuravin, I. A. (2017) The effects of prenatal hyperhomocysteinemia on the formation of memory and the contents of biogenic amines in the rat hippocampus, Neurochem. J., 11, 296-301, doi: 10.1134/s1819712417040080.
  27. Yakovleva, O. V., Ziganshina, A. R., Dmitrieva, S. A., Arslanova, A. N., Yakovlev, A. V., Minibayeva, F. V., Khaertdinov, N. N., Ziyatdinova, G. K., Giniatullin, R. A., and Sitdikova, G. F. (2018) Hydrogen sulfide ameliorates developmental impairments of rat offspring with prenatal hyperhomocysteinemia, Oxid. Med. Cell. Longev., 2018, 2746873, doi: 10.1155/2018/2746873.
  28. Yakovleva, O., Bogatova, K., Mukhtarova, R., Yakovlev, A., Shakhmatova, V., Gerasimova, E., Ziyatdinova, G., Hermann, A., and Sitdikova, G. (2020) Hydrogen sulfide alleviates anxiety, motor, and cognitive dysfunctions in rats with maternal hyperhomocysteinemia via mitigation of oxidative stress, Biomolecules, 10, 995, doi: 10.3390/biom10070995.
  29. Gerasimova, E., Burkhanova, G., Chernova, K., Zakharov, A., Enikeev, D., Khaertdinov, N., Giniatullin, R., and Sitdikova, G. (2021) Hyperhomocysteinemia increases susceptibility to cortical spreading depression associated with photophobia, mechanical allodynia, and anxiety in rats, Behav. Brain Res., 409, 113324, doi: 10.1016/j.bbr.2021.113324.
  30. Gerasimova, E., Yakovleva, O., Enikeev, D., Bogatova, K., Hermann, A., Giniatullin, R., and Sitdikova, G. (2022) Hyperhomocysteinemia increases cortical excitability and aggravates mechanical hyperalgesia and anxiety in a nitroglycerine-induced migraine model in rats, Biomolecules, 12, 735, doi: 10.3390/biom12050735.
  31. Hassan, Z., Coelho, D., Kokten, T., Alberto, J. M., Umoret, R., Daval, J. L., Gueant, J. L., Bossenmeyer-Pourie, C., and Pourie, G. (2019) Brain susceptibility to methyl donor deficiency: from fetal programming to aging outcome in rats, Int. J. Mol. Sci., 20, 5692, doi: 10.3390/ijms20225692.
  32. Pourie, G., Martin, N., Daval, J. L., Alberto, J. M., Umoret, R., Gueant, J. L., and Bossenmeyer-Pourie, C. (2020) The stimulation of neurogenesis improves the cognitive status of aging rats subjected to gestational and perinatal deficiency of B9-12 vitamins, Int. J. Mol. Sci., 21, 8008, doi: 10.3390/ijms21218008.
  33. Figueiro, P.W., de Moreira, D. S., Dos Santos, T. M., Prezzi, C. A., Rohden, F., Faccioni-Heuser, M. C., Manfredini, V., Netto, C. A., and Wyse, A. T. S. (2019) The neuroprotective role of melatonin in a gestational hypermethioninemia model, Int. J. Dev. Neurosci., 78, 198-209, doi: 10.1016/j.ijdevneu.2019.08.004.
  34. Schweinberger, B. M., Rodrigues, A. F., Dos Santos, T. M., Rohden, F., Barbosa, S., da Luz Soster, P. R., Partata, W. A., Faccioni-Heuser, M. C., and Wyse, A. T. S. (2018) Methionine administration in pregnant rats causes memory deficit in the offspring and alters ultrastructure in brain tissue, Neurotox. Res., 33, 239-246, doi: 10.1007/s12640-017-9830-x.
  35. Zhou, D., Li, Z., Sun, Y., Yan, J., Huang, G., and Li, W. (2022) Early life stage folic acid deficiency delays the neurobehavioral development and cognitive function of rat offspring by hindering de novo telomere synthesis, Int. J. Mol. Sci., 23, 6948, doi: 10.3390/ijms23136948.
  36. Degroote, S., Hunting, D., and Takser, L. (2018) Periconceptional folate deficiency leads to autism-like traits in Wistar rat offspring, Neurotoxicol. Teratol., 66, 132-138, doi: 10.1016/j.ntt.2017.12.008.
  37. Makhro, A. V., Mashkina, A. P., Solenaya, O. A., Trunova, O. A., Kozina, L. S., Arutyunian, A. V., and Bulygina, E. R. (2008) Prenatal hyperhomocysteinemia as a model of oxidative stress of the brain, Bull. Exp. Biol. Med., 146, 33-35, doi: 10.1007/s10517-008-0233-0.
  38. Postnikova, T. Y., Amakhin, D. V., Trofimova, A. M., Tumanova, N. L., Dubrovskaya, N. M., Kalinina, D. S., Kovalenko, A. A., Shcherbitskaia, A. D., Vasilev, D. S., and Zaitsev, A. V. (2022) Maternal hyperhomocysteinemia produces memory deficits associated with impairment of long-term synaptic plasticity in young rats, Cells, 12, 58, doi: 10.3390/cells12010058.
  39. Imbard, A., Benoist, J. F., and Blom, H. J. (2013) Neural tube defects, folic acid and methylation, Int. J. Environ. Res. Public Health, 10, 4352-4389, doi: 10.3390/ijerph10094352.
  40. Tang, K. F., Li, Y. L., and Wang, H. Y. (2015) Quantitative assessment of maternal biomarkers related to one-carbon metabolism and neural tube defects, Sci. Rep., 5, 8510, doi: 10.1038/srep08510.
  41. Murphy, M. M., Fernandez-Ballart, J. D., Molloy, A. M., and Canals, J. (2017) Moderately elevated maternal homocysteine at preconception is inversely associated with cognitive performance in children 4 months and 6 years after birth, Matern. Child Nutr., 13, e12289, doi: 10.1111/mcn.12289.
  42. Campoy, C., Azaryah, H., Torres-Espinola, F. J., Martinez-Zaldivar, C., Garcia-Santos, J. A., Demmelmair, H., Haile, G., Gyorei, E., Ramirez-Tortosa, M. D. C., Reischl, E., Rzehak, P., Molloy, A. M., Decsi, T., Luna, J. D., Koletzko, B., and Perez-Garcia, M. (2020) Long-chain polyunsaturated fatty acids, homocysteine at birth and fatty acid desaturase gene cluster polymorphisms are associated with Children's processing speed up to age 9 years, Nutrients, 13, 131, doi: 10.3390/nu13010131.
  43. Srinivasan, K., Thomas, T., Kapanee, A. R., Ramthal, A., Bellinger, D. C., Bosch, R. J., Kurpad, A. V., and Duggan, C. (2017) Effects of maternal vitamin B12 supplementation on early infant neurocognitive outMatern. Child Nutr., 13, e12325, doi: 10.1111/mcn.12325.
  44. Ars, C. L., Nijs, I. M., Marroun, H. E., Muetzel, R., Schmidt, M., Steenweg-de Graaff, J., van der Lugt, A., Jaddoe, V. W., Hofman, A., Steegers, E. A., Verhulst, F. C., Tiemeier, H., and White, T. (2019) Prenatal folate, homocysteine and vitamin B12 levels and child brain volumes, cognitive development and psychological functioning: the generation R study, Br. J. Nutr., 122, S1-S9, doi: 10.1017/S0007114515002081.
  45. Boldyrev, A. A. (2009) Molecular mechanisms of homocysteine toxicity, Biochemistry (Moscow), 74, 589-598, doi: 10.1134/s0006297909060017.
  46. Troen, A. M. (2005) The central nervous system in animal models of hyperhomocysteinemia, Prog. Neuropsychopharmacol. Biol. Psychiatry, 29, 1140-1151, doi: 10.1016/j.pnpbp.2005.06.025.
  47. Esse, R., Barroso, M., Tavares de Almeida, I., and Castro, R. (2019) The contribution of homocysteine metabolism disruption to endothelial dysfunction: state-of-the-art, Int. J. Mol. Sci., 20, 867, doi: 10.3390/ijms20040867.
  48. Faverzani, J. L., Hammerschmidt, T. G., Sitta, A., Deon, M., Wajner, M., and Vargas, C. R. (2017) Oxidative stress in homocystinuria due to cystathionine ss-synthase deficiency: findings in patients and in animal models, Cell. Mol. Neurobiol., 37, 1477-1485, doi: 10.1007/s10571-017-0478-0.
  49. Lehotsky, J., Tothova, B., Kovalska, M., Dobrota, D., Benova, A., Kalenska, D., and Kaplan, P. (2016) Role of homocysteine in the ischemic stroke and development of ischemic tolerance, Front. Neurosci., 10, 538, doi: 10.3389/fnins.2016.00538.
  50. Sibarov, D. A., Abushik, P. A., Giniatullin, R., and Antonov, S. M. (2016) GluN2A subunit-containing NMDA receptors are the preferential neuronal targets of homocysteine, Front. Cell. Neurosci., 10, 246, doi: 10.3389/fncel.2016.00246.
  51. Poddar, R. (2021) Hyperhomocysteinemia is an emerging comorbidity in ischemic stroke, Exp. Neurol., 336, 113541, doi: 10.1016/j.expneurol.2020.113541.
  52. Sharma, G. S., Kumar, T., Dar, T. A., and Singh, L. R. (2015) Protein N-homocysteinylation: From cellular toxicity to neurodegeneration, Biochim. Biophys. Acta, 1850, 2239-2245, doi: 10.1016/j.bbagen.2015.08.013.
  53. Jakubowski, H. (2019) Homocysteine modification in protein structure/function and human disease, Physiol. Rev., 99, 555-604, doi: 10.1152/physrev.00003.2018.
  54. Selhub, J. (1999) Homocysteine metabolism, Annu. Rev. Nutr., 19, 217-246, doi: 10.1146/annurev.nutr.19.1.217.
  55. Gueant, J. L., Namour, F., Gueant-Rodriguez, R. M., and Daval, J. L. (2013) Folate and fetal programming: a play in epigenomics? Trends Endocrinol. Metab., 24, 279-289, doi: 10.1016/j.tem.2013.01.010.
  56. James, S. J., Melnyk, S., Pogribna, M., Pogribny, I. P., and Caudill, M. A. (2002) Elevation in S-adenosylhomocysteine and DNA hypomethylation: potential epigenetic mechanism for homocysteine-related pathology, J. Nutr., 132, 2361S-2366S, doi: 10.1093/jn/132.8.2361S.
  57. Hannibal, L., and Blom, H. J. (2017) Homocysteine and disease: causal associations or epiphenomenons? Mol. Aspects Med., 53, 36-42, doi: 10.1016/j.mam.2016.11.003.
  58. Dayal, S., and Lentz, S. R. (2008) Murine models of hyperhomocysteinemia and their vascular phenotypes, Arterioscler. Thromb. Vasc. Biol., 28, 1596-1605, doi: 10.1161/ATVBAHA.108.166421.
  59. McGee, M., Bainbridge, S., and Fontaine-Bisson, B. (2018) A crucial role for maternal dietary methyl donor intake in epigenetic programming and fetal growth outcomes, Nutr. Rev., 76, 469-478, doi: 10.1093/nutrit/nuy006.
  60. Heil, S. G., Herzog, E. M., Griffioen, P. H., van Zelst, B., Willemsen, S. P., de Rijke, Y. B., Steegers-Theunissen, R. P. M., and Steegers, E. A. P. (2019) Lower S-adenosylmethionine levels and DNA hypomethylation of placental growth factor (PlGF) in placental tissue of early-onset preeclampsia-complicated pregnancies, PLoS One, 14, e0226969, doi: 10.1371/journal.pone.0226969.
  61. Lin, N., Qin, S., Luo, S., Cui, S., Huang, G., and Zhang, X. (2014) Homocysteine induces cytotoxicity and proliferation inhibition in neural stem cells via DNA methylation in vitro, FEBS J., 281, 2088-2096, doi: 10.1111/febs.12764.
  62. Perla-Kajan, J., and Jakubowski, H. (2019) Dysregulation of epigenetic mechanisms of gene expression in the pathologies of hyperhomocysteinemia, Int. J. Mol. Sci., 20, 3140, doi: 10.3390/ijms20133140.
  63. Kim, K. C., Friso, S., and Choi, S. W. (2009) DNA methylation, an epigenetic mechanism connecting folate to healthy embryonic development and aging, J. Nutr. Biochem., 20, 917-926, doi: 10.1016/j.jnutbio.2009.06.008.
  64. Bhutani, N., Burns, D. M., and Blau, H. M. (2011) DNA demethylation dynamics, Cell, 146, 866-872, doi: 10.1016/j.cell.2011.08.042.
  65. Freitag, M., and Selker, E. U. (2005) Controlling DNA methylation: many roads to one modification, Curr. Opin. Genet. Dev., 15, 191-199, doi: 10.1016/j.gde.2005.02.003.
  66. Weber, M., Hellmann, I., Stadler, M. B., Ramos, L., Paabo, S., Rebhan, M., and Schubeler, D. (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome, Nat. Genet., 39, 457-466, doi: 10.1038/ng1990.
  67. Jaenisch, R., and Bird, A. (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals, Nat. Genet., 33 Suppl., 245-254, doi: 10.1038/ng1089.
  68. Mandaviya, P. R., Stolk, L., and Heil, S. G. (2014) Homocysteine and DNA methylation: a review of animal and human literature, Mol. Genet. Metab., 113, 243-252, doi: 10.1016/j.ymgme.2014.10.006.
  69. Ito, S., D'Alessio, A. C., Taranova, O. V., Hong, K., Sowers, L. C., and Zhang, Y. (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification, Nature, 466, 1129-1133, doi: 10.1038/nature09303.
  70. Tahiliani, M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L.M., Liu, D. R., Aravind, L., and Rao, A. (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1, Science, 324, 930-935, doi: 10.1126/science.1170116.
  71. Globisch, D., Munzel, M., Muller, M., Michalakis, S., Wagner, M., Koch, S., Bruckl, T., Biel, M., and Carell, T. (2010) Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates, PLoS One, 5, e15367, doi: 10.1371/journal.pone.0015367.
  72. Song, C. X., Szulwach, K. E., Fu, Y., Dai, Q., Yi, C., Li, X., Li, Y., Chen, C. H., Zhang, W., Jian, X., Wang, J., Zhang, L., Looney, T. J., Zhang, B., Godley, L. A., Hicks, L. M., Lahn, B. T., Jin, P., and He, C. (2011) Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine, Nat. Biotechnol., 29, 68-72, doi: 10.1038/nbt.1732.
  73. Szulwach, K. E., Li, X., Li, Y., Song, C. X., Wu, H., Dai, Q., Irier, H., Upadhyay, A. K., Gearing, M., Levey, A. I., Vasanthakumar, A., Godley, L. A., Chang, Q., Cheng, X., He, C., and Jin, P. (2011) 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging, Nat. Neurosci., 14, 1607-1616, doi: 10.1038/nn.2959.
  74. Scott, J. M., Molloy, A. M., Kennedy, D. G., Kennedy, S., and Weir, D. G. (1994) Effects of the disruption of transmethylation in the central nervous system: an animal model, Acta Neurol. Scand. Suppl., 154, 27-31, doi: 10.1111/j.1600-0404.1994.tb05406.x.
  75. Schatz, R. A., Wilens, T. E., and Sellinger, O. Z. (1981) Decreased transmethylation of biogenic amines after in vivo elevation of brain S-adenosyl-l-homocysteine, J. Neurochem., 36, 1739-1748, doi: 10.1111/j.1471-4159.1981.tb00426.x.
  76. Esse, R., Imbard, A., Florindo, C., Gupta, S., Quinlivan, E.P., Davids, M., Teerlink, T., Tavares de Almeida, I., Kruger, W. D., Blom, H. J., and Castro, R. (2014) Protein arginine hypomethylation in a mouse model of cystathionine beta-synthase deficiency, FASEB J., 28, 2686-2695, doi: 10.1096/fj.13-246579.
  77. Lee, H. O., Wang, L., Kuo, Y. M., Gupta, S., Slifker, M. J., Li, Y. S., Andrews, A. J., and Kruger, W. D. (2017) Lack of global epigenetic methylation defects in CBS deficient mice, J. Inherit. Metab. Dis., 40, 113-120, doi: 10.1007/s10545-016-9958-5.
  78. DiBello, P. M., Dayal, S., Kaveti, S., Zhang, D., Kinter, M., Lentz, S. R., and Jacobsen, D. W. (2010) The nutrigenetics of hyperhomocysteinemia: quantitative proteomics reveals differences in the methionine cycle enzymes of gene-induced versus diet-induced hyperhomocysteinemia, Mol. Cell. Proteomics, 9, 471-485, doi: 10.1074/mcp.M900406-MCP200.
  79. Suszynska-Zajczyk, J., and Jakubowski, H. (2014) Paraoxonase 1 and dietary hyperhomocysteinemia modulate the expression of mouse proteins involved in liver homeostasis, Acta Biochim. Pol., 61, 815-823, doi: 10.18388/abp.2014_1851.
  80. Li, J. G., Barrero, C., Gupta, S., Kruger, W. D., Merali, S., and Pratico, D. (2017) Homocysteine modulates 5-lipoxygenase expression level via DNA methylation, Aging Cell, 16, 273-280, doi: 10.1111/acel.12550.
  81. Pogribny, I. P., Karpf, A. R., James, S. R., Melnyk, S., Han, T., and Tryndyak, V. P. (2008) Epigenetic alterations in the brains of Fisher 344 rats induced by long-term administration of folate/methyl-deficient diet, Brain Res., 1237, 25-34, doi: 10.1016/j.brainres.2008.07.077.
  82. Kalani, A., Kamat, P. K., Familtseva, A., Chaturvedi, P., Muradashvili, N., Narayanan, N., Tyagi, S. C., and Tyagi, N. (2014) Role of microRNA29b in blood-brain barrier dysfunction during hyperhomocysteinemia: an epigenetic mechanism, J. Cereb. Blood Flow Metab., 34, 1212-1222, doi: 10.1038/jcbfm.2014.74.
  83. Kalani, A., Kamat, P. K., Givvimani, S., Brown, K., Metreveli, N., Tyagi, S. C., and Tyagi, N. (2014) Nutri-epigenetics ameliorates blood-brain barrier damage and neurodegeneration in hyperhomocysteinemia: role of folic acid, J. Mol. Neurosci., 52, 202-215, doi: 10.1007/s12031-013-0122-5.
  84. Fan, G., Beard, C., Chen, R. Z., Csankovszki, G., Sun, Y., Siniaia, M., Biniszkiewicz, D., Bates, B., Lee, P. P., Kuhn, R., Trumpp, A., Poon, C., Wilson, C. B., and Jaenisch, R. (2001) DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals, J. Neurosci., 21, 788-797, doi: 10.1523/JNEUROSCI.21-03-00788.2001.
  85. Hutnick, L. K., Golshani, P., Namihira, M., Xue, Z., Matynia, A., Yang, X. W., Silva, A. J., Schweizer, F. E., and Fan, G. (2009) DNA hypomethylation restricted to the murine forebrain induces cortical degeneration and impairs postnatal neuronal maturation, Hum. Mol. Genet., 18, 2875-2888, doi: 10.1093/hmg/ddp222.
  86. Liu, H. Y., Liu, S. M., and Zhang, Y. Z. (2020) Maternal folic acid supplementation mediates offspring health via DNA methylation, Reprod. Sci., 27, 963-976, doi: 10.1007/s43032-020-00161-2.
  87. Li, W., Li, Z., Li, S., Wang, X., Wilson, J. X., and Huang, G. (2018) Periconceptional folic acid supplementation benefit to development of early sensory-motor function through increase DNA methylation in rat offspring, Nutrients, 10, 292, doi: 10.3390/nu10030292.
  88. Wang, X., Li, Z., Zhu, Y., Yan, J., Liu, H., Huang, G., and Li, W. (2021) Maternal folic acid impacts DNA methylation profile in male rat offspring implicated in neurodevelopment and learning/memory abilities, Genes Nutr., 16, 1, doi: 10.1186/s12263-020-00681-1.
  89. Karpova, N. N. (2014) Role of BDNF epigenetics in activity-dependent neuronal plasticity, Neuropharmacology, 76 Pt C, 709-718, doi: 10.1016/j.neuropharm.2013.04.002.
  90. Irwin, R. E., Pentieva, K., Cassidy, T., Lees-Murdock, D. J., McLaughlin, M., Prasad, G., McNulty, H., and Walsh, C. P. (2016) The interplay between DNA methylation, folate and neurocognitive development, Epigenomics, 8, 863-879, doi: 10.2217/epi-2016-0003.
  91. Martinowich, K., Hattori, D., Wu, H., Fouse, S., He, F., Hu, Y., Fan, G., and Sun, Y. E. (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation, Science, 302, 890-893, doi: 10.1126/science.1090842.
  92. Chen, W. G., Chang, Q., Lin, Y., Meissner, A., West, A. E., Griffith, E. C., Jaenisch, R., and Greenberg, M. E. (2003) Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2, Science, 302, 885-889, doi: 10.1126/science.1086446.
  93. Feng, J., Fouse, S., and Fan, G. (2007) Epigenetic regulation of neural gene expression and neuronal function, Pediatr. Res., 61, 58R-63R, doi: 10.1203/pdr.0b013e3180457635.
  94. Dhobale, M. V., Pisal, H. R., Mehendale, S. S., and Joshi, S. R. (2013) Differential expression of human placental neurotrophic factors in preterm and term deliveries, Int. J. Dev. Neurosci., 31, 719-723, doi: 10.1016/j.ijdevneu.2013.09.006.
  95. Dhobale, M. (2017) Neurotrophic factors and maternal nutrition during pregnancy, Vitam. Horm., 104, 343-366, doi: 10.1016/bs.vh.2016.10.011.
  96. Geng, H., Chen, H., Wang, H., and Wang, L. (2021) The histone modifications of neuronal plasticity, Neural. Plast., 2021, 6690523, doi: 10.1155/2021/6690523.
  97. Parrish, R. R., Buckingham, S. C., Mascia, K. L., Johnson, J. J., Matyjasik, M. M., Lockhart, R. M., and Lubin, F. D. (2015) Methionine increases BDNF DNA methylation and improves memory in epilepsy, Ann. Clin. Transl. Neurol., 2, 401-416, doi: 10.1002/acn3.183.
  98. Xu, P., Pang, D., Zhou, J., Li, S., Chen, D., and Yu, B. (2021) Behavioral changes and brain epigenetic alterations induced by maternal deficiencies of B vitamins in a mouse model, Psychopharmacology (Berl), 238, 1213-1222, doi: 10.1007/s00213-021-05766-2.
  99. Yan, Z., Jiao, F., Yan, X., and Ou, H. (2017) Maternal chronic folate supplementation ameliorates behavior disorders induced by prenatal high-fat diet through methylation alteration of BDNF and Grin2b in offspring hippocampus, Mol. Nutr. Food Res., 61, 1700461, doi: 10.1002/mnfr.201700461.
  100. Suganuma, T., and Workman, J. L. (2011) Signals and combinatorial functions of histone modifications, Annu. Rev. Biochem., 80, 473-499, doi: 10.1146/annurev-biochem-061809-175347.
  101. Hyun, K., Jeon, J., Park, K., and Kim, J. (2017) Writing, erasing and reading histone lysine methylations, Exp. Mol. Med., 49, e324, doi: 10.1038/emm.2017.11.
  102. Collins, B. E., Greer, C. B., Coleman, B. C., and Sweatt, J. D. (2019) Histone H3 lysine K4 methylation and its role in learning and memory, Epigenetics Chromatin, 12, 7, doi: 10.1186/s13072-018-0251-8.
  103. Mentch, S. J., Mehrmohamadi, M., Huang, L., Liu, X., Gupta, D., Mattocks, D., Gomez Padilla, P., Ables, G., Bamman, M. M., Thalacker-Mercer, A. E., Nichenametla, S. N., and Locasale, J. W. (2015) Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism, Cell Metab., 22, 861-873, doi: 10.1016/j.cmet.2015.08.024.
  104. Shen, W., Gao, C., Cueto, R., Liu, L., Fu, H., Shao, Y., Yang, W. Y., Fang, P., Choi, E. T., Wu, Q., Yang, X., and Wang, H. (2020) Homocysteine-methionine cycle is a metabolic sensor system controlling methylation-regulated pathological signaling, Redox Biol., 28, 101322, doi: 10.1016/j.redox.2019.101322.
  105. Nan, X., Ng, H. H., Johnson, C. A., Laherty, C. D., Turner, B. M., Eisenman, R. N., and Bird, A. (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex, Nature, 393, 386-389, doi: 10.1038/30764.
  106. Lu, Y., Liu, Y., Liao, S., Tu, W., Shen, Y., Yan, Y., Tao, D., Lu, Y., Ma, Y., Yang, Y., and Zhang, S. (2016) Epigenetic modifications promote the expression of the orphan nuclear receptor NR0B1 in human lung adenocarcinoma cells, Oncotarget, 7, 43162-43176, doi: 10.18632/oncotarget.9012.
  107. Rothbart, S. B., and Strahl, B. D. (2014) Interpreting the language of histone and DNA modifications, Biochim. Biophys. Acta, 1839, 627-643, doi: 10.1016/j.bbagrm.2014.03.001.
  108. Gurda, D., Handschuh, L., Kotkowiak, W., and Jakubowski, H. (2015) Homocysteine thiolactone and N-homocysteinylated protein induce pro-atherogenic changes in gene expression in human vascular endothelial cells, Amino Acids, 47, 1319-1339, doi: 10.1007/s00726-015-1956-7.
  109. Chaturvedi, P., Kalani, A., Givvimani, S., Kamat, P. K., Familtseva, A., and Tyagi, S. C. (2014) Differential regulation of DNA methylation versus histone acetylation in cardiomyocytes during HHcy in vitro and in vivo: an epigenetic mechanism, Physiol. Genomics, 46, 245-255, doi: 10.1152/physiolgenomics.00168.2013.
  110. Tothova, B., Kovalska, M., Kalenska, D., Tomascova, A., and Lehotsky, J. (2018) Histone hyperacetylation as a response to global brain ischemia associated with hyperhomocysteinemia in rats, Int. J. Mol. Sci., 19, 3147, doi: 10.3390/ijms19103147.
  111. Tremolizzo, L., Doueiri, M. S., Dong, E., Grayson, D. R., Davis, J., Pinna, G., Tueting, P., Rodriguez-Menendez, V., Costa, E., and Guidotti, A. (2005) Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice, Biol. Psychiatry, 57, 500-509, doi: 10.1016/j.biopsych.2004.11.046.
  112. Dong, E., Guidotti, A., Grayson, D. R., and Costa, E. (2007) Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters, Proc. Natl. Acad. Sci. USA, 104, 4676-4681, doi: 10.1073/pnas.0700529104.
  113. Ma, Q., and Zhang, L. (2015) Epigenetic programming of hypoxic-ischemic encephalopathy in response to fetal hypoxia, Prog. Neurobiol., 124, 28-48, doi: 10.1016/j.pneurobio.2014.11.001.
  114. Wellmann, S., Bettkober, M., Zelmer, A., Seeger, K., Faigle, M., Eltzschig, H. K., and Buhrer, C. (2008) Hypoxia upregulates the histone demethylase JMJD1A via HIF-1, Biochem. Biophys. Res. Commun., 372, 892-897, doi: 10.1016/j.bbrc.2008.05.150.
  115. MacLennan, N. K., James, S. J., Melnyk, S., Piroozi, A., Jernigan, S., Hsu, J. L., Janke, S. M., Pham, T. D., and Lane, R. H. (2004) Uteroplacental insufficiency alters DNA methylation, one-carbon metabolism, and histone acetylation in IUGR rats, Physiol. Genomics, 18, 43-50, doi: 10.1152/physiolgenomics.00042.2004.
  116. Won, S. B., Han, A., and Kwon, Y. H. (2017) Maternal consumption of low-isoflavone soy protein isolate alters hepatic gene expression and liver development in rat offspring, J. Nutr. Biochem., 42, 51-61, doi: 10.1016/j.jnutbio.2016.12.013.
  117. Durbagula, S., Korlimarla, A., Ravikumar, G., Valiya Parambath, S., Kaku, S. M., and Visweswariah, A. M. (2022) Prenatal epigenetic factors are predisposing for neurodevelopmental disorders - considering placenta as a model, Birth Defects Res., 114, 1324-1342, doi: 10.1002/bdr2.2119.
  118. Rosenfeld, C. S. (2021) The placenta-brain-axis, J. Neurosci. Res., 99, 271-283, doi: 10.1002/jnr.24603.
  119. Behura, S. K., Dhakal, P., Kelleher, A. M., Balboula, A., Patterson, A., and Spencer, T. E. (2019) The brain-placental axis: therapeutic and pharmacological relevancy to pregnancy, Pharmacol. Res., 149, 104468, doi: 10.1016/j.phrs.2019.104468.
  120. Shallie, P. D., and Naicker, T. (2019) The placenta as a window to the brain: A review on the role of placental markers in prenatal programming of neurodevelopment, Int. J. Dev. Neurosci., 73, 41-49, doi: 10.1016/j.ijdevneu.2019.01.003.
  121. D'Souza, S. W., and Glazier, J. D. (2022) Homocysteine metabolism in pregnancy and developmental impacts, Front. Cell Dev. Biol., 10, 802285, doi: 10.3389/fcell.2022.802285.
  122. Geng, Y., Gao, R., Chen, X., Liu, X., Liao, X., Li, Y., Liu, S., Ding, Y., Wang, Y., and He, J. (2015) Folate deficiency impairs decidualization and alters methylation patterns of the genome in mice, Mol. Hum. Reprod., 21, 844-856, doi: 10.1093/molehr/gav045.
  123. Kim, J. M., Hong, K., Lee, J. H., Lee, S., and Chang, N. (2009) Effect of folate deficiency on placental DNA methylation in hyperhomocysteinemic rats, J. Nutr. Biochem., 20, 172-176, doi: 10.1016/j.jnutbio.2008.01.010.
  124. Park, B. H., Kim, Y. J., Park, J. S., Lee, H. Y., Ha, E. H., Min, J. W., and Park, H. S. (2005) Folate and homocysteine levels during pregnancy affect DNA methylation in human placenta [in Korean], J. Prev. Med. Public Health, 38, 437-442.
  125. Kulkarni, A., Dangat, K., Kale, A., Sable, P., Chavan-Gautam, P., and Joshi, S. (2011) Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats, PLoS One, 6, e17706, doi: 10.1371/journal.pone.0017706.
  126. Li, B., Chang, S., Liu, C., Zhang, M., Zhang, L., Liang, L., Li, R., Wang, X., Qin, C., Zhang, T., Niu, B., and Wang, L. (2019) Low maternal dietary folate alters retrotranspose by methylation regulation in intrauterine growth retardation (IUGR) fetuses in a mouse model, Med. Sci. Monit., 25, 3354-3365, doi: 10.12659/MSM.914292.
  127. Dai, C., Fei, Y., Li, J., Shi, Y., and Yang, X. (2021) A novel review of homocysteine and pregnancy complications, Biomed. Res. Int., 2021, 6652231, doi: 10.1155/2021/6652231.
  128. Nomura, Y., Lambertini, L., Rialdi, A., Lee, M., Mystal, E. Y., Grabie, M., Manaster, I., Huynh, N., Finik, J., Davey, M., Davey, K., Ly, J., Stone, J., Loudon, H., Eglinton, G., Hurd, Y., Newcorn, J. H., and Chen, J. (2014) Global methylation in the placenta and umbilical cord blood from pregnancies with maternal gestational diabetes, preeclampsia, and obesity, Reprod. Sci., 21, 131-137, doi: 10.1177/1933719113492206.
  129. Lecuyer, M., Laquerriere, A., Bekri, S., Lesueur, C., Ramdani, Y., Jegou, S., Uguen, A., Marcorelles, P., Marret, S., and Gonzalez, B. J. (2017) PLGF, a placental marker of fetal brain defects after in utero alcohol exposure, Acta Neuropathol. Commun., 5, 44, doi: 10.1186/s40478-017-0444-6.
  130. Rahat, B., Hamid, A., Bagga, R., and Kaur, J. (2022) Folic acid levels during pregnancy regulate trophoblast invasive behavior and the possible development of preeclampsia, Front. Nutr., 9, 847136, doi: 10.3389/fnut.2022.847136.
  131. Meister, S., Hahn, L., Beyer, S., Paul, C., Mitter, S., Kuhn, C., von Schonfeldt, V., Corradini, S., Sudan, K., Schulz, C., Kolben, T. M., Mahner, S., Jeschke, U., and Kolben, T. (2021) Regulation of epigenetic modifications in the placenta during preeclampsia: PPARgamma influences H3K4me3 and H3K9ac in extravillous trophoblast cells, Int. J. Mol. Sci., 22, 12469, doi: 10.3390/ijms222212469.
  132. Sheng, W., Gu, Y., Chu, X., Morgan, J. A., Cooper, D. B., Lewis, D. F., McCathran, C. E., and Wang, Y. (2021) Upregulation of histone H3K9 methylation in fetal endothelial cells from preeclamptic pregnancies, J. Cell. Physiol., 236, 1866-1874, doi: 10.1002/jcp.29970.
  133. Morales-Prieto, D. M., Chaiwangyen, W., Ospina-Prieto, S., Schneider, U., Herrmann, J., Gruhn, B., and Markert, U. R. (2012) MicroRNA expression profiles of trophoblastic cells, Placenta, 33, 725-734, doi: 10.1016/j.placenta.2012.05.009.
  134. Xie, L., Mouillet, J. F., Chu, T., Parks, W. T., Sadovsky, E., Knofler, M., and Sadovsky, Y. (2014) C19MC microRNAs regulate the migration of human trophoblasts, Endocrinology, 155, 4975-4985, doi: 10.1210/en.2014-1501.
  135. Liang, Y., Ridzon, D., Wong, L., and Chen, C. (2007) Characterization of microRNA expression profiles in normal human tissues, BMC Genomics, 8, 166, doi: 10.1186/1471-2164-8-166.
  136. Gunel, T., Kamali, N., Hosseini, M. K., Gumusoglu, E., Benian, A., and Aydinli, K. (2020) Regulatory effect of miR-195 in the placental dysfunction of preeclampsia, J. Matern. Fetal Neonatal Med., 33, 901-908, doi: 10.1080/14767058.2018.1508439.
  137. Li, J., Du, J., Wang, Z., Wang, C., Bai, J., and Zhang, S. (2018) Expression of miR-376 in blood of pregnant women with preeclampsia and its effect on 25-hydroxyvitamin D, Exp. Ther. Med., 16, 1701-1706, doi: 10.3892/etm.2018.6394.
  138. Lv, Y., Lu, C., Ji, X., Miao, Z., Long, W., Ding, H., and Lv, M. (2019) Roles of microRNAs in preeclampsia, J. Cell. Physiol., 234, 1052-1061, doi: 10.1002/jcp.27291.
  139. Cai, M., Kolluru, G. K., and Ahmed, A. (2017) Small molecule, big prospects: microRNA in pregnancy and its complications, J. Pregnancy, 2017, 6972732, doi: 10.1155/2017/6972732.
  140. Chen, D. B., and Wang, W. (2013) Human placental microRNAs and preeclampsia, Biol. Reprod., 88, 130, doi: 10.1095/biolreprod.113.107805.
  141. Fu, G., Brkic, J., Hayder, H., and Peng, C. (2013) MicroRNAs in human placental development and pregnancy complications, Int. J. Mol. Sci., 14, 5519-5544, doi: 10.3390/ijms14035519.
  142. Escudero, C. A., Herlitz, K., Troncoso, F., Acurio, J., Aguayo, C., Roberts, J. M., Truong, G., Duncombe, G., Rice, G., and Salomon, C. (2016) Role of extracellular vesicles and microRNAs on dysfunctional angiogenesis during preeclamptic pregnancies, Front. Physiol., 7, 98, doi: 10.3389/fphys.2016.00098.
  143. Rudov, A., Balduini, W., Carloni, S., Perrone, S., Buonocore, G., and Albertini, M. C. (2014) Involvement of miRNAs in placental alterations mediated by oxidative stress, Oxid. Med. Cell. Longev., 2014, 103068, doi: 10.1155/2014/103068.
  144. Sonkar, R., Kay, M. K., and Choudhury, M. (2019) PFOS modulates interactive epigenetic regulation in first-trimester human trophoblast cell line HTR-8/SVneo, Chem. Res. Toxicol., 32, 2016-2027, doi: 10.1021/acs.chemrestox.9b00198.
  145. Gold, A. R., and Glanzman, D. L. (2021) The central importance of nuclear mechanisms in the storage of memory, Biochem. Biophys. Res. Commun., 564, 103-113, doi: 10.1016/j.bbrc.2021.04.125.
  146. Jobe, E. M., and Zhao, X. (2017) DNA methylation and adult neurogenesis, Brain Plast., 3, 5-26, doi: 10.3233/BPL-160034.
  147. Graff, J., and Mansuy, I. M. (2008) Epigenetic codes in cognition and behaviour, Behav. Brain Res., 192, 70-87, doi: 10.1016/j.bbr.2008.01.021.
  148. Wood, M. A., Hawk, J. D., and Abel, T. (2006) Combinatorial chromatin modifications and memory storage: a code for memory? Learn Mem., 13, 241-244, doi: 10.1101/lm.278206.
  149. Hwang, J. Y., Aromolaran, K. A., and Zukin, R. S. (2017) The emerging field of epigenetics in neurodegeneration and neuroprotection, Nat. Rev. Neurosci., 18, 347-361, doi: 10.1038/nrn.2017.46.
  150. Duman, R. S., and Aghajanian, G. K. (2012) Synaptic dysfunction in depression: potential therapeutic targets, Science, 338, 68-72, doi: 10.1126/science.1222939.
  151. Uchida, S., Yamagata, H., Seki, T., and Watanabe, Y. (2018) Epigenetic mechanisms of major depression: targeting neuronal plasticity, Psychiatry Clin. Neurosci., 72, 212-227, doi: 10.1111/pcn.12621.
  152. Kubota, T., Miyake, K., Hariya, N., and Mochizuki, K. (2015) Understanding the epigenetics of neurodevelopmental disorders and DOHaD, J. Dev. Orig. Health Dis., 6, 96-104, doi: 10.1017/S2040174415000057.
  153. Matrisciano, F., Tueting, P., Dalal, I., Kadriu, B., Grayson, D. R., Davis, J. M., Nicoletti, F., and Guidotti, A. (2013) Epigenetic modifications of GABAergic interneurons are associated with the schizophrenia-like phenotype induced by prenatal stress in mice, Neuropharmacology, 68, 184-194, doi: 10.1016/j.neuropharm.2012.04.013.
  154. Weaver, I. C., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seckl, J. R., Dymov, S., Szyf, M., and Meaney, M. J. (2004) Epigenetic programming by maternal behavior, Nat. Neurosci., 7, 847-854, doi: 10.1038/nn1276.
  155. Kubota, T. (2018) Preemptive epigenetic medicine based on fetal programming, Adv. Exp. Med. Biol., 1012, 85-95, doi: 10.1007/978-981-10-5526-3_9.
  156. Arutyunyan, A. V., Zaloznyaya, I. V., Kerkeshko, G. O., Milyutina, Y. P., and Korenevskii, A. V. (2017) Prenatal hyperhomocysteinemia impairs hypothalamic regulation of reproductive cycles in rat progeny, Bull. Exp. Biol. Med., 162, 738-740, doi: 10.1007/S10517-017-3701-6.
  157. Wang, X., Li, W., Li, Z., Ma, Y., Yan, J., Wilson, J. X., and Huang, G. (2019) Maternal folic acid supplementation during pregnancy promotes neurogenesis and synaptogenesis in neonatal rat offspring, Cereb. Cortex, 29, 3390-3397, doi: 10.1093/cercor/bhy207.
  158. Loureiro, S. O., Heimfarth, L., Pelaez Pde, L., Vanzin, C. S., Viana, L., Wyse, A. T., and Pessoa-Pureur, R. (2008) Homocysteine activates calcium-mediated cell signaling mechanisms targeting the cytoskeleton in rat hippocampus, Int. J. Dev. Neurosci., 26, 447-455, doi: 10.1016/j.ijdevneu.2008.03.001.
  159. Lockhart, B., Jones, C., Cuisinier, C., Villain, N., Peyroulan, D., and Lestage, P. (2000) Inhibition of L-homocysteic acid and buthionine sulphoximine-mediated neurotoxicity in rat embryonic neuronal cultures with alpha-lipoic acid enantiomers, Brain Res., 855, 292-297, doi: 10.1016/s0006-8993(99)02372-0.
  160. Takeuchi, H., Iba, M., Inoue, H., Higuchi, M., Takao, K., Tsukita, K., Karatsu, Y., Iwamoto, Y., Miyakawa, T., Suhara, T., Trojanowski, J. Q., Lee, V. M., and Takahashi, R. (2011) P301S mutant human tau transgenic mice manifest early symptoms of human tauopathies with dementia and altered sensorimotor gating, PLoS One, 6, e21050, doi: 10.1371/journal.pone.0021050.
  161. Милютина Ю. П., Арутюнян А. В., Пустыгина А. В., Щербицкая А. Д., Залозняя И. В., Зорина И. И. (2014) Содержание катехоламинов в надпочечниках крысят, перенесших пренатальную гипергомоцистеинемию, Росс. Физиол. Журн. им. И.М. Сеченова, 100, 360-369.
  162. Algaidi, S. A., Christie, L. A., Jenkinson, A. M., Whalley, L., Riedel, G., and Platt, B. (2006) Long-term homocysteine exposure induces alterations in spatial learning, hippocampal signalling and synaptic plasticity, Exp. Neurol., 197, 8-21, doi: 10.1016/j.expneurol.2005.07.003.
  163. Christie, L. A., Riedel, G., Algaidi, S. A., Whalley, L. J., and Platt, B. (2005) Enhanced hippocampal long-term potentiation in rats after chronic exposure to homocysteine, Neurosci. Lett., 373, 119-124, doi: 10.1016/j.neulet.2004.09.072.
  164. Viggiano, A., Viggiano, E., Monda, M., Ingrosso, D., Perna, A. F., and De Luca, B. (2012) Methionine-enriched diet decreases hippocampal antioxidant defences and impairs spontaneous behaviour and long-term potentiation in rats, Brain Res., 1471, 66-74, doi: 10.1016/j.brainres.2012.06.048.
  165. Christie, L. A., Riedel, G., and Platt, B. (2009) Bi-directional alterations of LTP after acute homocysteine exposure, Behav. Brain Res., 205, 559-563, doi: 10.1016/j.bbr.2009.07.010.
  166. Chai, G. S., Jiang, X., Ni, Z. F., Ma, Z. W., Xie, A. J., Cheng, X. S., Wang, Q., Wang, J. Z., and Liu, G. P. (2013) Betaine attenuates Alzheimer-like pathological changes and memory deficits induced by homocysteine, J. Neurochem., 124, 388-396, doi: 10.1111/jnc.12094.
  167. Zeng, P., Shi, Y., Wang, X. M., Lin, L., Du, Y. J., Tang, N., Wang, Q., Fang, Y. Y., Wang, J. Z., Zhou, X. W., Lu, Y., and Tian, Q. (2019) Emodin rescued hyperhomocysteinemia-induced dementia and Alzheimer's disease-like features in rats, Int. J. Neuropsychopharmacol., 22, 57-70, doi: 10.1093/ijnp/pyy090.
  168. Mahaman, Y. A. R., Huang, F., Wu, M., Wang, Y., Wei, Z., Bao, J., Salissou, M. T. M., Ke, D., Wang, Q., Liu, R., Wang, J. Z., Zhang, B., Chen, D., and Wang, X. (2018) Moringa Oleifera alleviates homocysteine-induced Alzheimer's disease-like pathology and cognitive impairments, J. Alzheimers Dis., 63, 1141-1159, doi: 10.3233/JAD-180091.
  169. Salissou, M. T. M., Mahaman, Y. A. R., Zhu, F., Huang, F., Wang, Y., Xu, Z., Ke, D., Wang, Q., Liu, R., Wang, J. Z., Zhang, B., and Wang, X. (2018) Methanolic extract of Tamarix Gallica attenuates hyperhomocysteinemia induced AD-like pathology and cognitive impairments in rats, Aging (Albany NY), 10, 3229-3248, doi: 10.18632/aging.101627.
  170. Kamat, P. K., Kyles, P., Kalani, A., and Tyagi, N. (2016) Hydrogen sulfide ameliorates homocysteine-induced Alzheimer's disease-like pathology, blood-brain barrier disruption, and synaptic disorder, Mol. Neurobiol., 53, 2451-2467, doi: 10.1007/s12035-015-9212-4.
  171. Li, J. G., Barrero, C., Merali, S., and Pratico, D. (2017) Genetic absence of ALOX5 protects from homocysteine-induced memory impairment, tau phosphorylation and synaptic pathology, Hum. Mol. Genet., 26, 1855-1862, doi: 10.1093/hmg/ddx088.
  172. Li, J. G., Barrero, C., Merali, S., and Pratico, D. (2017) Five lipoxygenase hypomethylation mediates the homocysteine effect on Alzheimer's phenotype, Sci. Rep., 7, 46002, doi: 10.1038/srep46002.
  173. Akchiche, N., Bossenmeyer-Pourie, C., Kerek, R., Martin, N., Pourie, G., Koziel, V., Helle, D., Alberto, J. M., Ortiou, S., Camadro, J. M., Leger, T., Gueant, J. L., and Daval, J. L. (2012) Homocysteinylation of neuronal proteins contributes to folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells, FASEB J., 26, 3980-3992, doi: 10.1096/fj.12-205757.
  174. Sibarov, D. A., Giniatullin, R., and Antonov, S. M. (2018) High sensitivity of cerebellar neurons to homocysteine is determined by expression of GluN2C and GluN2D subunits of NMDA receptors, Biochem. Biophys. Res. Commun., 506, 648-652, doi: 10.1016/j.bbrc.2018.10.140.
  175. Choe, Y. M., Sohn, B. K., Choi, H. J., Byun, M. S., Seo, E. H., Han, J. Y., Kim, Y. K., Yoon, E. J., Lee, J. M., Park, J., Woo, J. I., and Lee, D. Y. (2014) Association of homocysteine with hippocampal volume independent of cerebral amyloid and vascular burden, Neurobiol. Aging, 35, 1519-1525, doi: 10.1016/j.neurobiolaging.2014.01.013.
  176. Duan, W., Ladenheim, B., Cutler, R. G., Kruman, I. I., Cadet, J. L., and Mattson, M. P. (2002) Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson's disease, J. Neurochem., 80, 101-110, doi: 10.1046/j.0022-3042.2001.00676.x.
  177. Alachkar, A., Wang, L., Yoshimura, R., Hamzeh, A. R., Wang, Z., Sanathara, N., Lee, S. M., Xu, X., Abbott, G. W., and Civelli, O. (2018) Prenatal one-carbon metabolism dysregulation programs schizophrenia-like deficits, Mol. Psychiatry, 23, 282-294, doi: 10.1038/mp.2017.164.
  178. Zhuo, J. M., Wang, H., and Pratico, D. (2011) Is hyperhomocysteinemia an Alzheimer's disease (AD) risk factor, an AD marker, or neither? Trends Pharmacol. Sci., 32, 562-571, doi: 10.1016/j.tips.2011.05.003.
  179. Velazquez, R., Ferreira, E., Winslow, W., Dave, N., Piras, I. S., Naymik, M., Huentelman, M. J., Tran, A., Caccamo, A., and Oddo, S. (2020) Maternal choline supplementation ameliorates Alzheimer's disease pathology by reducing brain homocysteine levels across multiple generations, Mol. Psychiatry, 25, 2620-2629, doi: 10.1038/s41380-018-0322-z.
  180. Da Silva, V. C., Fernandes, L., Haseyama, E. J., Agamme, A. L., Guerra Shinohara, E. M., Muniz, M. T., and D'Almeida, V. (2014) Effect of vitamin B deprivation during pregnancy and lactation on homocysteine metabolism and related metabolites in brain and plasma of mice offspring, PLoS One, 9, e92683, doi: 10.1371/journal.pone.0092683.
  181. Gulyaeva, N. V. (2017) Molecular mechanisms of neuroplasticity: an expanding universe, Biochemistry (Moscow), 82, 237-242, doi: 10.1134/S0006297917030014.
  182. Балабан П. М., Гуляева Н. В. (2006) Общность молекулярных механизмов нейропластичности и нейропатологии: интегративный подход, Росс. Физиол. Журн. им. И.М. Сеченова, 92, 145-151.
  183. Bacon, E. R., and Brinton, R. D. (2021) Epigenetics of the developing and aging brain: Mechanisms that regulate onset and outcomes of brain reorganization, Neurosci. Biobehav. Rev., 125, 503-516, doi: 10.1016/j.neubiorev.2021.02.040.
  184. Liu, X. S., and Jaenisch, R. (2019) Editing the epigenome to tackle brain disorders, Trends Neurosci., 42, 861-870, doi: 10.1016/j.tins.2019.10.003.
  185. Sheikhi, S., and Saboory, E. (2015) Neuroplasticity changes of rat brain by musical stimuli during fetal period, Cell J., 16, 448-455, doi: 10.22074/cellj.2015.490.
  186. Remington, R., Bechtel, C., Larsen, D., Samar, A., Doshanjh, L., Fishman, P., Luo, Y., Smyers, K., Page, R., Morrell, C., and Shea, T. B. (2015) A phase II randomized clinical trial of a nutritional formulation for cognition and mood in Alzheimer's disease, J. Alzheimers Dis., 45, 395-405, doi: 10.3233/JAD-142499.
  187. Mischoulon, D., Price, L. H., Carpenter, L. L., Tyrka, A. R., Papakostas, G. I., Baer, L., Dording, C. M., Clain, A. J., Durham, K., Walker, R., Ludington, E., and Fava, M. (2014) A double-blind, randomized, placebo-controlled clinical trial of S-adenosyl-L-methionine (SAMe) versus escitalopram in major depressive disorder, J. Clin. Psychiatry, 75, 370-376, doi: 10.4088/JCP.13m08591.
  188. Cho, H. H., Cahill, C. M., Vanderburg, C. R., Scherzer, C. R., Wang, B., Huang, X., and Rogers, J. T. (2010) Selective translational control of the Alzheimer amyloid precursor protein transcript by iron regulatory protein-1, J. Biol. Chem., 285, 31217-31232, doi: 10.1074/jbc.M110.149161.
  189. Hao, X., Zhou, M., Li, H., and Angres, I. A. (2017) Novel immunoassays to detect methionine adenosyltransferase activity and quantify S-adenosylmethionine, FEBS Lett., 591, 1114-1125, doi: 10.1002/1873-3468.12631.
  190. Fontana, A., Cursaro, I., Carullo, G., Gemma, S., Butini, S., and Campiani, G. (2022) A therapeutic perspective of HDAC8 in different diseases: an overview of selective inhibitors, Int. J. Mol. Sci., 23, 10014, doi: 10.3390/ijms231710014.
  191. Colasante, G., Lignani, G., Brusco, S., Di Berardino, C., Carpenter, J., Giannelli, S., Valassina, N., Bido, S., Ricci, R., Castoldi, V., Marenna, S., Church, T., Massimino, L., Morabito, G., Benfenati, F., Schorge, S., Leocani, L., Kullmann, D. M., and Broccoli, V. (2020) dCas9-based Scn1a gene activation restores inhibitory interneuron excitability and attenuates seizures in Dravet syndrome mice, Mol. Ther., 28, 235-253, doi: 10.1016/j.ymthe.2019.08.018.
  192. Peter, C. J., Saito, A., Hasegawa, Y., Tanaka, Y., Nagpal, M., Perez, G., Alway, E., Espeso-Gil, S., Fayyad, T., Ratner, C., Dincer, A., Gupta, A., Devi, L., Pappas, J. G., Lalonde, F. M., Butman, J. A., Han, J. C., Akbarian, S., and Kamiya, A. (2019) In vivo epigenetic editing of Sema6a promoter reverses transcallosal dysconnectivity caused by C11orf46/Arl14ep risk gene, Nat. Commun., 11, 4112, doi: 10.1038/s41467-019-12013-y.
  193. Ricci, R., and Colasante, G. (2021) CRISPR/dCas9 as a therapeutic approach for neurodevelopmental disorders: innovations and limitations compared to traditional strategies, Dev. Neurosci., 43, 253-261, doi: 10.1159/000515845.
  194. Monayo, S. M., and Liu, X. (2022) The prospective application of melatonin in treating epigenetic dysfunctional diseases, Front. Pharmacol., 13, 867500, doi: 10.3389/fphar.2022.867500.
  195. Alghamdi, B. S. (2018) The neuroprotective role of melatonin in neurological disorders, J. Neurosci. Res., 96, 1136-1149, doi: 10.1002/jnr.24220.
  196. Leung, J. W., Cheung, K. K., Ngai, S. P., Tsang, H. W., and Lau, B. W. (2020) Protective effects of melatonin on neurogenesis impairment in neurological disorders and its relevant molecular mechanisms, Int. J. Mol. Sci., 21, 5645, doi: 10.3390/ijms21165645.
  197. Figueiro-Silva, J., Antequera, D., Pascual, C., de la Fuente Revenga, M., Volt, H., Acuna-Castroviejo, D., Rodriguez-Franco, M. I., and Carro, E. (2018) The melatonin analog IQM316 may induce adult hippocampal neurogenesis and preserve recognition memories in mice, Cell Transplant., 27, 423-437, doi: 10.1177/0963689717721217.
  198. Ghareghani, M., Sadeghi, H., Zibara, K., Danaei, N., Azari, H., and Ghanbari, A. (2017) Melatonin increases oligodendrocyte differentiation in cultured neural stem cells, Cell. Mol. Neurobiol., 37, 1319-1324, doi: 10.1007/s10571-016-0450-4.
  199. Li, X., Chen, X., Zhou, W., Ji, S., Li, X., Li, G., Liu, G., Wang, F., and Hao, A. (2017) Effect of melatonin on neuronal differentiation requires CBP/p300-mediated acetylation of histone H3 lysine 14, Neuroscience, 364, 45-59, doi: 10.1016/j.neuroscience.2017.07.064.
  200. Liu, Y., Zhang, Z., Lv, Q., Chen, X., Deng, W., Shi, K., and Pan, L. (2016) Effects and mechanisms of melatonin on the proliferation and neural differentiation of PC12 cells, Biochem. Biophys. Res. Commun., 478, 540-545, doi: 10.1016/j.bbrc.2016.07.093.
  201. Kong, X., Li, X., Cai, Z., Yang, N., Liu, Y., Shu, J., Pan, L., and Zuo, P. (2008) Melatonin regulates the viability and differentiation of rat midbrain neural stem cells, Cell. Mol. Neurobiol., 28, 569-579, doi: 10.1007/s10571-007-9212-7.
  202. Paul, R., and Borah, A. (2015) The potential physiological crosstalk and interrelationship between two sovereign endogenous amines, melatonin and homocysteine, Life Sci., 139, 97-107, doi: 10.1016/j.lfs.2015.07.031.
  203. Karolczak, K., and Watala, C. (2021) Melatonin as a reducer of neuro- and vasculotoxic oxidative stress induced by homocysteine, Antioxidants (Basel), 10, 1178, doi: 10.3390/antiox10081178.
  204. Liu, J., Mesfin, F. M., Hunter, C. E., Olson, K. R., Shelley, W. C., Brokaw, J. P., Manohar, K., and Markel, T. A. (2022) Recent development of the molecular and cellular mechanisms of hydrogen sulfide gasotransmitter, Antioxidants (Basel), 11, 1788, doi: 10.3390/antiox11091788.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies