Genetic architecture of Parkinson’s disease

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Year 2022 marks the 25th anniversary of the first mutation in familial autosomal dominant Parkinson’s disease. Over the years, our understanding of the role of genetics in the pathogenesis of familial and idiopathic forms of Parkinson’s disease has expanded significantly - a number of genes for the familial form of the disease have been identified, and DNA markers of an increased risk of developing a sporadic form of the disease have been identified. But, despite all the successes achieved, we are far from an accurate assessment of the contribution to the development of the disease as a whole, both genetic factors and (and even more so) epigenetic factors. The review summarizes the information accumulated to date on the genetic architecture of Parkinson’s disease and formulates issues that need to be addressed and are primarily related to the assessment of epigenetic factors in the pathogenesis of the disease.

About the authors

M. I Shadrina

Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”

Email: shadrina@img.ras.ru
123182 Moscow, Russia

P. A Slominsky

Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”

Email: shadrina@img.ras.ru
123182 Moscow, Russia

References

  1. Bandres-Ciga, S., Ahmed, S., Sabir, M. S., Blauwendraat, C., Adarmes-Gomez, A. D., Bernal-Bernal, I., Bonilla-Toribio, M., Buiza-Rueda, D., Carrillo, F., Carrion-Claro, M., Gomez-Garre, P., Jesus, S., Labrador-Espinosa, M. A., Macias, D., Mendez-Del-Barrio, C., Perinan-Tocino, T., Tejera-Parrado, C., Vargas-Gonzalez, L., Diez-Fairen, M., Alvarez, I., Tartari, J. P., Buongiorno, M., Aguilar, M., Gorostidi, A., Bergareche, J. A., Mondragon, E., Vinagre-Aragon, A., Croitoru, I., Ruiz-Martinez, J., Dols-Icardo, O., Kulisevsky, J., Marin-Lahoz, J., Pagonabarraga, J., Pascual-Sedano, B., Ezquerra, M., Camara, A., Compta, Y., Fernandez, M., Fernandez-Santiago, R., Munoz, E., Tolosa, E., Valldeoriola, F., Gonzalez-Aramburu, I., Sanchez Rodriguez, A., Sierra, M., Menendez-Gonzalez, M., Blazquez, M., Garcia, C., Suarez-San Martin, E., Garcia-Ruiz, P., Martinez-Castrillo, J. C., Vela-Desojo, L., Ruz, C., Barrero, F. J., Escamilla-Sevilla, F., Minguez-Castellanos, A., Cerdan, D., Tabernero, C., Gomez Heredia, M. J., Perez Errazquin, F., Romero-Acebal, M., Feliz, C., Lopez-Sendon, J. L., Mata, M., Martinez Torres, I., Kim, J. J., Dalgard, C. L., The American Genome Center, Brooks, J., Saez-Atienzar, S., Gibbs, J. R., Jorda, R., Botia, J. A., Bonet-Ponce, L., Morrison, K. E., Clarke, C., Tan, M., Morris, H., Edsall, C., Hernandez, D., Simon-Sanchez, J., Nalls, M. A., Scholz, S. W., Jimenez-Escrig, A., Duarte, J., Vives, F., Duran, R., Hoenicka, J., Alvarez, V., Infante, J., Marti, M. J., Clarimon, J., Lopez de Munain, A., Pastor, P., Mir, P., Singleton, A., and International Parkinson Disease Genomics Consortium (2019) The genetic architecture of Parkinson's disease in Spain: characterizing population-specific risk, differential haplotype structures, and providing etiologic insight, Mov. Disord. Offic. J. Mov. Disord. Soc., 34, 1851-1863, doi: 10.1002/mds.27864.
  2. Savitt, J. M., Dawson, V. L., and Dawson, T. M. (2006) Diagnosis and treatment of Parkinson disease: molecules to medicine, J. Clin. Invest., 116, 1744-1754, doi: 10.1172/JCI29178.
  3. Vázquez-Vélez, G. E., and Zoghbi, H. Y. (2021) Parkinson's disease genetics and pathophysiology, Annu. Rev. Neurosci., 44, 87-108, doi: 10.1146/annurev-neuro-100720-034518.
  4. Del Tredici, K., and Braak, H. (2016) Review: sporadic Parkinson's disease: development and distribution of α-synuclein pathology, Neuropathol. Appl. Neurobiol., 42, 33-50, doi: 10.1111/nan.12298.
  5. Connolly, B. S., and Lang, A. E. (2014) Pharmacological treatment of Parkinson disease: a review, JAMA, 311, 1670-1683, doi: 10.1001/jama.2014.3654.
  6. Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E. S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W. G., Lazzarini, A. M., Duvoisin, R. C., Di Iorio, G., Golbe, L. I., and Nussbaum, R. L. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson's disease, Science, 276, 2045-2047, doi: 10.1126/science.276.5321.2045.
  7. Lunati, A., Lesage, S., and Brice, A. (2018) The genetic landscape of Parkinson's disease, Rev. Neurolog., 174, 628-643, doi: 10.1016/j.neurol.2018.08.004.
  8. Lesage, S., and Brice, A. (2012) Role of mendelian genes in "sporadic" Parkinson's disease, Parkinson. Rel. Disord., 18 Suppl 1, S66-S70, doi: 10.1016/s1353-8020(11)70022-0.
  9. Leroy, E., Boyer, R., Auburger, G., Leube, B., Ulm, G., Mezey, E., Harta, G., Brownstein, M. J., Jonnalagada, S., Chernova, T., Dehejia, A., Lavedan, C., Gasser, T., Steinbach, P. J., Wilkinson, K. D., and Polymeropoulos, M. H. (1998) The ubiquitin pathway in Parkinson's disease, Nature, 395, 451-452, doi: 10.1038/26652.
  10. Lee, Y. C., and Hsu, S. D. (2017) Familial mutations and post-translational modifications of UCH-L1 in Parkinson's disease and neurodegenerative disorders, Curr. Prot. Pept. Sci., 18, 733-745, doi: 10.2174/1389203717666160217143721.
  11. Wintermeyer, P., Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Berg, D., Becker, G., Leroy, E., Polymeropoulos, M., Berger, K., Przuntek, H., Schols, L., Epplen, J. T., and Riess, O. (2000) Mutation analysis and association studies of the UCHL1 gene in German Parkinson's disease patients, Neuroreport, 11, 2079-2082, doi: 10.1097/00001756-200007140-00004.
  12. Healy, D. G., Abou-Sleiman, P. M., Casas, J. P., Ahmadi, K. R., Lynch, T., Gandhi, S., Muqit, M. M., Foltynie, T., Barker, R., Bhatia, K. P., Quinn, N. P., Lees, A. J., Gibson, J. M., Holton, J. L., Revesz, T., Goldstein, D. B., and Wood, N. W. (2006) UCHL-1 is not a Parkinson's disease susceptibility gene, Ann. Neurol., 59, 627-633, doi: 10.1002/ana.20757.
  13. Miyake, Y., Tanaka, K., Fukushima, W., Kiyohara, C., Sasaki, S., Tsuboi, Y., Yamada, T., Oeda, T., Shi-mada, H., Kawamura, N., Sakae, N., Fukuyama, H., Hirota, Y., and Nagai, M. (2012) UCHL1 S18Y variant is a risk factor for Parkinson's disease in Japan, BMC Neurol., 12, 62, doi: 10.1186/1471-2377-12-62.
  14. Sun, S., Zhao, Y., Jin, G., and Kang, H. (2014) Lack of association between UCHL1 S18Y gene polymorphism and Parkinson's disease in the Asian population: a meta-analysis, Neurol. Sci., 35, 1867-1876, doi: 10.1007/s10072-014-1973-4.
  15. Saigoh, K., Wang, Y. L., Suh, J. G., Yamanishi, T., Sakai, Y., Kiyosawa, H., Harada, T., Ichihara, N., Wakana, S., Kikuchi, T., and Wada, K. (1999) Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice, Nat. Genet., 23, 47-51, doi: 10.1038/12647.
  16. Setsuie, R., Wang, Y. L., Mochizuki, H., Osaka, H., Hayakawa, H., Ichihara, N., Li, H., Furuta, A., Sano, Y., Sun, Y. J., Kwon, J., Kabuta, T., Yoshimi, K., Aoki, S., Mizuno, Y., Noda, M., and Wada, K. (2007) Dopaminergic neuronal loss in transgenic mice expressing the Parkinson's disease-associated UCH-L1 I93M mutant, Neurochem. Int., 50, 119-129, doi: 10.1016/j.neuint.2006.07.015.
  17. Yasuda, T., Nihira, T., Ren, Y. R., Cao, X. Q., Wada, K., Setsuie, R., Kabuta, T., Wada, K., Hattori, N., Mizuno, Y., and Mochizuki, H. (2009) Effects of UCH-L1 on alpha-synuclein over-expression mouse model of Parkinson's disease, J. Neurochem., 108, 932-944, doi: 10.1111/j.1471-4159.2008.05827.x.
  18. Kyratzi, E., Pavlaki, M., and Stefanis, L. (2008) The S18Y polymorphic variant of UCH-L1 confers an antioxidant function to neuronal cells, Hum. Mol. Genet., 17, 2160-2171, doi: 10.1093/hmg/ddn115.
  19. Xilouri, M., Kyratzi, E., Pitychoutis, P. M., Papadopoulou-Daifoti, Z., Perier, C., Vila, M., Maniati, M., Ulusoy, A., Kirik, D., Park, D. S., Wada, K., and Stefanis, L. (2012) Selective neuroprotective effects of the S18Y polymorphic variant of UCH-L1 in the dopaminergic system, Hum. Mol. Genet., 21, 874-889, doi: 10.1093/hmg/ddr521.
  20. Riboldi, G. M., and Di Fonzo, A. B. (2019) GBA, Gaucher disease, and Parkinson's disease: from genetic to clinic to new therapeutic approaches, Cells, 8, 364, doi: 10.3390/cells8040364.
  21. Thaler, A., Bregman, N., Gurevich, T., Shiner, T., Dror, Y., Zmira, O., Gan-Or, Z., Bar-Shira, A., Gana-Weisz, M., Orr-Urtreger, A., Giladi, N., and Mirelman, A. (2018) Parkinson's disease phenotype is influenced by the severity of the mutations in the GBA gene, Parkinsonism Rel. Disord., 55, 45-49, doi: 10.1016/j.parkreldis.2018.05.009.
  22. Thaler, A., Gurevich, T., Bar Shira, A., Gana Weisz, M., Ash, E., Shiner, T., Orr-Urtreger, A., Giladi, N., and Mirelman, A. (2017) A "dose" effect of mutations in the GBA gene on Parkinson's disease phenotype, Parkinsonism Rel. Disord., 36, 47-51, doi: 10.1016/j.parkreldis.2016.12.014.
  23. Gan-Or, Z., Liong, C., and Alcalay, R. N. (2018) GBA-associated Parkinson's disease and other synucleinopathies, Curr. Neurol. Neurosci. Rep., 18, 44, doi: 10.1007/s11910-018-0860-4.
  24. Vieira, S. R. L., and Schapira, A. H. V. (2022) Glucocerebrosidase mutations and Parkinson's disease, J. Neural Transmiss., 129, 1105-1117, doi: 10.1007/s00702-022-02531-3.
  25. Kluss, J. H., Mamais, A., and Cookson, M. R. (2019) LRRK2 links genetic and sporadic Parkinson's disease, Biochem. Soc. Transact., 47, 651-661, doi: 10.1042/bst20180462.
  26. Lee, A. J., Wang, Y., Alcalay, R. N., Mejia-Santana, H., Saunders-Pullman, R., Bressman, S., Corvol, J. C., Brice, A., Lesage, S., Mangone, G., Tolosa, E., Pont-Sunyer, C., Vilas, D., Schüle, B., Kausar, F., Foroud, T., Berg, D., Brockmann, K., Goldwurm, S., Siri, C., Asselta, R., Ruiz-Martinez, J., Mondragón, E., Marras, C., Ghate, T., Giladi, N., Mirelman, A., and Marder, K. (2017) Penetrance estimate of LRRK2 p.G2019S mutation in individuals of non-Ashkenazi Jewish ancestry, Mov. Disord., 32, 1432-1438, doi: 10.1002/mds.27059.
  27. Trinh, J., Guella, I., and Farrer, M. J. (2014) Disease penetrance of late-onset parkinsonism: a meta-analysis, JAMA Neurol., 71, 1535-1539, doi: 10.1001/jamaneurol.2014.1909.
  28. Kestenbaum, M., and Alcalay, R. N. (2017) Clinical features of LRRK2 carriers with Parkinson's disease, Adv. Neurobiol., 14, 31-48, doi: 10.1007/978-3-319-49969-7_2.
  29. Guadagnolo, D., Piane, M., Torrisi, M. R., Pizzuti, A., and Petrucci, S. (2021) Genotype-phenotype correlations in monogenic Parkinson's disease: a review on clinical and molecular findings, Front. Neurol., 12, 648588, doi: 10.3389/fneur.2021.648588.
  30. Milanowski, Ł., M., Lindemann, J. A., Hoffman-Zacharska, D., Soto-Beasley, A. I., Barcikowska, M., Boczarska-Jedynak, M., Deutschlander, A., Kłodowska, G., Dulski, J., Fedoryshyn, L., Friedman, A., Jamrozik, Z., Janik, P., Karpinsky, K., Koziorowski, D., Krygowska-Wajs, A., Jasińska-Myga, B., Opala, G., Potulska-Chromik, A., Pulyk, A., Rektorova, I., Sanotsky, Y., Siuda, J., Sławek, J., Śmiłowska, K., Szczechowski, L., Rudzińska-Bar, M., Walton, R. L., Ross, O. A., and Wszolek, Z. K. (2021) Frequency of mutations in PRKN, PINK1, and DJ1 in patients with early-onset Parkinson's disease from neighboring countries in Central Europe, Parkinsonism Rel. Disord., 86, 48-51, doi: 10.1016/j.parkreldis.2021.03.026.
  31. Olszewska, D. A., McCarthy, A., Soto-Beasley, A. I., Walton, R. L., Ross, O. A., and Lynch, T. (2022) PARKIN, PINK1, and DJ1 analysis in early-onset Parkinson's disease in Ireland, Irish J. Med. Sci., 191, 901-907, doi: 10.1007/s11845-021-02563-w.
  32. Erer, S., Egeli, U., Zarifoglu, M., Tezcan, G., Cecener, G., Tunca, B., Ak, S., Demirdogen, E., Kenangil, G., Kaleagası, H., Dogu, O., Saka, E., and Elibol, B. (2016) Mutation analysis of the PARKIN, PINK1, DJ1, and SNCA genes in Turkish early-onset Parkinson's patients and genotype-phenotype correlations, Clin. Neurol. Neurosurg., 148, 147-153, doi: 10.1016/j.clineuro.2016.07.005.
  33. Shulskaya, M. V., Shadrina, M. I., Fedotova, E. Y., Abramycheva, N. Y., Limborska, S. A., Illarioshkin, S. N., and Slominsky, P. A. (2017) Second mutation in PARK2 is absent in patients with sporadic Parkinson's disease and heterozygous exonic deletions/duplications in parkin gene, Int. J. Neurosci., 127, 781-784, doi: 10.1080/00207454.2016.1255612.
  34. Semenova, E. V., Shadrina, M. I., Slominsky, P. A., Ivanova-Smolenskaya, I. A., Bagyeva, G., Illarioshkin, S. N., and Limborska, S. A. (2012) Analysis of PARK2 gene exon rearrangements in Russian patients with sporadic Parkinson's disease, Mov. Disord., 27, 139-142, doi: 10.1002/mds.23901.
  35. Valente, E. M., and Ferraris, A. (2007) Heterozygous mutations in genes causing parkinsonism: monogenic disorders go complex, Lancet Neurol., 6, 576-578, doi: 10.1016/s1474-4422(07)70158-8.
  36. Brüggemann, N., Mitterer, M., Lanthaler, A. J., Djarmati, A., Hagenah, J., Wiegers, K., Winkler, S., Pawlack, H., Lohnau, T., Pramstaller, P. P., Klein, C., and Lohmann, K. (2009) Frequency of heterozygous Parkin mutations in healthy subjects: need for careful prospective follow-up examination of mutation carriers, Parkinsonism Rel. Disord., 15, 425-429, doi: 10.1016/j.parkreldis.2008.11.014.
  37. Pavese, N., Khan, N. L., Scherfler, C., Cohen, L., Brooks, D. J., Wood, N. W., Bhatia, K. P., Quinn, N. P., Lees, A. J., and Piccini, P. (2009) Nigrostriatal dysfunction in homozygous and heterozygous parkin gene carriers: an 18F-dopa PET progression study, Mov. Disord., 24, 2260-2266, doi: 10.1002/mds.22817.
  38. Van Nuenen, B. F., van Eimeren, T., van der Vegt, J. P., Buhmann, C., Klein, C., Bloem, B. R., and Siebner, H. R. (2009) Mapping preclinical compensation in Parkinson's disease: an imaging genomics approach, Mov. Disord., 24 Suppl 2, S703-S710, doi: 10.1002/mds.22635.
  39. Marongiu, R., Ferraris, A., Ialongo, T., Michiorri, S., Soleti, F., Ferrari, F., Elia, A. E., Ghezzi, D., Albanese, A., Altavista, M. C., Antonini, A., Barone, P., Brusa, L., Cortelli, P., Martinelli, P., Pellecchia, M. T., Pezzoli, G., Scaglione, C., Stanzione, P., Tinazzi, M., Zecchinelli, A., Zeviani, M., Cassetta, E., Garavaglia, B., Dallapiccola, B., Bentivoglio, A. R., and Valente, E. M. (2008) PINK1 heterozygous rare variants: prevalence, significance and phenotypic spectrum, Hum. Mutat., 29, 565, doi: 10.1002/humu.20719.
  40. Yu, E., Rudakou, U., Krohn, L., Mufti, K., Ruskey, J. A., Asayesh, F., Estiar, M. A., Spiegelman, D., Surface, M., Fahn, S., Waters, C. H., Greenbaum, L., Espay, A. J., Dauvilliers, Y., Dupré, N., Rouleau, G. A., Hassin-Baer, S., Fon, E. A., Alcalay, R. N., and Gan-Or, Z. (2021) Analysis of heterozygous PRKN variants and copy-number variations in Parkinson's disease, Mov. Disord., 36, 178-187, doi: 10.1002/mds.28299.
  41. Jia, F., Fellner, A., and Kumar, K. R. (2022) Monogenic Parkinson's disease: genotype, phenotype, pathophysiology, and genetic testing, Genes, 13, 471, doi: 10.3390/genes13030471.
  42. Santos-Lobato, B. L., Schumacher-Schuh, A., Mata, I. F., Letro, G. H., Braga-Neto, P., Brandão, P. R. P., Godeiro-Junior, C. O., Coletta, M. V. D., Camargos, S. T., Borges, V., Rieder, C. R. M., and Tumas, V. (2021) Genetics of Parkinson's disease in Brazil: a systematic review of monogenic forms, Arq. Neuropsiquiatr., 79, 612-623, doi: 10.1590/0004-282X-anp-2020-0409.
  43. Correia Guedes, L., Ferreira, J. J., Rosa, M. M., Coelho, M., Bonifati, V., and Sampaio, C. (2010) Worldwide frequency of G2019S LRRK2 mutation in Parkinson's disease: a systematic review, Parkinsonism Rel. Disord., 16, 237-242, doi: 10.1016/j.parkreldis.2009.11.004.
  44. Gialluisi, A., Reccia, M. G., Modugno, N., Nutile, T., Lombardi, A., Di Giovannantonio, L. G., Pietracupa, S., Ruggiero, D., Scala, S., Gambardella, S., Iacoviello, L., Gianfrancesco, F., Acampora, D., D'Esposito, M., Simeone, A., Ciullo, M., and Esposito, T. (2021) Identification of sixteen novel candidate genes for late onset Parkinson's disease, Mol. Neurodegener., 16, 35, doi: 10.1186/s13024-021-00455-2.
  45. Shulskaya, M. V., Alieva, A. K., Vlasov, I. N., Zyrin, V. V., Fedotova, E. Y., Abramycheva, N. Y., Usenko, T. S., Yakimovsky, A. F., Emelyanov, A. K., Pchelina, S. N., Illarioshkin, S. N., Slominsky, P. A., and Shadrina, M. I. (2018) Whole-exome sequencing in searching for new variants associated with the development of Parkinson's disease, Front. Aging Neurosci., 10, 136, doi: 10.3389/fnagi.2018.00136.
  46. Cook, L., Schulze, J., Verbrugge, J., Beck, J. C., Marder, K. S., Saunders-Pullman, R., Klein, C., Naito, A., and Alcalay, R. N. (2021) The commercial genetic testing landscape for Parkinson's disease, Parkinsonism Rel. Disord., 92, 107-111, doi: 10.1016/j.parkreldis.2021.10.001.
  47. Li, B., Zhao, G., Zhou, Q., Xie, Y., Wang, Z., Fang, Z., Lu, B., Qin, L., Zhao, Y., Zhang, R., Jiang, L., Pan, H., He, Y., Wang, X., Luo, T., Zhang, Y., Wang, Y., Chen, Q., Liu, Z., Guo, J., Tang, B., and Li, J. (2021) Gene4PD: a comprehensive genetic database of Parkinson's disease, Front. Neurosci., 15, 679568, doi: 10.3389/fnins.2021.679568.
  48. Day, J. O., and Mullin, S. (2021) The genetics of Parkinson's disease and implications for clinical practice, Genes, 12, 1006, doi: 10.3390/genes12071006.
  49. Fung, H. C., Scholz, S., Matarin, M., Simón-Sánchez, J., Hernandez, D., Britton, A., Gibbs, J. R., Langefeld, C., Stiegert, M. L., Schymick, J., Okun, M. S., Mandel, R. J., Fernandez, H. H., Foote, K. D., Rodríguez, R. L., Peckham, E., De Vrieze, F. W., Gwinn-Hardy, K., Hardy, J. A., and Singleton, A. (2006) Genome-wide genotyping in Parkinson's disease and neurologically normal controls: first stage analysis and public release of data, Lancet Neurol., 5, 911-916, doi: 10.1016/s1474-4422(06)70578-6.
  50. Maraganore, D. M., de Andrade, M., Lesnick, T. G., Strain, K. J., Farrer, M. J., Rocca, W. A., Pant, P. V., Frazer, K. A., Cox, D. R., and Ballinger, D. G. (2005) High-resolution whole-genome association study of Parkinson disease, Am. J. Hum. Genet., 77, 685-693, doi: 10.1086/496902.
  51. Evangelou, E., Maraganore, D. M., and Ioannidis, J. P. (2007) Meta-analysis in genome-wide association datasets: strategies and application in Parkinson's disease, PLoS One, 2, e196, doi: 10.1371/journal.pone.0000196.
  52. Leveille, E., Ross, O. A., and Gan-Or, Z. (2021) Tau and MAPT genetics in tauopathies and synucleinopathies, Parkinsonism Rel. Disord., 90, 142-154, doi: 10.1016/j.parkreldis.2021.09.008.
  53. Clark, L. N., Gao, Y., Wang, G. T., Hernandez, N., Ashley-Koch, A., Jankovic, J., Ottman, R., Leal, S. M., Rodriguez, S. M. B., and Louis, E. D. (2022) Whole genome sequencing identifies candidate genes for familial essential tremor and reveals biological pathways implicated in essential tremor aetiology, EBioMedicine, 85, 104290, doi: 10.1016/j.ebiom.2022.104290.
  54. Drazich-Taylor, E. H. S., Todd, E., Convery, R., Bocchetta, M., Clarke, M., Warren, J. D., Fox, N. C., Revesz, T., and Rohrer, J. D. (2023) Q351R MAPT mutation is associated with a mixed 3R/4R tauopathy and a slowly progressive cognitive, behavioural and parkinsonian syndrome, J. Neurol. Neurosurg. Psychiatry, 94, 169-171, doi: 10.1136/jnnp-2022-329330.
  55. Hu, M., Li, P., Wang, C., Feng, X., Geng, Q., Chen, W., Marthi, M., Zhang, W., Gao, C., Reid, W., Swanson, J., Du, W., Hume, R. I., and Xu, H. (2022) Parkinson's disease-risk protein TMEM175 is a proton-activated proton channel in lysosomes, Cell, 185, 2292-2308.e2220, doi: 10.1016/j.cell.2022.05.021.
  56. Jinn, S., Drolet, R. E., Cramer, P. E., Wong, A. H., Toolan, D. M., Gretzula, C. A., Voleti, B., Vassileva, G., Disa, J., Tadin-Strapps, M., and Stone, D. J. (2017) TMEM175 deficiency impairs lysosomal and mitochondrial function and increases α-synuclein aggregation, Proc. Natl. Acad. Sci. USA, 114, 2389-2394, doi: 10.1073/pnas.1616332114.
  57. Krohn, L., Öztürk, T. N., Vanderperre, B., Ouled Amar Bencheikh, B., Ruskey, J. A., Laurent, S. B., Spiegelman, D., Postuma, R. B., Arnulf, I., Hu, M. T. M., Dauvilliers, Y., Högl, B., Stefani, A., Monaca, C. C., Plazzi, G., Antelmi, E., Ferini-Strambi, L., Heidbreder, A., Rudakou, U., Cochen De Cock, V., Young, P., Wolf, P., Oliva, P., Zhang, X. K., Greenbaum, L., Liong, C., Gagnon, J. F., Desautels, A., Hassin-Baer, S., Montplaisir, J. Y., Dupré, N., Rouleau, G. A., Fon, E. A., Trempe, J. F., Lamoureux, G., Alcalay, R. N., and Gan-Or, Z. (2020) Genetic, structural, and functional evidence Link TMEM175 to synucleinopathies, Ann. Neurol., 87, 139-153, doi: 10.1002/ana.25629.
  58. Wie, J., Liu, Z., Song, H., Tropea, T. F., Yang, L., Wang, H., Liang, Y., Cang, C., Aranda, K., Lohmann, J., Yang, J., Lu, B., Chen-Plotkin, A. S., Luk, K. C., and Ren, D. (2021) A growth-factor-activated lysosomal K+ channel regulates Parkinson's pathology, Nature, 591, 431-437, doi: 10.1038/s41586-021-03185-z.
  59. Lunding, L. P., Krause, D., Stichtenoth, G., Stamme, C., Lauterbach, N., Hegermann, J., Ochs, M., Schuster, B., Sedlacek, R., Saftig, P., Schwudke, D., Wegmann, M., and Damme, M. (2021) LAMP3 deficiency affects surfactant homeostasis in mice, PLoS Genet., 17, e1009619, doi: 10.1371/journal.pgen.1009619.
  60. Tanaka, T., Warner, B. M., Michael, D. G., Nakamura, H., Odani, T., Yin, H., Atsumi, T., Noguchi, M., and Chiorini, J. A. (2022) LAMP3 inhibits autophagy and contributes to cell death by lysosomal membrane permeabilization, Autophagy, 18, 1629-1647, doi: 10.1080/15548627.2021.1995150.
  61. Tanaka, T., Warner, B. M., Odani, T., Ji, Y., Mo, Y. Q., Nakamura, H., Jang, S. I., Yin, H., Michael, D. G., Hirata, N., Suizu, F., Ishigaki, S., Oliveira, F. R., Motta, A. C. F., Ribeiro-Silva, A., Rocha, E. M., Atsumi, T., Noguchi, M., and Chiorini, J. A. (2020) LAMP3 induces apoptosis and autoantigen release in Sjögren's syndrome patients, Sci. Rep., 10, 15169, doi: 10.1038/s41598-020-71669-5.
  62. Chosa, N., and Ishisaki, A. (2018) Two novel mechanisms for maintenance of stemness in mesenchymal stem cells: SCRG1/BST1 axis and cell-cell adhesion through N-cadherin, Jpn. Dent. Sci. Rev., 54, 37-44, doi: 10.1016/j.jdsr.2017.10.001.
  63. Higashida, H., Hashii, M., Tanaka, Y., Matsukawa, S., Higuchi, Y., Gabata, R., Tsubomoto, M., Seishima, N., Teramachi, M., Kamijima, T., Hattori, T., Hori, O., Tsuji, C., Cherepanov, S. M., Shabalova, A. A., Gerasimenko, M., Minami, K., Yokoyama, S., Munesue, S. I., Harashima, A., Yamamoto, Y., Salmina, A. B., and Lopatina, O. (2019) CD38, CD157, and RAGE as molecular determinants for social behavior, Cells, 9, 62, doi: 10.3390/cells9010062.
  64. Ortolan, E., Augeri, S., Fissolo, G., Musso, I., and Funaro, A. (2019) CD157: From immunoregulatory protein to potential therapeutic target, Immunol. Lett., 205, 59-64, doi: 10.1016/j.imlet.2018.06.007.
  65. Blauwendraat, C., Nalls, M. A., and Singleton, A. B. (2020) The genetic architecture of Parkinson's disease, Lancet Neurol., 19, 170-178, doi: 10.1016/S1474-4422(19)30287-X.
  66. Wand, H., Lambert, S. A., Tamburro, C., Iacocca, M. A., O'Sullivan, J. W., Sillari, C., Kullo, I. J., Rowley, R., Dron, J. S., Brockman, D., Venner, E., McCarthy, M. I., Antoniou, A. C., Easton, D. F., Hegele, R. A., Khera, A. V., Chatterjee, N., Kooperberg, C., Ed-wards, K., Vlessis, K., Kinnear, K., Danesh, J. N., Parkinson, H., Ramos, E. M., Roberts, M. C., Ormond, K. E., Khoury, M. J., Janssens, A., Goddard, K. A. B., Kraft, P., MacArthur, J. A. L., Inouye, M., and Wojcik, G. L. (2021) Improving reporting standards for polygenic scores in risk prediction studies, Nature, 591, 211-219, doi: 10.1038/s41586-021-03243-6.
  67. Pang, A. W., MacDonald, J. R., Pinto, D., Wei, J., Rafiq, M. A., Conrad, D. F., Park, H., Hurles, M. E., Lee, C., Venter, J. C., Kirkness, E. F., Levy, S., Feuk, L., and Scherer, S. W. (2010) Towards a comprehensive structural variation map of an individual human genome, Genome Biol., 11, R52, doi: 10.1186/gb-2010-11-5-r52.
  68. Ng, A. R., Jamora, R. D. G., and Rosales, R. L. (2021) X-linked dystonia Parkinsonism: crossing a new threshold, J. Neural Transm., 128, 567-573, doi: 10.1007/s00702-021-02324-0.
  69. Di Lazzaro, G., Magrinelli, F., Estevez-Fraga, C., Valente, E. M., Pisani, A., and Bhatia, K. P. (2021) X-linked Parkinsonism: phenotypic and genetic heterogeneity, Mov. Disord., 36, 1511-1525, doi: 10.1002/mds.28565.
  70. Bragg, D. C., Sharma, N., and Ozelius, L. J. (2019) X-Linked Dystonia-Parkinsonism: recent advances, Curr. Opin. Neurol., 32, 604-609, doi: 10.1097/wco.0000000000000708.
  71. Marques, S. C., Oliveira, C. R., Pereira, C. M., and Outeiro, T. F. (2011) Epigenetics in neurodegeneration: a new layer of complexity, Prog. Neuropsychopharmacol. Biol. Psychiatry., 35, 348-355, doi: 10.1016/j.pnpbp.2010.08.008.
  72. Mohd Murshid, N., Aminullah Lubis, F., and Makpol, S. (2022) Epigenetic changes and its intervention in age-related neurodegenerative diseases, Cell. Mol. Neurobiol., 42, 577-595, doi: 10.1007/s10571-020-00979-z.
  73. Briggs, C. E., Wang, Y., Kong, B., Woo, T. U., Iyer, L. K., and Sonntag, K. C. (2015) Midbrain dopamine neurons in Parkinson's disease exhibit a dysregulated miRNA and target-gene network, Brain Res., 1618, 111-121, doi: 10.1016/j.brainres.2015.05.021.
  74. McMillan, K. J., Murray, T. K., Bengoa-Vergniory, N., Cordero-Llana, O., Cooper, J., Buckley, A., Wade-Martins, R., Uney, J. B., O'Neill, M. J., Wong, L. F., and Caldwell, M. A. (2017) Loss of microRNA-7 regulation leads to alpha-synuclein accumulation and dopaminergic neuronal loss in vivo, Mol. Ther., 25, 2404-2414, doi: 10.1016/j.ymthe.2017.08.017.
  75. Alieva, A., Filatova, E. V., Karabanov, A. V., Illarioshkin, S. N., Limborska, S. A., Shadrina, M. I., and Slominsky, P. A. (2015) miRNA expression is highly sensitive to a drug therapy in Parkinson's disease, Parkinsonism Rel. Disord., 21, 72-74, doi: 10.1016/j.parkreldis.2014.10.018.
  76. Wang, C., Chen, L., Zhang, M., Yang, Y., and Wong, G. (2020) PDmethDB: A curated Parkinson's disease associated methylation information database, Computat. Struct. Biotechnol. J., 18, 3745-3749, doi: 10.1016/j.csbj.2020.11.015.
  77. Desplats, P., Spencer, B., Coffee, E., Patel, P., Michael, S., Patrick, C., Adame, A., Rockenstein, E., and Masliah, E. (2011) Alpha-synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases, J. Biol. Chem., 286, 9031-9037, doi: 10.1074/jbc.C110.212589.
  78. Pezzi, J. C., de Bem, C. M., da Rocha, T. J., Schumacher-Schuh, A. F., Chaves, M. L., Rieder, C. R., Hutz, M. H., Fiegenbaum, M., and Camozzato, A. L. (2017) Association between DNA methyltransferase gene polymorphism and Parkinson's disease, Neurosci. Lett., 639, 146-150, doi: 10.1016/j.neulet.2016.12.058.
  79. Angelopoulou, E., Paudel, Y. N., Papageorgiou, S. G., and Piperi, C. (2022) Environmental impact on the epigenetic mechanisms underlying Parkinson's disease pathogenesis: a narrative review, Brain Sci., 12, 175, doi: 10.3390/brainsci12020175.
  80. Schaffner, S. L., and Kobor, M. S. (2022) DNA methylation as a mediator of genetic and environmental influences on Parkinson's disease susceptibility: impacts of alpha-Synuclein, physical activity, and pesticide exposure on the epigenome, Front. Genet., 13, 971298, doi: 10.3389/fgene.2022.971298.
  81. Henderson, A. R., Wang, Q., Meechoovet, B., Siniard, A. L., Naymik, M., De Both, M., Huentelman, M. J., Caselli, R. J., Driver-Dunckley, E., and Dunckley, T. (2021) DNA methylation and expression profiles of whole blood in Parkinson's disease, Front. Genet., 12, 640266, doi: 10.3389/fgene.2021.640266.
  82. Hoss, A. G., Labadorf, A., Beach, T. G., Latourelle, J. C., and Myers, R. H. (2016) MicroRNA profiles in Parkinson's disease prefrontal cortex, Front. Aging Neurosci., 8, 36, doi: 10.3389/fnagi.2016.00036.
  83. Nair, V. D., and Ge, Y. (2016) Alterations of miRNAs reveal a dysregulated molecular regulatory network in Parkinson's disease striatum, Neurosci. Lett., 629, 99-104, doi: 10.1016/j.neulet.2016.06.061.
  84. Santos-Lobato, B. L., Vidal, A. F., and Ribeiro-Dos-Santos, Â. (2021) Regulatory miRNA-mRNA networks in Parkinson's disease, Cells, 10, 1410, doi: 10.3390/cells10061410.
  85. Saghazadeh, A., and Rezaei, N. (2022) MicroRNA machinery in Parkinson's disease: a platform for neurodegenerative diseases, Exp. Rev. Neurother., 22, 427-453, doi: 10.1586/14737175.2015.1114886.
  86. Ahmed, H., Abushouk, A. I., Gabr, M., Negida, A., and Abdel-Daim, M. M. (2017) Parkinson's disease and pesticides: a meta-analysis of disease connection and genetic alterations, Biomed. Pharmacother., 90, 638-649, doi: 10.1016/j.biopha.2017.03.100.
  87. Aloizou, A. M., Siokas, V., Sapouni, E. M., Sita, N., Liampas, I., Brotis, A. G., Rakitskii, V. N., Burykina, T. I., Aschner, M., Bogdanos, D. P., Tsatsakis, A., Hadjigeorgiou, G. M., and Dardiotis, E. (2020) Parkinson's disease and pesticides: are microRNAs the missing link? Sci. Total Environ., 744, 140591, doi: 10.1016/j.scitotenv.2020.140591.
  88. Kabaria, S., Choi, D. C., Chaudhuri, A. D., Mouradian, M. M., and Junn, E. (2015) Inhibition of miR-34b and miR-34c enhances α-synuclein expression in Parkinson's disease, FEBS Lett., 589, 319-325, doi: 10.1016/j.febslet.2014.12.014.
  89. Cardo, L. F., Coto, E., Ribacoba, R., Mata, I. F., Moris, G., Menéndez, M., and Alvarez, V. (2014) The screening of the 3′-UTR sequence of LRRK2 identified an association between the rs66737902 polymorphism and Parkinson's disease, J. Hum. Genet., 59, 346-348, doi: 10.1038/jhg.2014.26.
  90. Nadhan, R., Isidoro, C., Song, Y. S., and Dhanasekaran, D. N. (2022) Signaling by LncRNAs: structure, cellular homeostasis, and disease pathology, Cells, 11, 2517, doi: 10.3390/cells11162517.
  91. Jiang, J., Piao, X., Hu, S., Gao, J., and Bao, M. (2020) LncRNA H19 diminishes dopaminergic neuron loss by mediating microRNA-301b-3p in Parkinson's disease via the HPRT1-mediated Wnt/β-catenin signaling pathway, Aging, 12, 8820-8836, doi: 10.18632/aging.102877.
  92. Abrishamdar, M., Jalali, M. S., and Rashno, M. (2022) MALAT1 lncRNA and Parkinson's disease: the role in the pathophysiology and significance for diagnostic and therapeutic approaches, Mol. Neurobiol., 59, 5253-5262, doi: 10.1007/s12035-022-02899-z.
  93. Taghizadeh, E., Gheibihayat, S. M., Taheri, F., Afshani, S. M., Farahani, N., and Saberi, A. (2021) LncRNAs as putative biomarkers and therapeutic targets for Parkinson's disease, Neurol. Sci., 42, 4007-4015, doi: 10.1007/s10072-021-05408-7.
  94. Simchovitz, A., Hanan, M., Niederhoffer, N., Madrer, N., Yayon, N., Bennett, E. R., Greenberg, D. S., Kadener, S., and Soreq, H. (2019) NEAT1 is overexpressed in Parkinson's disease substantia nigra and confers drug-inducible neuroprotection from oxidative stress, FASEB J., 33, 11223-11234, doi: 10.1096/fj.201900830R.
  95. Li, Y., Gu, Z., Lin, S., Chen, L., Dzreyan, V., Eid, M., Demyanenko, S., and He, B. (2022) Histone deacetylases as epigenetic targets for treating Parkinson's disease, Brain Sci., 12, 672, doi: 10.3390/brainsci12050672.
  96. Zhang, H., Yao, L., Zheng, Z., Koc, S., and Lu, G. (2022) The role of non-coding RNAs in the pathogenesis of Parkinson's disease: recent advancement, Pharmaceuticals, 15, 811, doi: 10.3390/ph15070811.
  97. Helmy, M., Eldaydamony, E., Mekky, N., Elmogy, M., and Soliman, H. (2022) Predicting Parkinson's disease related genes based on PyFeat and gradient boosted decision tree, Sci. Rep., 12, 10004, doi: 10.1038/s41598-022-14127-8.
  98. Farrow, S. L., Schierding, W., Gokuladhas, S., Golovina, E., Fadason, T., Cooper, A. A., and O'Sullivan, J. M. (2022) Establishing gene regulatory networks from Parkinson's disease risk loci, Brain, 145, 2422-2435, doi: 10.1093/brain/awac022.
  99. Quinn, P. M. J., Moreira, P. I., Ambrósio, A. F., and Alves, C. H. (2020) PINK1/PARKIN signalling in neurodegeneration and neuroinflammation, Acta Neuropathol. Commun., 8, 189, doi: 10.1186/s40478-020-01062-w.
  100. Dolgacheva, L. P., Berezhnov, A. V., Fedotova, E. I., Zinchenko, V. P., and Abramov, A. Y. (2019) Role of DJ-1 in the mechanism of pathogenesis of Parkinson's disease, J. Bioenerg. Biomembr., 51, 175-188, doi: 10.1007/s10863-019-09798-4.
  101. Usmani, A., Shavarebi, F., and Hiniker, A. (2021) The cell biology of LRRK2 in Parkinson's disease, Mol. Cell. Biol., 41, 1-16, doi: 10.1128/mcb.00660-20.
  102. Tanaka, K. (2020) The PINK1-Parkin axis: an overview, Neurosci. Res., 159, 9-15, doi: 10.1016/j.neures.2020.01.006.
  103. Cohen, B. H., Chinnery, P. F., and Copeland, W. C. (1993) POLG-related disorders, in GeneReviews (Adam, M. P., Everman, D. B., Mirzaa, G. M., Pagon, R. A., Wallace, S. E., Bean, L. J. H., Gripp, K. W., and Amemiya, A., eds) University of Washington, Seattle.
  104. Van Veen, S., Martin, S., Van den Haute, C., Benoy, V., Lyons, J., Vanhoutte, R., Kahler, J. P., Decuypere, J. P., Gelders, G., Lambie, E., Zielich, J., Swinnen, J. V., Annaert, W., Agostinis, P., Ghesquière, B., Verhelst, S., Baekelandt, V., Eggermont, J., and Vangheluwe, P. (2020) ATP13A2 deficiency disrupts lysosomal polyamine export, Nature, 578, 419-424, doi: 10.1038/s41586-020-1968-7.
  105. Joseph, S., Schulz, J. B., and Stegmüller, J. (2018) Mechanistic contributions of FBXO7 to Parkinson's disease, J. Neurochem., 144, 118-127, doi: 10.1111/jnc.14253.
  106. Zhou, Z. D., Lee, J. C. T., and Tan, E. K. (2018) Pathophysiological mechanisms linking F-box only protein 7 (FBXO7) and Parkinson's disease (PD), Mutat. Res. Rev. Mutat. Res., 778, 72-78, doi: 10.1016/j.mrrev.2018.10.001.
  107. Lin, G., Lee, P. T., Chen, K., Mao, D., Tan, K. L., Zuo, Z., Lin, W. W., Wang, L., and Bellen, H. J. (2018) Phospholipase PLA2G6, a Parkinsonism-associated gene, affects Vps26 and Vps35, retromer function, and ceramide levels, similar to α-synuclein gain, Cell Metab., 28, 605-618.e606, doi: 10.1016/j.cmet.2018.05.019.
  108. Sassone, J., Reale, C., Dati, G., Regoni, M., Pellecchia, M. T., and Garavaglia, B. (2021) The role of VPS35 in the pathobiology of Parkinson's disease, Cell. Mol. Neurobiol., 41, 199-227, doi: 10.1007/s10571-020-00849-8.
  109. Roosen, D. A., Blauwendraat, C., Cookson, M. R., and Lewis, P. A. (2019) DNAJC proteins and pathways to parkinsonism, FEBS J., 286, 3080-3094, doi: 10.1111/febs.14936.
  110. Choudhry, H., Aggarwal, M., and Pan, P. Y. (2021) Mini-review: synaptojanin 1 and its implications in membrane trafficking, Neurosci. Lett., 765, 136288, doi: 10.1016/j.neulet.2021.136288.
  111. Monfrini, E., Spagnolo, F., Canesi, M., Seresini, A., Rini, A., Passarella, B., Percetti, M., Seia, M., Goldwurm, S., Cereda, V., Comi, G. P., Pezzoli, G., and Di Fonzo, A. (2022) VPS13C-associated Parkinson's disease: two novel cases and review of the literature, Parkinsonism Rel. Disord., 94, 37-39, doi: 10.1016/j.parkreldis.2021.11.031.
  112. Chang, D., Nalls, M. A., Hallgrímsdóttir, I. B., Hunkapiller, J., van der Brug, M., Cai, F., Kerchner, G. A., Ayalon, G., Bingol, B., Sheng, M., Hinds, D., Behrens, T. W., Singleton, A. B., Bhangale, T. R., and Graham, R. R. (2017) A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci, Nat. Genet., 49, 1511-1516, doi: 10.1038/ng.3955.
  113. Nalls, M. A., Pankratz, N., Lill, C. M., Do, C. B., Hernandez, D. G., Saad, M., DeStefano, A. L., Kara, E., Bras, J., Sharma, M., Schulte, C., Keller, M. F., Arepalli, S., Letson, C., Edsall, C., Stefansson, H., Liu, X., Pliner, H., Lee, J. H., Cheng, R., Ikram, M. A., Ioannidis, J. P., Hadjigeorgiou, G. M., Bis, J. C., Martinez, M., Perlmutter, J. S., Goate, A., Marder, K., Fiske, B., Sutherland, M., Xiromerisiou, G., Myers, R. H., Clark, L. N., Stefansson, K., Hardy, J. A., Heutink, P., Chen, H., Wood, N. W., Houlden, H., Payami, H., Brice, A., Scott, W. K., Gasser, T., Bertram, L., Eriksson, N., Foroud, T., and Singleton, A. B. (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease, Nat. Genet., 46, 989-993, doi: 10.1038/ng.3043.
  114. Nalls, M. A., Plagnol, V., Hernandez, D. G., Sharma, M., Sheerin, U. M., Saad, M., Simón-Sánchez, J., Schulte, C., Lesage, S., Sveinbjörnsdóttir, S., Stefánsson, K., Martinez, M., Hardy, J., Heutink, P., Brice, A., Gasser, T., Singleton, A. B., and Wood, N. W. (2011) Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies, Lancet, 377, 641-649, doi: 10.1016/s0140-6736(10)62345-8.
  115. Pickrell, J. K., Berisa, T., Liu, J. Z., Ségurel, L., Tung, J. Y., and Hinds, D. A. (2016) Detection and interpretation of shared genetic influences on 42 human traits, Nat. Genet., 48, 709-717, doi: 10.1038/ng.3570.
  116. Rodrigo, L. M., and Nyholt, D. R. (2021) Imputation and reanalysis of ExomeChip Data identifies novel, conditional and joint genetic effects on Parkinson's disease risk, Genes, 12, 689, doi: 10.3390/genes12050689.
  117. Lill, C. M., Roehr, J. T., McQueen, M. B., Kavvoura, F. K., Bagade, S., Schjeide, B. M., Schjeide, L. M., Meissner, E., Zauft, U., Allen, N. C., Liu, T., Schilling, M., Anderson, K. J., Beecham, G., Berg, D., Biernacka, J. M., Brice, A., DeStefano, A. L., Do, C. B., Eriksson, N., Factor, S. A., Farrer, M. J., Foroud, T., Gasser, T., Hamza, T., Hardy, J. A., Heutink, P., Hill-Burns, E. M., Klein, C., Latourelle, J. C., Maraganore, D. M., Martin, E. R., Martinez, M., Myers, R. H., Nalls, M. A., Pankratz, N., Payami, H., Satake, W., Scott, W. K., Sharma, M., Singleton, A. B., Stefansson, K., Toda, T., Tung, J. Y., Vance, J., Wood, N. W., Zabetian, C. P., Young, P., Tanzi, R. E., Khoury, M. J., Zipp, F., Lehrach, H., Ioannidis, J. P., and Bertram, L. (2012) Comprehensive research synopsis and systematic meta-analyses in Parkinson's disease genetics: the PDGene database, PLoS Genet., 8, e1002548, doi: 10.1371/journal.pgen.1002548.
  118. Do, C. B., Tung, J. Y., Dorfman, E., Kiefer, A. K., Drabant, E. M., Francke, U., Mountain, J. L., Goldman, S. M., Tanner, C. M., Langston, J. W., Wojcicki, A., and Eriksson, N. (2011) Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson's disease, PLoS Genet., 7, e1002141, doi: 10.1371/journal.pgen.1002141.
  119. Spencer, C. C., Plagnol, V., Strange, A., Gardner, M., Paisan-Ruiz, C., Band, G., Barker, R. A., Bellenguez, C., Bhatia, K., Blackburn, H., Blackwell, J. M., Bramon, E., Brown, M. A., Brown, M. A., Burn, D., Casas, J. P., Chinnery, P. F., Clarke, C. E., Corvin, A., Craddock, N., Deloukas, P., Edkins, S., Evans, J., Freeman, C., Gray, E., Hardy, J., Hudson, G., Hunt, S., Jankowski, J., Langford, C., Lees, A. J., Markus, H. S., Mathew, C. G., McCarthy, M. I., Morrison, K. E., Palmer, C. N., Pearson, J. P., Peltonen, L., Pirinen, M., Plomin, R., Potter, S., Rautanen, A., Sawcer, S. J., Su, Z., Trembath, R. C., Viswanathan, A. C., Williams, N. W., Morris, H. R., Donnelly, P., and Wood, N. W. (2011) Dissection of the genetics of Parkinson's disease identifies an additional association 5′ of SNCA and multiple associated haplotypes at 17q21, Hum. Mol. Genet., 20, 345-353, doi: 10.1093/hmg/ddq469.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies