Role of BDNF in neuroplasticity associated with alcohol dependence

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Chronic alcohol consumption is characterized by disturbances of neuroplasticity. Brain-derived neurotrophic factor (BDNF) may mechanistically participate in this process. Here we aimed to review actual experimental and clinical data related to BDNF involvement in neuroplasticity in the context of alcohol dependence. As shown in experiments on the rodents alcohol consumption is accompanied brain region-specific changes of BDNF expression and by structural and behavioral impairments. BDNF reverses aberrant neuroplasticity during alcohol intoxication. According to clinical data indices characterized BDNF demonstrate close relationship with consequences of alcohol dependence. Polymorphism rs6265 within BDNF gene interacts with macrostructural changes in the brain, while peripheral BDNF concentration may reflect anxiety, depression and cognitive decline. Thus, BDNF is involved in mechanisms of alcohol-related aberrant neuroplasticity, while polymorphisms within BDNF gene and peripheral BDNF concentration may be biomarkers, diagnostic or prognostic factors in clinics of alcoholism.

About the authors

D. I Peregud

Federal State Budgetary Institution, “V. Serbsky National Medical Research Center for Psychiatry and Drug Addiction” of the Ministry of Health of the Russian Federation;Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences

Email: peregud_d@yahoo.com
119002 Moscow, Russia;117485 Moscow, Russia

V. Yu Baronets

Federal State Budgetary Institution, “V. Serbsky National Medical Research Center for Psychiatry and Drug Addiction” of the Ministry of Health of the Russian Federation

Email: peregud_d@yahoo.com
119002 Moscow, Russia

N. N Terebilina

Federal State Budgetary Institution, “V. Serbsky National Medical Research Center for Psychiatry and Drug Addiction” of the Ministry of Health of the Russian Federation

Email: peregud_d@yahoo.com
119002 Moscow, Russia

N. V Gulyaeva

Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences;Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department

Email: peregud_d@yahoo.com
117485 Moscow, Russia;115419 Moscow, Russia

References

  1. Киржанова В. В., Григорова Н. И., Бобков Е. Н., Киржанов В. Н., Сидорюк О. В. (2021) Деятельность наркологической службы в Российской Федерации в 2019-2020 годах: Аналитический обзор, ФГБУ "НМИЦ ПН им. В.П. Сербского" Минздрава России, Москва.
  2. Сошников С. С., Стародубов В. И., Халтурина Д. А., Власов В. В., Обухова О. В., Идрисов Б. Т. (2020) Бремя последствий от употребления психоактивных веществ в Российской Федерации, Неврол. Вестник, 52, 49-54, doi: 10.17816/nb18975.
  3. Egervari, G., Siciliano, C. A., Whiteley, E. L., and Ron, D. (2021) Alcohol and the brain: from genes to circuits, Trends Neurosci., 44, 1004-1015, doi: 10.1016/j.tins.2021.09.006.
  4. Abrahao, K. P., Salinas, A. G., and Lovinger, D. M. (2017) Alcohol and the brain: neuronal molecular targets, synapses, and circuits, Neuron, 96, 1223-1238, doi: 10.1016/j.neuron.2017.10.032.
  5. Gilpin, N. W., and Koob, G. F. (2008) Neurobiology of alcohol dependence: focus on motivational mechanisms, Alcohol Res. Health, 31, 185-195.
  6. Gass, J. T., and Olive, M. F. (2012) Neurochemical and neurostructural plasticity in alcoholism. ACS Chem. Neurosci., 3, 494-504, doi: 10.1021/cn300013p.
  7. Ceballos, N., and Sharma, S. (2016) Risk and resilience: the role of brain-derived neurotrophic factor in alcohol use disorder, AIMS Neuroscience, 3, 398-432, doi: 10.3934/Neuroscience.2016.4.398.
  8. Kalueff, A. V. (2007) Neurobiology of memory and anxiety: from genes to behavior, Neural Plast., 2007, 78171, doi: 10.1155/2007/78171.
  9. Bannerman, D. M., Sprengel, R., Sanderson, D. J., McHugh, S. B., Rawlins, J. N., Monyer, H., and Seeburg, P. H. (2014) Hippocampal synaptic plasticity, spatial memory and anxiety, Nat. Rev. Neurosci., 15, 181-192, doi: 10.1038/nrn3677.
  10. Rădulescu, I., Drăgoi, A. M., Trifu, S. C., and Cristea, M. B. (2021) Neuroplasticity and depression: rewiring the brain's networks through pharmacological therapy (review), Exp. Ther. Med., 22, 1131, doi: 10.3892/etm.2021.10565.
  11. Ron, D., and Barak, S. (2016) Molecular mechanisms underlying alcohol-drinking behaviours, Nat. Rev. Neurosci., 17, 576-591, doi: 10.1038/nrn.2016.85.
  12. Liran, M., Rahamim, N., Ron, D., and Barak, S. (2020) Growth factors and alcohol use disorder, Cold. Spring. Harb. Perspect. Med., 10, a039271, doi: 10.1101/cshperspect.a039271.
  13. Logrip, M. L., Barak, S., Warnault, V., and Ron, D. (2015) Corticostriatal BDNF and alcohol addiction, Brain Res., 1628, 60-67, doi: 10.1016/j.brainres.2015.03.025.
  14. Ron, D., and Berger, A. (2018) Targeting the intracellular signaling "STOP" and "GO" pathways for the treatment of alcohol use disorders, Psychopharmacology (Berl), 235, 1727-1743, doi: 10.1007/s00213-018-4882-z.
  15. Lipsky, R. H., and Marini, A. M. (2007) Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity, Ann. N. Y. Acad. Sci., 1122, 130-143, doi: 10.1196/annals.1403.009.
  16. Hensler, J. G., Ladenheim, E. E., and Lyons, W. E. (2003) Ethanol consumption and serotonin-1A (5-HT1A) receptor function in heterozygous BDNF+/- mice, J. Neurochem., 85, 1139-1147, doi: 10.1046/j.1471-4159.2003.01748.x.
  17. McGough, N. N., He, D. Y., Logrip, M. L., Jeanblanc, J., Phamluong, K., Luong, K., Kharazia, V., Janak, P. H., and Ron, D. (2004) RACK1 and brain-derived neurotrophic factor: a homeostatic pathway that regulates alcohol addiction, J. Neurosci., 24, 10542-10552, doi: 10.1523/JNEUROSCI.3714-04.2004.
  18. Jeanblanc, J., He, D. Y., Carnicella, S., Kharazia, V., Janak, P. H., and Ron, D. (2009) Endogenous BDNF in the dorsolateral striatum gates alcohol drinking, J. Neurosci., 29, 13494-13502, doi: 10.1523/JNEUROSCI.2243-09.2009.
  19. Haun, H. L., Griffin, W. C., Lopez, M. F., Solomon, M. G., Mulholland, P. J., Woodward, J. J., McGinty, J. F., Ron, D., and Becker, H. C. (2018) Increasing Brain-Derived Neurotrophic Factor (BDNF) in medial prefrontal cortex selectively reduces excessive drinking in ethanol dependent mice, Neuropharmacology, 140, 35-42, doi: 10.1016/j.neuropharm.2018.07.031.
  20. Chao, M. V. (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways, Nat. Rev. Neurosci., 4, 299-309, doi: 10.1038/nrn1078.
  21. Sasi, M., Vignoli, B., Canossa, M., and Blum, R. (2017) Neurobiology of local and intercellular BDNF signaling, Pflugers Arch., 469, 593-610, doi: 10.1007/s00424-017-1964-4.
  22. Kowiański, P., Lietzau, G., Czuba, E., Waśkow, M., Steliga, A., and Moryś, J. (2018) BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity, Cell. Mol. Neurobiol., 38, 579-593, doi: 10.1007/s10571-017-0510-4.
  23. Zagrebelsky, M., Tacke, C., and Korte, M. (2020) BDNF signaling during the lifetime of dendritic spines, Cell. Tissue Res., 382, 185-199, doi: 10.1007/s00441-020-03226-5.
  24. Logrip, M. L., Janak, P. H., and Ron D. (2008) Dynorphin is a downstream effector of striatal BDNF regulation of ethanol intake, FASEB J., 22, 2393-2404, doi: 10.1096/fj.07-099135.
  25. Ohrtman, J. D., Stancik, E. K., Lovinger, D. M., and Davis, M. I. (2006) Ethanol inhibits brain-derived neurotrophic factor stimulation of extracellular signal-regulated/mitogen-activated protein kinase in cerebellar granule cells, Alcohol, 39, 29-37, doi: 10.1016/j.alcohol.2006.06.011.
  26. Li, Z., Ding, M., Thiele, C. J., and Luo, J. (2004) Ethanol inhibits brain-derived neurotrophic factor-mediated intracellular signaling and activator protein-1 activation in cerebellar granule neurons, Neuroscience, 126, 149-162, doi: 10.1016/j.neuroscience.2004.03.028.
  27. Lindsley, T. A., Shah, S. N., and Ruggiero, E. A. (2011) Ethanol alters BDNF-induced Rho GTPase activation in axonal growth cones, Alcohol. Clin. Exp. Res., 35, 1321-1330, doi: 10.1111/j.1530-0277.2011.01468.x.
  28. Gao, X., Smith, G. M., and Chen, J. (2009) Impaired dendric development and synaptic formation of postnatal-born dentate gyrus granular neurons in the absence of brain-derived neurotrophic factor signaling, Exp. Neurol., 215, 178-190, doi: 10.1016/j.expneurol.2008.10.009.
  29. Rauskolb, S., Zagrebelsky, M., Dreznjak, A., Deogracias, R., Matsumoto, T., Wiese, S., Erne, B., Sendtner, M., Schaeren-Wiemers, N., Korte, M., and Barde, Y. A. (2010) Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth, J. Neurosci., 30, 1739-1749, doi: 10.1523/JNEUROSCI.5100-09.2010.
  30. Rex, C. S., Lin, C. Y., Kramár, E. A., Chen, L. Y., Gall, C. M., and Lynch, G. (2007) Brain-derived neurotrophic factor promotes long-term potentiation-related cytoskeletal changes in adult hippocampus, J. Neurosci., 27, 3017-3029, doi: 10.1523/JNEUROSCI.4037-06.2007.
  31. Hou, L., Guo, Y., Lian, B., Wang, Y., Li, C., Wang, G., Li, Q., Pang, J., Sun, H., and Sun, L. (2018) Synaptic ultrastructure might be involved in HCN1-related BDNF mRNA in withdrawal-anxiety after ethanol dependence, Front. Psychiatry, 9, 215, doi: 10.3389/fpsyt.2018.00215.
  32. Pandey, S. C., Zhang, H., Ugale, R., Prakash, A., Xu, T., and Misra, K. (2008) Effector immediate-early gene arc in the amygdala plays a critical role in alcoholism, J. Neurosci., 28, 2589-2600, doi: 10.1523/JNEUROSCI.4752-07.2008.
  33. You, C., Zhang, H., Sakharkar, A. J., Teppen, T., and Pandey, S. C. (2014) Reversal of deficits in dendritic spines, BDNF and Arc expression in the amygdala during alcohol dependence by HDAC inhibitor treatment, Int. J. Neuropsychopharmacol., 17, 313-322, doi: 10.1017/S1461145713001144.
  34. Moonat, S., Sakharkar, A. J., Zhang, H., and Pandey, S. C. (2011) The role of amygdaloid brain-derived neurotrophic factor, activity-regulated cytoskeleton-associated protein and dendritic spines in anxiety and alcoholism, Addict. Biol., 16, 238-250, doi: 10.1111/j.1369-1600.2010.00275.x.
  35. Moonat, S., Sakharkar, A. J., Zhang, H., Tang, L., and Pandey, S. C. (2013) Aberrant histone deacetylase2-mediated histone modifications and synaptic plasticity in the amygdala predisposes to anxiety and alcoholism, Biol. Psychiatry, 73, 763-773, doi: 10.1016/j.biopsych.2013.01.012.
  36. Stragier, E., Martin, V., Davenas, E., Poilbout, C., Mongeau, R., Corradetti, R., and Lanfumey, L. (2015) Brain plasticity and cognitive functions after ethanol consumption in C57BL/6J mice, Transl. Psychiatry, 5, e696, doi: 10.1038/tp.2015.183.
  37. Silva-Peña, D., García-Marchena, N., Alén, F., Araos, P., Rivera, P., Vargas, A., García-Fernández, M. I., Martín-Velasco, A. I., Villanúa, M. Á., Castilla-Ortega, E., Santín, L., Pavón, F. J., Serrano, A., Rubio, G., Rodríguez de Fonseca, F., and Suárez, J. (2019) Alcohol-induced cognitive deficits are associated with decreased circulating levels of the neurotrophin BDNF in humans and rats, Addict. Biol., 24, 1019-1033, doi: 10.1111/adb.12668.
  38. Kolik, L. G., Nadorova, A. V., Antipova, T. A., Kruglov, S. V., Kudrin, V. S., and Durnev, A. D. (2019) Selank, peptide analogue of tuftsin, protects against ethanol-induced memory impairment by regulating of BDNF content in the hippocampus and prefrontal cortex in rats, Bull. Exp. Biol. Med., 167, 641-644, doi: 10.1007/s10517-019-04588-9.
  39. Conner, J. M., Lauterborn, J. C., Yan, Q., Gall, C. M., and Varon, S. (1997) Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport, J. Neurosci., 17, 2295-2313, doi: 10.1523/JNEUROSCI.17-07-02295.1997.
  40. Dieni, S., Matsumoto, T., Dekkers, M., Rauskolb, S., Ionescu, M. S., Deogracias, R., Gundelfinger, E. D., Kojima, M., Nestel, S., Frotscher, M., and Barde, Y. A. (2012) BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons, J. Cell. Biol., 196, 775-788, doi: 10.1083/jcb.201201038.
  41. Boulanger, L. M., and Poo, M. M. (1999) Presynaptic depolarization facilitates neurotrophin-induced synaptic potentiation, Nat. Neurosci., 4, 346-351, doi: 10.1038/7258.
  42. Park, H., and Poo, M. M. (2013) Neurotrophin regulation of neural circuit development and function, Nat. Rev. Neurosci., 14, 7-23, doi: 10.1038/nrn3379.
  43. Zucca. S., and Valenzuela, C. F. (2010) Low concentrations of alcohol inhibit BDNF-dependent GABAergic plasticity via L-type Ca2+ channel inhibition in developing CA3 hippocampal pyramidal neurons, J. Neurosci., 30, 6776-6781, doi: 10.1523/JNEUROSCI.5405-09.2010.
  44. Kolb, J. E., Trettel, J., and Levine, E. S. (2005) BDNF enhancement of postsynaptic NMDA receptors is blocked by ethanol, Synapse, 55, 52-57, doi: 10.1002/syn.20090.
  45. Wang, N., Liu, X., Li, X. T., Li, X. X., Ma, W., Xu, Y. M., Liu, Y., Gao, Q., Yang, T., Wang, H., Peng, Y., Zhu, X. F., and Guan, Y. Z. (2021) 7,8-Dihydroxyflavone alleviates anxiety-like behavior induced by chronic alcohol exposure in mice involving tropomyosin-related kinase B in the amygdala, Mol. Neurobiol., 58, 92-105, doi: 10.1007/s12035-020-02111-0.
  46. Peregud, D., Kvichansky, A., Shirobokova, N., Stepanichev, M., and Gulyaeva, N. (2022) 7,8-DHF enhances SHH in the hippocampus and striatum during early abstinence but has minor effects on alcohol intake in IA2BC paradigm and abstinence-related anxiety-like behavior in rats, Neurosci. Lett., 781, 136671, doi: 10.1016/j.neulet.2022.136671.
  47. Aberg, E., Hofstetter, C. P., Olson, L., and Brené, S. (2005) Moderate ethanol consumption increases hippocampal cell proliferation and neurogenesis in the adult mouse, Int. J. Neuropsychopharmacol., 8, 557-567, doi: 10.1017/S1461145705005286.
  48. Nixon, K., and Crews, F. T. (2002) Binge ethanol exposure decreases neurogenesis in adult rat hippocampus, J. Neurochem., 83, 1087-1093, doi: 10.1046/j.1471-4159.2002.01214.x.
  49. Stevenson, J. R., Schroeder, J. P., Nixon, K., Besheer, J., Crews, F. T., and Hodge, C. W. (2009) Abstinence following alcohol drinking produces depression-like behavior and reduced hippocampal neurogenesis in mice, Neuropsychopharmacology, 34, 1209-1222, doi: 10.1038/npp.2008.90.
  50. Numakawa, T., Odaka, H., and Adachi, N. (2018) Actions of brain-derived neurotrophin factor in the neurogenesis and neuronal function, and its involvement in the pathophysiology of brain diseases, Int. J. Mol. Sci., 19, 3650, doi: 10.3390/ijms19113650.
  51. Stragier, E., Massart, R., Salery, M., Hamon, M., Geny, D., Martin, V., Boulle, F., and Lanfumey, L. (2015) Ethanol-induced epigenetic regulations at the Bdnf gene in C57BL/6J mice, Mol. Psychiatry, 20, 405-412, doi: 10.1038/mp.2014.38.
  52. Somkuwar, S. S., Fannon, M. J., Staples, M. C., Zamora-Martinez, E. R., Navarro, A. I., Kim, A., Quigley, J. A., Edwards, S., and Mandyam, C. D. (2016) Alcohol dependence-induced regulation of the proliferation and survival of adult brain progenitors is associated with altered BDNF-TrkB signaling, Brain. Struct. Funct., 221, 4319-4335, doi: 10.1007/s00429-015-1163-z.
  53. Maynard, M. E., Barton, E. A., Robinson, C. R., Wooden, J. I., and Leasure, J. L. (2018) Sex differences in hippocampal damage, cognitive impairment, and trophic factor expression in an animal model of an alcohol use disorder, Brain. Struct. Funct., 223, 195-210, doi: 10.1007/s00429-017-1482-3.
  54. Briones, T. L., and Woods, J. (2013) Chronic binge-like alcohol consumption in adolescence causes depression-like symptoms possibly mediated by the effects of BDNF on neurogenesis, Neuroscience, 254, 324-334, doi: 10.1016/j.neuroscience.2013.09.031.
  55. Nubukpo, P., Ramoz, N., Girard, M., Malauzat, D., and Gorwood, P. (2017) Determinants of blood brain-derived neurotrophic factor blood levels in patients with alcohol use disorder, Alcohol. Clin. Exp. Res., 41, 1280-1287, doi: 10.1111/acer.13414.
  56. Kethawath, S. M., Jain, R., Dhawan, A., and Sarkar, S. (2020) A review of peripheral brain-derived neurotrophic factor levels in alcohol-dependent patients: current understanding, Indian J. Psychiatry, 62, 15-20, doi: 10.4103/psychiatry.IndianJPsychiatry_134_19.
  57. Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., Zaitsev, E., Gold, B., Goldman, D., Dean, M., Lu, B., and Weinberger, D. R. (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function, Cell, 112, 257-269, doi: 10.1016/s0092-8674(03)00035-7.
  58. Hariri, A. R., Goldberg, T. E., Mattay, V. S., Kolachana, B. S., Callicott, J. H., Egan, M. F., and Weinberger, D. R. (2003) Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance, J. Neurosci., 23, 6690-6694, doi: 10.1523/JNEUROSCI.23-17-06690.2003.
  59. Pezawas, L., Verchinski, B. A., Mattay, V. S., Callicott, J. H., Kolachana, B. S., Straub, R. E., Egan, M. F., Meyer-Lindenberg, A., and Weinberger, D. R. (2004) The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology, J. Neurosci., 24, 10099-10102, doi: 10.1523/JNEUROSCI.2680-04.2004.
  60. Warnault, V., Darcq, E., Morisot, N., Phamluong, K., Wilbrecht, L., Massa, S. M., Longo, F. M., and Ron, D. (2016) The BDNF valine 68 to methionine polymorphism increases compulsive alcohol drinking in mice that is reversed by tropomyosin receptor kinase B activation, Biol. Psychiatry, 79, 463-473, doi: 10.1016/j.biopsych.2015.06.007.
  61. Hogan, N. L., Jaehne, E. J., Bak, S., Djouma, E., and van den Buuse, M. (2021) Brain-Derived neurotrophic factor Val66Met induces female-specific changes in impulsive behaviour and alcohol self-administration in mice, Behav. Brain Res., 401, 113090, doi: 10.1016/j.bbr.2020.113090.
  62. Bird, C. W., Baculis, B. C., Mayfield, J. J., Chavez, G. J., Ontiveros, T., Paine, D. J., Marks, A. J., Gonzales, A. L., Ron, D., and Valenzuela, C. F. (2019) The brain-derived neurotrophic factor VAL68MET polymorphism modulates how developmental ethanol exposure impacts the hippocampus, Genes Brain Behav., 18, e12484, doi: 10.1111/gbb.12484.
  63. Bird, C. W., Barber, M. J., Martin, J., Mayfield, J. J., and Valenzuela, C. F. (2020) The mouse-equivalent of the human BDNF VAL66MET polymorphism increases dorsal hippocampal volume and does not interact with developmental ethanol exposure, Alcohol, 86, 17-24, doi: 10.1016/j.alcohol.2020.03.005.
  64. Hoefer, M. E., Pennington, D. L., Durazzo, T. C., Mon, A., Abé, C., Truran, D., Hutchison, K. E., and Meyerhoff, D. J. (2014) Genetic and behavioral determinants of hippocampal volume recovery during abstinence from alcohol, Alcohol, 48, 631-638, doi: 10.1016/j.alcohol.2014.08.007.
  65. Mon, A., Durazzo, T. C., Gazdzinski, S., Hutchison, K. E., Pennington, D., and Meyerhoff, D. J. (2013) Brain-derived neurotrophic factor genotype is associated with brain gray and white matter tissue volumes recovery in abstinent alcohol-dependent individuals, Genes Brain Behav., 12, 98-107, doi: 10.1111/j.1601-183X.2012.00854.x.
  66. Dalvie, S., Stein, D. J., Koenen, K., Cardenas, V., Cuzen, N. L., Ramesar, R., Fein, G., and Brooks, S. J. (2014) The BDNF p.Val66Met polymorphism, childhood trauma, and brain volumes in adolescents with alcohol abuse, BMC Psychiatry, 14, 328, doi: 10.1186/s12888-014-0328-2.
  67. Chen, J., Hutchison, K. E., Calhoun, V. D., Claus, E. D., Turner, J. A., Sui, J., and Liu, J. (2015) CREB-BDNF pathway influences alcohol cue-elicited activation in drinkers, Hum. Brain Mapp., 36, 3007-3019, doi: 10.1002/hbm.22824.
  68. Gorka, S. M., Teppen, T., Radoman, M., Phan, K. L., and Pandey, S. C. (2020) Human plasma BDNF is associated with amygdala-prefrontal cortex functional connectivity and problem drinking behaviors, Int. J. Neuropsychopharmacol., 23, 1-11, doi: 10.1093/ijnp/pyz057.
  69. Portelli, J., Farokhnia, M., Deschaine, S. L., Battista, J. T., Lee, M. R., Li, X., Ron, D., and Leggio, L. (2020) Investigating the link between serum concentrations of brain-derived neurotrophic factor and behavioral measures in anxious alcohol-dependent individuals, Alcohol, 89, 75-83, doi: 10.1016/j.alcohol.2020.07.009.
  70. Colzato, L. S., Van der Does, A. J., Kouwenhoven, C., Elzinga, B. M., and Hommel, B. (2011) BDNF Val66Met polymorphism is associated with higher anticipatory cortisol stress response, anxiety, and alcohol consumption in healthy adults, Psychoneuroendocrinology, 36, 1562-1569, doi: 10.1016/j.psyneuen.2011.04.010.
  71. Levchuk, L. A., Meeder, E. M. G., Roschina, O. V., Loonen, A. J. M., Boiko, A. S., Michalitskaya, E. V., Epimakhova, E. V., Losenkov, I. S., Simutkin, G. G., Bokhan, N. A., Schellekens, A. F. A., and Ivanova, S. A. (2020) Exploring brain derived neurotrophic factor and cell adhesion molecules as biomarkers for the transdiagnostic symptom anhedonia in alcohol use disorder and comorbid depression, Front. Psychiatry, 11, 296, doi: 10.3389/fpsyt.2020.00296.
  72. Joe, K. H., Kim, Y. K., Kim, T. S., Roh, S. W., Choi, S. W., Kim, Y. B., Lee, H. J., and Kim, D. J. (2007) Decreased plasma brain-derived neurotrophic factor levels in patients with alcohol dependence, Alcohol. Clin. Exp. Res., 31, 1833-1838, doi: 10.1111/j.1530-0277.2007.00507.x.
  73. Han, C., Bae, H., Won, S. D., Roh, S., and Kim, D. J. (2015) The relationship between brain-derived neurotrophic factor and cognitive functions in alcohol-dependent patients: a preliminary study, Ann. Gen. Psychiatry, 14, 30, doi: 10.1186/s12991-015-0065-z.
  74. Requena-Ocaña, N., Araos, P., Flores, M., García-Marchena, N., Silva-Peña, D., Aranda, J., Rivera, P., Ruiz, J. J., Serrano, A., Pavón, F. J., Suárez, J., and Rodríguez de Fonseca, F. (2021) Evaluation of neurotrophic factors and education level as predictors of cognitive decline in alcohol use disorder, Sci. Rep., 11, 15583, doi: 10.1038/s41598-021-95131-2.
  75. Anders, Q. S., Ferreira, L. V. B., Rodrigues, L. C. M., and Nakamura-Palacios, E. M. (2020) BDNF mRNA expression in leukocytes and frontal cortex function in drug use disorder, Front. Psychiatry, 11, 469, doi: 10.3389/fpsyt.2020.00469.
  76. Перегуд Д. И., Корольков А. И., Баронец В. Ю., Лобачева А. С., Аркус М. Л., Игумнов С. А., Пирожков С. В., Теребилина Н. Н. (2022) Уровень BDNF, miR-30a-5p и miR-122 в сыворотке крови в динамике синдрома отмены алкоголя, Биомед. Химия, 68, 218-227, doi: 10.18097/PBMC20226803218.
  77. Zhang, X. Y., Tan, Y. L., Chen, D. C., Tan, S. P., Yang, F. D., Zunta-Soares, G. B., and Soares, J. C. (2016) Effects of cigarette smoking and alcohol use on neurocognition and BDNF levels in a Chinese population, Psychopharmacology (Berl), 233, 435-445, doi: 10.1007/s00213-015-4124-6.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies