Prospects for the use of intranasally administered insulin and insulin-like growth factor-1 in cerebral ischemia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Currently, the approaches used to treat stroke have significant limitations, and neuroprotective therapy is ineffective. In this regard, the search for effective neuroprotectors and the development of new neuroprotective strategies in cerebral ischemia are still relevant. Insulin and insulin-like growth factor-1 (IGF-1) play a key role in the functioning of the brain, are involved in the regulation of growth, differentiation and survival of neurons, neuronal plasticity, food intake, control peripheral metabolism and endocrine functions. They have a complex effect on the brain, including neuroprotective effects in cerebral ischemia and stroke. Experiments on animals and cell cultures have shown that insulin and IGF-1 under hypoxic conditions improve energy metabolism in neurons and glial cells, have a positive effect on blood microcirculation in the brain, restore nerve cell functions and neurotransmission processes, and have anti-inflammatory and antiapoptotic effects on brain cells. Of greatest interest to the clinic is the intranasal route of administration of insulin and IGF-1, since it allows dosed delivery of these hormones directly to the brain, bypassing the blood-brain barrier. Intranasally administered insulin demonstrates a pronounced positive effect in the correction of cognitive impairment in elderly people with neurodegenerative and metabolic disorders. Insulin and IGF-1 administered intranasally improve increase the survival of animals with ischemic stroke. The review discusses literature data and the results of our own studies on the mechanisms of the neuroprotective action of intranasally administered insulin and IGF-1 in cerebral ischemia and the prospects for their use to normalize CNS functions and reduce neurodegenerative changes in this pathology.

About the authors

I. I Zorina

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: zorina.inna.spb@gmail.com
194223 Saint-Petersburg, Russia

N. F Avrova

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: zorina.inna.spb@gmail.com
194223 Saint-Petersburg, Russia

I. O Zakharova

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: zorina.inna.spb@gmail.com
194223 Saint-Petersburg, Russia

A. O Shpakov

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: zorina.inna.spb@gmail.com
194223 Saint-Petersburg, Russia

References

  1. Soto, M., Cai, W., Konishi, M., and Kahn, C. R. (2019) Insulin signaling in the hippocampus and amygdala regulates metabolism and neurobehavior, Proc. Natl. Acad. Sci. USA, 116, 6379-6384, doi: 10.1073/pnas.1817391116.
  2. Havrankova, J., Roth, J., and Brownstein, M. J. (1979) Concentrations of insulin and insulin receptors in the brain are independent of peripheral insulin levels. Studies of obese and streptozotocin-treated rodents, J. Clin. Invest., 64, 636-642, doi: 10.1172/JCI109504.
  3. Rhea, E. M., and Banks, W. A. (2019) Role of the blood-brain barrier in central nervous system insulin resistance, Front. Neurosci., 13, 521, doi: 10.3389/fnins.2019.00521.
  4. Beddows, C. A., and Dodd, G. T. (2021) Insulin on the brain: The role of central insulin signalling in energy and glucose homeostasis, J. Neuroendocrinol., 33, e12947, doi: 10.1111/jne.12947.
  5. Devaskar, S. U., Giddings, S. J., Rajakumar, P. A., Carnaghi, L. R., Menon, R. K., and Zahm, D. S. (1994) Insulin gene expression and insulin synthesis in mammalian neuronal cells, J. Biol. Chem., 269, 8445-8454, doi: 10.1016/S0021-9258(17)37214-9.
  6. Devaskar, S. U., Singh, B. S., Carnaghi, L. R., Rajakumar, P. A., and Giddings, S. J. (1993) Insulin II gene expression in rat central nervous system, Regul. Pept., 48, 5563, doi: 10.1016/0167-0115(93)90335-6.
  7. Schechter, R., Whitmire, J., Wheet, G.S., Beju, D., Jackson, K. W., Harlow, R., and Gavin, J. R., 3rd (1994) Immunohistochemical and in situ hybridization study of an insulin-like substance in fetal neuron cell cultures, Brain Res., 636, 9-27, doi: 10.1016/0006-8993(94)90170-8.
  8. Gerozissis, K. (2008) Brain insulin, energy and glucose homeostasis; genes, environment and metabolic pathologies, Eur. J. Pharmacol., 585, 38-49, doi: 10.1016/j.ejphar.2008.01.050.
  9. Havrankova, J., Roth, J., and Brownstein, M. (1978) Insulin receptors are widely distributed in the central nervous system of the rat, Nature, 272, 827-829, doi: 10.1038/272827a0.
  10. Escribano, O., Beneit, N., Rubio-Longás, C., López-Pastor, A. R., and Gómez-Hernández, A. (2017) The role of insulin receptor isoforms in diabetes and its metabolic and vascular complications, J. Diabetes Res., 2017, 1403206, doi: 10.1155/2017/1403206.
  11. De Meyts, P. (2008) The insulin receptor: a prototype for dimeric, allosteric membrane receptors? Trends Biochem. Sci., 33, 376-384, doi: 10.1016/j.tibs.2008.06.003.
  12. Belfiore, A., Frasca, F., Pandini, G., Sciacca, L., and Vigneri, R. (2009) Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease, Endocr. Rev., 30, 586-623, doi: 10.1210/er.2008-0047.
  13. White, M. F., and Kahn, C. R. (2021) Insulin action at a molecular level - 100 years of progress, Mol. Metab., 52, 101304, doi: 10.1016/j.molmet.2021.101304.
  14. Copps, K. D., and White, M. F. (2012) Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2, Diabetologia, 55, 2565-2582, doi: 10.1007/s00125-012-2644-8.
  15. Razzini, G., Ingrosso, A., Brancaccio, A., Sciacchitano, S., Esposito, D. L., and Falasca, M. (2000) Different subcellular localization and phosphoinositides binding of insulin receptor substrate protein pleckstrin homology domains, Mol. Endocrinol., 14, 823-836, doi: 10.1210/mend.14.6.0486.
  16. Aguirre, V., Werner, E. D., Giraud, J., Lee, Y. H., Shoelson, S. E., and White, M. F. (2002) Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action, J. Biol. Chem., 277, 1531-1537, doi: 10.1074/jbc.M101521200.
  17. Bakke, J., and Haj, F. G. (2015) Protein-tyrosine phosphatase 1B substrates and metabolic regulation, Semin. Cell Dev. Biol., 37, 58-65, doi: 10.1016/j.semcdb.2014.09.020.
  18. Dodd, G. T., Xirouchaki, C. E., Eramo, M., Mitchell, C. A., Andrews, Z. B., Henry, B. A., Cowley, M. A., and Tiganis, T. (2019) Intranasal targeting of hypothalamic PTP1B and TCPTP reinstates leptin and insulin sensitivity and promotes weight loss in obesity, Cell Rep., 28, 2905-2922.e5, doi: 10.1016/j.celrep.2019.08.019.
  19. Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M., and Bilanges, B. (2010) The emerging mechanisms of isoform-specific PI3K signalling, Nat. Rev. Mol. Cell Biol., 11, 329-341, doi: 10.1038/nrm2882.
  20. Levenga, J., Wong, H., Milstead, R. A., LaPlante, L. E., Hoeffer, C. A. (2021) Immunohistological examination of AKT isoforms in the brain: cell-type specificity that may underlie AKT's role in complex brain disorders and neurological disease, Cereb. Cortex Commun., 2, tgab036, doi: 10.1093/texcom/tgab036.
  21. Manning, B. D., and Toker, A. (2017) AKT/PKB signaling: navigating the network, Cell, 169, 381-405, doi: 10.1016/j.cell.2017.04.001.
  22. Hemmings, B. A., and Restuccia, D. F. (2012) PI3KPKB/Akt pathway, Cold Spring Harb. Perspect. Biol., 4, a011189, doi: 10.1101/cshperspect.a011189. Erratum in: (2015) Cold Spring Harb. Perspect. Biol., 7, a026609, doi: 10.1101/cshperspect.a026609.
  23. McCubrey, J. A., Steelman, L. S., Bertrand, F. E., Davis, N. M., Sokolosky, M., Abrams, S. L., Montalto, G., D'Assoro, A. B., Libra, M., Nicoletti, F., Maestro, R., Basecke, J., Rakus, D., Gizak, A., Demidenko, Z. N., Cocco, L., Martelli, A. M., and Cervello, M. (2014) GSK-3 as potential target for therapeutic intervention in cancer, Oncotarget, 5, 2881-2911, doi: 10.18632/oncotarget.2037.
  24. Beurel, E., Grieco, S. F., and Jope, R. S. (2015) Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases, Pharmacol. Ther., 148, 114-131, doi: 10.1016/j.pharmthera.2014.11.016.
  25. Brown, A. K., and Webb, A. E. (2018) Regulation of FOXO factors in mammalian cells, Curr. Top. Dev. Biol., 127, 165-192, doi: 10.1016/bs.ctdb.2017.10.006.
  26. Ghasemi, R., Haeri, A., Dargahi, L., Mohamed, Z., and Ahmadiani, A. (2013) Insulin in the brain: sources, localization and functions, Mol. Neurobiol., 47, 145-171, doi: 10.1007/s12035-012-8339-9.
  27. Wang, X., and Proud, C. G. (2006) The mTOR pathway in the control of protein synthesis, Physiology (Bethesda), 21, 362-369, doi: 10.1152/physiol.00024.2006.
  28. Stoica, L., Zhu, P. J., Huang, W., Zhou, H., Kozma, S. C., and Costa-Mattioli, M. (2011) Selective pharmacogenetic inhibition of mammalian target of Rapamycin complex I (mTORC1) blocks long-term synaptic plasticity and memory storage, Proc. Natl. Acad. Sci. USA, 108, 3791-3796, doi: 10.1073/pnas.1014715108.
  29. Trueba-Saiz, A., Fernandez, A. M., Nishijima, T., Mecha, M., Santi, A., Munive, V., and Aleman, I. T. (2017) Circulating insulin-like growth factor I regulates its receptor in the brain of male mice, Endocrinology, 158, 349-355, doi: 10.1210/en.2016-1468.
  30. Baker, A. M., Batchelor, D. C., Thomas, G. B., Wen, J. Y., Rafiee, M., Lin, H., and Guan, J. (2005) Central penetration and stability of N-terminal tripeptide of insulin-like growth factor-I, glycine-proline-glutamate in adult rat, Neuropeptides, 39, 81-87, doi: 10.1016/j.npep.2004.11.001.
  31. Guan, J. (2011) Insulin-like growth factor-1 (IGF-1) derived neuropeptides, a novel strategy for the development of pharmaceuticals for managing ischemic brain injury, CNS Neurosci. Ther., 17, 250-255, doi: 10.1111/j.1755-5949.2009.00128.x.
  32. Lewitt, M. S., and Boyd, G. W. (2019) The role of insulin-like growth factors and insulin-like growth factor-binding proteins in the nervous system, Biochem. Insights, 12, 1178626419842176, doi: 10.1177/1178626419842176.
  33. Rotwein, P., Burgess, S. K., Milbrandt, J. D., and Krause, J. E. (1988) Differential expression of insulin-like growth factor genes in rat central nervous system, Proc. Natl. Acad. Sci. USA, 85, 265-269, doi: 10.1073/pnas.85.1.265.
  34. Whittaker, J., Groth, A. V., Mynarcik, D. C., Pluzek, L., Gadsbøll, V. L., and Whittaker, L. J. (2001) Alanine scanning mutagenesis of a type 1 insulin-like growth factor receptor ligand binding site, J. Biol. Chem., 276, 43980-43986, doi: 10.1074/jbc.M102863200.
  35. Drakas, R., Tu, X., and Baserga, R. (2004) Control of cell size through phosphorylation of upstream binding factor 1 by nuclear phosphatidylinositol 3-kinase, Proc. Natl. Acad. Sci. USA, 101, 9272-9276, doi: 10.1073/pnas.0403328101.
  36. Shpakov, A. O., Derkach, K. V., and Berstein, L. M. (2015) Brain signaling systems in the type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases, Future Sci. OA, 1, FSO25, doi: 10.4155/fso.15.23.
  37. Yuan, H., Chen, R., Wu, L., Chen, Q., Hu, A., Zhang, T., Wang, Z., and Zhu, X. (2015) The regulatory mechanism of neurogenesis by IGF-1 in adult mice, Mol. Neurobiol., 51, 512-522, doi: 10.1007/s12035-014-8717-6.
  38. Agis-Balboa, R. C., and Fischer, A. (2014) Generating new neurons to circumvent your fears: the role of IGF signaling, Cell Mol. Life Sci., 71, 21-42, doi: 10.1007/s00018-013-1316-2.
  39. Gubbi, S., Quipildor, G. F., Barzilai, N., Huffman, D. M., and Milman, S. (2018) 40 YEARS of IGF1: IGF1: the Jekyll and Hyde of the aging brain, J. Mol. Endocrinol., 61, T171-T185, doi: 10.1530/JME-18-0093.
  40. Wrigley, S., Arafa, D., and Tropea, D. (2017) Insulin-like growth factor 1: at the crossroads of brain development and aging, Front. Cell Neurosci., 11, 14, doi: 10.3389/fncel.2017.00014.
  41. Memezawa, H., Minamisawa, H., Smith, M. L., and Siesjö, B. K. (1992) Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat, Exp. Brain Res., 89, 67-78, doi: 10.1007/BF00229002.
  42. Gidö, G., Kristián, T., and Siesjö, B. K. (1997) Extracellular potassium in a neocortical core area after transient focal ischemia, Stroke, 28, 206-210, doi: 10.1161/01.str.28.1.206.
  43. Kristián, T., Gidö, G., Kuroda, S., Schütz, A., and Siesjö, B. K. (1998) Calcium metabolism of focal and penumbral tissues in rats subjected to transient middle cerebral artery occlusion, Exp. Brain Res., 120, 503-509, doi: 10.1007/s002210050424.
  44. Dirnagl, U., Iadecola, C., and Moskowitz, M. A. (1999) Pathobiology of ischaemic stroke: an integrated view, Trends Neurosci., 22, 391-397, doi: 10.1016/s0166-2236(99)01401-0.
  45. Khoshnam, S. E., Winlow, W., Farzaneh, M., Farbood, Y., and Moghaddam, H. F. (2017) Pathogenic mechanisms following ischemic stroke, Neurol. Sci., 38, 1167-1186, doi: 10.1007/s10072-017-2938-1.
  46. George, P. M., and Steinberg, G. K. (2015) Novel stroke therapeutics: unraveling stroke pathophysiology and its impact on clinical treatments, Neuron, 87, 297-309, doi: 10.1016/j.neuron.2015.05.041.
  47. Zhang, F. X., Rubin, R., and Rooney, T. A. (1998) N-methyl-D-aspartate inhibits apoptosis through activation of phosphatidylinositol 3-kinase in cerebellar granule neurons - a role for insulin receptor substrate-1 in the neurotrophic action of N-methyl-D-aspartate and its inhibition by ethanol, J. Biol. Chem., 273, 26596-26602, doi: 10.1074/jbc.273.41.26596.
  48. Endo, H., Nito, C., Kamada, H., Nishi, T., and Chan, P. H. (2006) Activation of the Akt/GSK3beta signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats, J. Cereb. Blood Flow Metab., 26, 1479-1489, doi: 10.1038/sj.jcbfm.9600303.
  49. Soriano, F. X., Papadia, S., Hofmann, F., Hardingham, N. R., Bading, H., and Hardingham, G. E. (2006) Preconditioning doses of NMDA promote neuroprotection by enhancing neuronal excitability, J. Neurosci., 26, 4509-4518, doi: 10.1523/JNEUROSCI.0455-06.2006.
  50. Qin, C., Yang, S., Chu, Y. H., Zhang, H., Pang, X. W., Chen, L., Zhou, L. Q., Chen, M., Tian, D. S., and Wang, W. (2022) Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions, Signal Transduct. Target. Ther., 7, 215, doi: 10.1038/s41392-022-01064-1. Erratum in: Signal Transduct. Target. Ther., 7, 278.
  51. Ahad, M. A., Kumaran, K. R., Ning, T., Mansor, N. I., Effendy, M. A., Damodaran, T., Lingam, K., Wahab, H. A., Nordin, N., Liao, P., Müller, C. P., and Hassan, Z. (2020) Insights into the neuropathology of cerebral ischemia and its mechanisms, Rev. Neurosci., 31, 521-538, doi: 10.1515/revneuro-2019-0099.
  52. Semenza, G. L. (2009) Regulation of oxygen homeostasis by hypoxia-inducible factor 1, Physiology (Bethesda), 24, 97-106, doi: 10.1152/physiol.00045.2008.
  53. Sharp, F., and Bernaudin, M. (2004) HIF1 and oxygen sensing in the brain, Nat. Rev. Neurosci., 5, 437-448, doi: 10.1038/nrn1408.
  54. Zhang, Z., Yao, L., Yang, J., Wang, Z., and Du, G. (2018) PI3K/Akt and HIF 1 signaling pathway in hypoxia ischemia (Review), Mol. Med. Rep., 18, 3547-3554, doi: 10.3892/mmr.2018.9375.
  55. Sanderson, T. H., Reynolds, C. A., Kumar, R., Przyklenk, K., and Hüttemann, M. (2013) Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation, Mol. Neurobiol., 47, 9-23, doi: 10.1007/s12035-012-8344-z.
  56. Wardlaw, J. M., Murray, V., Berge, E., and del Zoppo, G. J. (2014) Thrombolysis for acute ischaemic stroke, Cochrane Database Syst. Rev., 2014, CD000213, doi: 10.1002/14651858.CD000213.pub3.
  57. Федеральные клинические рекомендации по ведению больных (2022) Ишемический инсульт и транзиторная ишемическая атака у взрослых, Москва.
  58. Emberson, J., Lees, K. R., Lyden, P., Blackwell, L., Albers, G., Bluhmki, E., Brott, T., Cohen, G., Davis, S., Donnan, G., Grotta, J., Howard, G., Kaste, M., Koga, M., von Kummer, R., Lansberg, M., Lindley, R. I., Murray, G., Olivot, J. M., Parsons, M., Tilley, B., Toni, D., Toyoda, K., Wahlgren, N., Wardlaw, J., Whiteley, W., del Zoppo, G. J., Baigent, C., Sandercock, P., and Hacke, W. (2014) Stroke Thrombolysis Trialists' Collaborative Group. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials, Lancet, 384, 1929-1935, doi: 10.1016/S0140-6736(14)60584-5.
  59. Guekht, A., Skoog, I., Edmundson, S., Zakharov, V., and Korczyn, A. D. (2017) ARTEMIDA Trial (a Randomized Trial of Efficacy, 12 Months International Double-Blind Actovegin): A randomized controlled trial to assess the efficacy of actovegin in poststroke cognitive impairment, Stroke, 48, 1262-1270, doi: 10.1161/STROKEAHA.116.014321.
  60. Zhang, C., and Yan, C. (2020) Updates of recent vinpocetine research in treating cardiovascular diseases, J. Cell Immunol., 2, 211-219, doi: 10.33696/immunology.2.045.
  61. Gusev, E. I., Skvortsova, V. I., and Chukanova, E. I. (2005) Semax in prevention of disease progress and development of exacerbations in patients with cerebrovascular insufficiency [in Russian], Zhurn. Nevrol. Psikhiatr. Im. S. S. Korsakova, 105, 35-40.
  62. Melamed, E. (1976) Reactive hyperglycaemia in patients with acute stroke, J. Neurol. Sci., 29, 267-275, doi: 10.1016/0022-510x(76)90176-3.
  63. Capes, S. E., Hunt, D., Malmberg, K., Pathak, P., and Gerstein, H. C. (2001) Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview, Stroke, 32, 2426-2432, doi: 10.1161/hs1001.096194.
  64. Zhang, Z., Yan, J., and Shi, H. (2013) Hyperglycemia as a risk factor of ischemic stroke, J. Drug Metab. Toxicol., 4, 153, doi: 10.4172/2157-7609.1000153.
  65. Piironen, K., Putaala, J., Rosso, C., and Samson, Y. (2012) Glucose and acute stroke: evidence for an interlude, Stroke, 43, 898-902, doi: 10.1161/STROKEAHA.111.631218.
  66. Saxena, A., Anderson, C. S., Wang, X., Sato, S., Arima, H., Chan, E., Muñoz-Venturelli, P., Delcourt, C., Robinson, T., Stapf, C., Lavados, P. M., Wang, J., Neal, B., Chalmers, J., and Heeley, E. (2016) INTERACT2 Investigators. Prognostic significance of hyperglycemia in acute intracerebral hemorrhage: The INTERACT2 study, Stroke, 47, 682-688, doi: 10.1161/STROKEAHA.115.011627.
  67. Voll, C. L., and Auer, R. N. (1988) The effect of postischemic blood glucose levels on ischemic brain damage in the rat, Ann. Neurol., 24, 638-646, doi: 10.1002/ana.410240508.
  68. Voll, C. L., Whishaw, I. Q., and Auer, R. N. (1989) Postischemic insulin reduces spatial learning deficit following transient forebrain ischemia in rats, Stroke, 20, 646-651, doi: 10.1161/01.str.20.5.646. Erratum in: (1989), Stroke, 20, 1118.
  69. Hamilton, M. G., Tranmer, B. I., and Auer, R. N. (1995) Insulin reduction of cerebral infarction due to transient focal ischemia, J. Neurosurg., 82, 262-268, doi: 10.3171/jns.1995.82.2.0262.
  70. Warner, D. S., Gionet, T. X., Todd, M. M., and McAllister, A. M. (1992) Insulin-induced normoglycemia improves ischemic outcome in hyperglycemic rats, Stroke, 23, 1775-1780, discussion 1781, doi: 10.1161/01.str.23.12.1775.
  71. Guyot, L. L., Diaz, F. G., O'Regan, M. H., Ren, J., and Phillis, J. W. (2000) The effect of intravenous insulin on accumulation of excitotoxic and other amino acids in the ischemic rat cerebral cortex, Neurosci. Lett., 288, 61-65, doi: 10.1016/s0304-3940(00)01168-x.
  72. Fukuoka, S., Yeh, H., Mandybur, T. I., and Tew, J. M. Jr. (1989) Effect of insulin on acute experimental cerebral ischemia in gerbils, Stroke, 20, 396-399, doi: 10.1161/01.str.20.3.396.
  73. Meden, P., Andersen, M., Overgaard, K., Rasmussen, R. S., and Boysen, G. (2002) The effects of early insulin treatment combined with thrombolysis in rat embolic stroke, Neurol. Res., 24, 399-404, doi: 10.1179/016164102101200096.
  74. Huang, S. S., Lu, Y. J., Huang, J. P., Wu, Y. T., Day, Y. J., and Hung, L. M. J. (2014) The essential role of endothelial nitric oxide synthase activation in insulin-mediated neuroprotection against ischemic stroke in diabetes, Vasc. Surg., 59, 483-491, doi: 10.1016/j.jvs.2013.03.023.
  75. Izumi, Y., Pinard, E., Roussel, S., and Seylaz, J. (1992) Insulin protects brain tissue against focal ischemia in rats, Neurosci. Lett., 144, 121-123, doi: 10.1016/0304-3940(92)90730-u.
  76. Fanne, R. A., Nassar, T., Heyman, S. N., Hijazi, N., and Higazi, A. A. (2011) Insulin and glucagon share the same mechanism of neuroprotection in diabetic rats: role of glutamate, Am. J. Physiol. Regul. Integr. Comp. Physiol., 301, R668-R673, doi: 10.1152/ajpregu.00058.2011.
  77. Voll, C. L., and Auer, R. N. (1991) Insulin attenuates ischemic brain damage independent of its hypoglycemic effect, J. Cereb. Blood Flow Metab., 11, 1006-1014, doi: 10.1038/jcbfm.1991.168.
  78. Guan, J., Williams, C., Gunning, M., Mallard, C., and Gluckman, P. (1993) The effects of IGF-1 treatment after hypoxic-ischemic brain injury in adult rats, J. Cereb. Blood Flow Metab., 13, 609-616, doi: 10.1038/jcbfm.1993.79.
  79. Zhu, C. Z., and Auer, R. N. (1994) Intraventricular administration of insulin and IGF-1 in transient forebrain ischemia, J. Cereb. Blood Flow Metab., 14, 237-242, doi: 10.1038/jcbfm.1994.30.
  80. Russo, V., Candeloro, P., Malara, N., Perozziello, G., Iannone, M., Scicchitano, M., Mollace, R., Musolino, V., Gliozzi, M., Carresi, C., Morittu, V. M., Gratteri, S., Palma, E., Muscoli, C., Di Fabrizio, E., and Mollace, V. (2019) Key role of cytochrome C for apoptosis detection using Raman microimaging in an animal model of brain ischemia with insulin treatment, Appl. Spectrosc., 73, 1208-1217, doi: 10.1177/0003702819858671.
  81. Sanderson, T. H., Kumar, R., Sullivan, J. M., and Krause, G. S. (2008) Insulin blocks cytochrome c release in the reperfused brain through PI3-K signaling and by promoting Bax/Bcl-XL binding, J. Neurochem., 106, 1248-1258, doi: 10.1111/j.1471-4159.2008.05473.x.
  82. Sanderson, T. H., Kumar, R., Murariu-Dobrin, A. C., Page, A. B., Krause, G. S., and Sullivan, J. M. (2009) Insulin activates the PI3K-Akt survival pathway in vulnerable neurons following global brain ischemia, Neurol. Res., 31, 947-958, doi: 10.1179/174313209X382449.
  83. Sanderson, T. H., Mahapatra, G., Pecina, P., Ji, Q., Yu, K., Sinkler, C., Varughese, A., Kumar, R., Bukowski, M. J., Tousignant, R. N., Salomon, A. R., Lee, I., and Hüttemann, M. (2013) Cytochrome C is tyrosine 97 phosphorylated by neuroprotective insulin treatment, PLoS One, 8, e78627, doi: 10.1371/journal.pone.0078627.
  84. Duarte, A. I., Santos, P., Oliveira, C. R., Santos, M. S., and Rego, A. C. (2008) Insulin neuroprotection against oxidative stress is mediated by Akt and GSK-3beta signaling pathways and changes in protein expression, Biochim. Biophys. Acta, 1783, 994-1002, doi: 10.1016/j.bbamcr.2008.02.016.
  85. Duarte, A. I., Moreira, P. I., and Oliveira, C. R. (2012) Insulin in central nervous system: more than just a peripheral hormone, J. Aging Res., 2012, 384017, doi: 10.1155/2012/384017.
  86. Hughes, T. M., and Craft, S. (2016) The role of insulin in the vascular contributions to age-related dementia, Biochim. Biophys. Acta, 1862, 983-991, doi: 10.1016/j.bbadis.2015.11.013.
  87. Muniyappa, R., and Yavuz, S. (2013) Metabolic actions of angiotensin II and insulin: a microvascular endothelial balancing act, Mol. Cell Endocrinol., 378, 59-69, doi: 10.1016/j.mce.2012.05.017.
  88. McKay, M. K., and Hester, R. L. (1996) Role of nitric oxide, adenosine, and ATP-sensitive potassium channels in insulin-induced vasodilation, Hypertension, 28, 202-208, doi: 10.1161/01.hyp.28.2.202.
  89. Hung, L. M., Huang, J. P., Liao, J. M., Yang, M. H., Li, D. E., Day, Y. J., and Huang, S. S. (2014) Insulin renders diabetic rats resistant to acute ischemic stroke by arresting nitric oxide reaction with superoxide to form peroxynitrite, J. Biomed. Sci., 21, 92, doi: 10.1186/s12929-014-0092-0.
  90. Beilharz, E. J., Russo, V. C., Butler, G., Baker, N. L., Connor, B., Sirimanne, E. S., Dragunow, M., Werther, G. A., Gluckman, P. D., Williams, C. E., and Scheepens, A. (1998) Co-ordinated and cellular specific induction of the components of the IGF/IGFBP axis in the rat brain following hypoxic-ischemic injury, Brain Res. Mol. Brain Res., 59, 119-134, doi: 10.1016/s0169-328x(98)00122-3.
  91. Schober, M. E., Ke, X., Xing, B., Block, B. P., Requena, D. F., McKnight, R., and Lane, R. H. (2012) Traumatic brain injury increased IGF-1B mRNA and altered IGF-1 exon 5 and promoter region epigenetic characteristics in the rat pup hippocampus, J. Neurotrauma, 29, 2075-2085, doi: 10.1089/neu.2011.2276.
  92. Åberg, D., Jood, K., Blomstrand, C., Jern, C., Nilsson, M., Isgaard, J., and Aberg, N. D. (2011) Serum IGF-I levels correlate to improvement of functional outcome after ischemic stroke, J. Clin. Endocrinol. Metab., 96, E1055-E1064, doi: 10.1210/jc.2010-2802.
  93. Brywe, K. G., Mallard, C., Gustavsson, M., Hedtjärn, M., Leverin, A. L., Wang, X., Blomgren, K., Isgaard, J., and Hagberg, H. (2005) IGF-I neuroprotection in the immature brain after hypoxia-ischemia, involvement of Akt and GSK3beta? Eur. J. Neurosci., 21, 1489-1502, doi: 10.1111/j.1460-9568.2005.03982.x.
  94. Rizk, N. N., Rafols, J. A., and Dunbar, J. C. (2006) Cerebral ischemia-induced apoptosis and necrosis in normal and diabetic rats: effects of insulin and C-peptide, Brain Res., 1096, 204-212, doi: 10.1016/j.brainres.2006.04.060.
  95. Lin, S., Fan, L. W., Rhodes, P. G., and Cai, Z. (2009) Intranasal administration of IGF-1 attenuates hypoxic-ischemic brain injury in neonatal rats, Exp. Neurol., 217, 361-370, doi: 10.1016/j.expneurol.2009.03.021.
  96. Nishiyama, A., Komitova, M., Suzuki, R., and Zhu, X. (2009) Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity, Nat. Rev. Neurosci., 10, 9-22, doi: 10.1038/nrn2495.
  97. Storm-Mathisen, J., Danbolt, N. C., Rothe, F., Torp, R., Zhang, N., Aas, J. E., Kanner, B. I., Langmoen, I., and Ottersen, O. P. (1992) Ultrastructural immunocytochemical observations on the localization, metabolism and transport of glutamate in normal and ischemic brain tissue, Prog. Brain Res., 94, 225-241, doi: 10.1016/s0079-6123(08)61753-7.
  98. Prabhu, D., Khan, S. M., Blackburn, K., Marshall, J. P., and Ashpole, N. M. (2019) Loss of insulin-like growth factor-1 signaling in astrocytes disrupts glutamate handling, J. Neurochem., 151, 689-702, doi: 10.1111/jnc.14879.
  99. Logan, S., Pharaoh, G. A., Marlin, M. C., Masser, D. R., Matsuzaki, S., Wronowski, B., Yeganeh, A., Parks, E. E., Premkumar, P., Farley, J. A., Owen, D. B., Humphries, K. M., Kinter, M., Freeman, W. M., Szweda, L. I., Van Remmen, H., and Sonntag, W. E. (2018) Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-β uptake in astrocytes, Mol. Metab., 9, 141-155, doi: 10.1016/j.molmet.2018.01.013.
  100. Grinberg, Y. Y., Dibbern, M. E., Levasseur, V. A., and Kraig, R. P. (2013) Insulin-like growth factor-1 abrogates microglial oxidative stress and TNF-α responses to spreading depression, J. Neurochem., 126, 662-672, doi: 10.1111/jnc.12267.
  101. Lee, C. C., Huang, C. C., and Hsu, K. S. (2011) Insulin promotes dendritic spine and synapse formation by the PI3K/Akt/mTOR and Rac1 signaling pathways, Neuropharmacology, 61, 867-879, doi: 10.1016/j.neuropharm.2011.06.003.
  102. Lioutas, V. A., Alfaro-Martinez, F., Bedoya, F., Chung, C. C., Pimentel, D. A., and Novak, V. (2015) Intranasal insulin and insulin-like growth factor 1 as neuroprotectants in acute ischemic stzroke, Transl. Stroke Res., 6, 264-275, doi: 10.1007/s12975-015-0409-7.
  103. Yu, L. Y., and Pei, Y. (2015) Insulin neuroprotection and the mechanisms, Chin. Med. J. (Engl.), 128, 976-981, doi: 10.4103/0366-6999.154323.
  104. Lioutas, V. A., and Novak, V. (2016) Intranasal insulin neuroprotection in ischemic stroke, Neural Regen. Res., 11, 400-401, doi: 10.4103/1673-5374.179040.
  105. Romanova, I. V., Derkach, K. V., Mikhrina, A. L., Sukhov, I. B., Mikhailova, E. V., and Shpakov, A. O. (2018) The leptin, dopamine and serotonin receptors in hypothalamic POMC-neurons of normal and obese rodents, Neurochem. Res., 43, 821-837, doi: 10.1007/s11064-018-2485-z.
  106. Derkach, K., Zakharova, I., Zorina, I., Bakhtyukov, A., Romanova, I., Bayunova, L., and Shpakov, A. (2019) The evidence of metabolic-improving effect of metformin in Ay/a mice with genetically-induced melanocortin obesity and the contribution of hypothalamic mechanisms to this effect, PLoS One, 14, e0213779, doi: 10.1371/journal.pone.0213779.
  107. Gänger, S., and Schindowski, K. (2018) Tailoring formulations for intranasal nose-to-brain delivery: a review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa, Pharmaceutics, 10, 116, doi: 10.3390/pharmaceutics10030116.
  108. Craft, S., Baker, L. D., Montine, T. J., Minoshima, S., Watson, G. S., Claxton, A., Arbuckle, M., Callaghan, M., Tsai, E., Plymate, S. R., Green, P. S., Leverenz, J., Cross, D., and Gerton, B. (2012) Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial, Arch. Neurol., 69, 29-38, doi: 10.1001/archneurol.2011.233.
  109. Kooijman, R., Sarre, S., Michotte, Y., and De Keyser, J. (2009) Insulin-like growth factor I: a potential neuroprotective compound for the treatment of acute ischemic stroke? Stroke, 40, e83-e88, doi: 10.1161/STROKEAHA.108.528356.
  110. Fan, L. W., Carter, K., Bhatt, A., and Pang, Y. (2019) Rapid transport of insulin to the brain following intranasal administration in rats, Neural Regen. Res., 14, 1046-1051, doi: 10.4103/1673-5374.250624.
  111. Picone, P., Sabatino, M. A., Ditta, L. A., Amato, A., San Biagio, P. L., Mulè, F., Giacomazza, D., Dispenza, C., and Di Carlo, M. (2018) Nose-to-brain delivery of insulin enhanced by a nanogel carrier, J. Control Release, 270, 23-36, doi: 10.1016/j.jconrel.2017.11.040.
  112. Lochhead, J. J., Kellohen, K. L., Ronaldson, P. T., and Davis, T. P. (2019) Distribution of insulin in trigeminal nerve and brain after intranasal administration, Sci. Rep., 9, 2621, doi: 10.1038/s41598-019-39191-5.
  113. Liu, X. F., Fawcett, J. R., Thorne, R. G., DeFor, T. A., and Frey, W. H. 2nd (2001) Intranasal administration of insulin-like growth factor-I bypasses the blood-brain barrier and protects against focal cerebral ischemic damage, J. Neurol. Sci., 187, 91-97, doi: 10.1016/s0022-510x(01)00532-9.
  114. Liu, X. F., Fawcett, J. R., Thorne, R. G., and Frey, W. H. 2nd (2001) Non-invasive intranasal insulin-like growth factor-I reduces infarct volume and improves neurologic function in rats following middle cerebral artery occlusion, Neurosci. Lett., 308, 91-94, doi: 10.1016/s0304-3940(01)01982-6.
  115. Fletcher, L., Kohli, S., Sprague, S. M., Scranton, R. A., Lipton, S. A., Parra, A., Jimenez, D. F., and Digicaylioglu, M. (2009) Intranasal delivery of erythropoietin plus insulin-like growth factor-I for acute neuroprotection in stroke. Laboratory investigation, J. Neurosurg., 111, 164-170, doi: 10.3171/2009.2.JNS081199.
  116. Lin, S., Rhodes, P. G., and Cai, Z. (2011) Whole body hypothermia broadens the therapeutic window of intranasally administered IGF-1 in a neonatal rat model of cerebral hypoxia-ischemia, Brain Res., 1385, 246-256, doi: 10.1016/j.brainres.2011.02.013.
  117. Shen, H., Gu, X., Wei, Z. Z., Wu, A., Liu, X., and Wei, L. (2021) Combinatorial intranasal delivery of bone marrow mesenchymal stem cells and insulin-like growth factor-1 improves neurovascularization and functional outcomes following focal cerebral ischemia in mice, Exp. Neurol., 337, 113542, doi: 10.1016/j.expneurol.2020.113542.
  118. Liu, X. F., Fawcett, J. R., Hanson, L. R., and Frey, W. H. 2nd (2004) The window of opportunity for treatment of focal cerebral ischemic damage with noninvasive intranasal insulin-like growth factor-I in rats, J. Stroke Cerebrovasc. Dis., 13, 16-23, doi: 10.1016/j.jstrokecerebrovasdis.2004.01.005.
  119. Saber, H., Himali, J. J., Beiser, A. S., Shoamanesh, A., Pikula, A., Roubenoff, R., Romero, J. R., Kase, C. S., Vasan, R. S., and Seshadri, S. (2017) Serum insulin-like growth factor 1 and the risk of ischemic stroke: The framingham study, Stroke, 48, 1760-1765, doi: 10.1161/STROKEAHA.116.016563.
  120. Iravanpour, F., Dargahi, L., Rezaei, M., Haghani, M., Heidari, R., Valian, N., and Ahmadiani, A. (2021) Intranasal insulin improves mitochondrial function and attenuates motor deficits in a rat 6-OHDA model of Parkinson's disease, CNS Neurosci. Ther., 27, 308-319, doi: 10.1111/cns.13609.
  121. Kim, B. H., Kelschenbach, J., Borjabad, A., Hadas, E., He, H., Potash, M. J., Nedelcovych, M. T., Rais, R., Haughey, N. J., McArthur, J. C., Slusher, B. S., and Volsky, D. J. (2019) Intranasal insulin therapy reverses hippocampal dendritic injury and cognitive impairment in a model of HIV-associated neurocognitive disorders in EcoHIV-infected mice, AIDS, 33, 973-984, doi: 10.1097/QAD.0000000000002150.
  122. Zhu, Y., Huang, Y., Yang, J., Tu, R., Zhang, X., He, W. W., Hou, C. Y., Wang, X. M., Yu, J. M., and Jiang, G. H. (2022) Intranasal insulin ameliorates neurological impairment after intracerebral hemorrhage in mice, Neural Regen. Res., 17, 210-216, doi: 10.4103/1673-5374.314320.
  123. Zorina, I. I., Saveleva, L. O., Bakhtyukov, A. A., and Shpakov, A. O. (2018) Intranasal insulin administration normalizes the gene expression of antioxidant enzymes in the two-vessel ischemia and reperfusion in the rat brain, in BIOMEMBRANES 2018: International Conference 1-5 October 2018 Book of Abstracts, J. Bioenerg. Biomembr., 50, 467-603, doi: 10.1007/s10863-018-9775-7.
  124. Zorina, I. I., Zakharova, I. O., Bayunova, L. V., and Avrova, N. F. (2018) Insulin administration prevents accumulation of conjugated dienes and trienes and inactivation of Na+, K+-ATPase in the rat cerebral cortex during two-vessel forebrain ischemia and reperfusion, J. Evol. Biochem. Phys., 54, 246-249, doi: 10.1134/S0022093018030109.
  125. Zorina, I. I., Galkina, O. V., Bayunova, L. V., and Zakharova, I. O. (2019) Effect of insulin on lipid peroxidation and glutathione levels in a two-vessel occlusion model of rat forebrain ischemia followed by reperfusion, J. Evol. Biochem. Phys., 55, 333-335, doi: 10.1134/S0022093019040094.
  126. Zakharova, I. O., Bayunova, L. V., Zorina, I. I., Sokolova, T. V., Shpakov, A. O., and Avrova, N. F. (2021) Insulin and α-tocopherol enhance the protective effect of each other on brain cortical neurons under oxidative stress conditions and in rat two-vessel forebrain ischemia/reperfusion injury, Int. J. Mol. Sci., 22, 11768, doi: 10.3390/ijms222111768.
  127. Zakharova, I. O., Bayunova, L. V., Zorina, I. I., Shpakov, A. O., and Avrova, N. F. (2022) Insulin and brain gangliosides prevent metabolic disorders caused by activation of free radical reactions after two-vessel ischemia-reperfusion injury to the rat forebrain, J. Evol. Biochem. Phys., 58, 279-291, doi: 10.1134/S0022093022010240.
  128. Duarte, A. I., Santos, M. S., Oliveira, C. R., and Rego, A. C. (2005) Insulin neuroprotection against oxidative stress in cortical neurons - involvement of uric acid and glutathione antioxidant defenses, Free Radic. Biol. Med., 39, 876-889, doi: 10.1016/j.freeradbiomed.2005.05.002.
  129. Derkach, K. V., Bogush, I. V., Berstein, L. M., and Shpakov, A. O. (2015) The influence of intranasal insulin on hypothalamic-pituitary-thyroid axis in normal and diabetic rats, Horm. Metab. Res., 47, 916-924, doi: 10.1055/s-0035-1547236.
  130. Derkach, K. V., Bondareva, V. M., and Shpakov, A. O. (2019) Regulatory effects of intranasal C-peptide and insulin on thyroid and androgenic status of male rats with moderate type 1 diabetes mellitus, J. Evol. Biochem. Physiol., 55, 493-496, doi: 10.1134/S0022093019060073.
  131. Sukhov, I. B., Derkach, K. V., Chistyakova, O. V., Bondareva, V. M., and Shpakov, A. O. (2016) Functional state of hypothalamic signaling systems in rats with type 2 diabetes mellitus treated with intranasal insulin, J. Evol. Biochem. Physiol., 52, 204-216, doi: 10.1134/S0022093016030030.
  132. Derkach, K. V., Ivantsov, A. O., Chistyakova, O. V., Sukhov, I. B., Buzanakov, D. M., Kulikova, A. A., and Shpakov, A. O. (2017) Intranasal insulin restores metabolic parameters and insulin sensitivity in rats with metabolic syndrome, Bull. Exp. Biol. Med., 163, 184-189, doi: 10.1007/s10517-017-3762-6.
  133. Albers, G. W., Goldstein, L. B., Hess, D. C., Wechsler, L. R., Furie, K. L., Gorelick, P. B., Hurn, P., Liebeskind, D. S., Nogueira, R. G., and Saver, J. L. (2011) STAIR VII Consortium. Stroke Treatment Academic Industry Roundtable (STAIR) recommendations for maximizing the use of intravenous thrombolytics and expanding treatment options with intra-arterial and neuroprotective therapies, Stroke, 42, 2645-2650, doi: 10.1161/STROKEAHA.111.618850.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies