Alterations in the properties of the glutamatergic system of the rat hippocampus in a lithium-pilocarpine model of temporal lobe epilepsy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Status epilepticus (SE) triggers many pathological changes in the nervous system that are not yet fully understood and may lead to the development of epilepsy. In this work, we studied the effects of SE on the properties of excitatory glutamatergic transmission in the hippocampus in a rat model of lithium-pilocarpine temporal lobe epilepsy. Studies were performed 1 day (acute phase of the model), 3 and 7 days (latent phase), and 30 to 80 days (chronic phase) after SE. Using real-time PCR, we found that in the latent phase there is a decrease in gene expression of GluA1 and GluA2 AMPA receptor subunits, which may also be accompanied by an increased proportion of calcium-permeable AMPA receptors, which play an essential role in the pathogenesis of many CNS diseases. In acute brain slices we found a decrease in the efficiency of excitatory synaptic neurotransmission in all phases of the model when recording field responses in the CA1 region of the hippocampus in response to stimulation of Schaffer collaterals by electric currents of different intensities. However, in the chronic phase we found an increase in the frequency of spontaneous excitatory postsynaptic potentials, indicating an increased background activity of the glutamatergic system in epilepsy. This is also supported by a decrease in the threshold of hind limb extension in the test of maximal electroshock seizure in rats with temporal lobe epilepsy compared to control animals. The results obtained indicate the presence of a number of functional alterations in the glutamatergic system related to epilepsy. These findings can be used to develop antiepileptogenic therapy.

About the authors

G. P Diespirov

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: aleksey_zaitsev@mail.ru
194223 St. Petersburg, Russia

T. Y Postnikova

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: aleksey_zaitsev@mail.ru
194223 St. Petersburg, Russia

A. V Griflyuk

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: aleksey_zaitsev@mail.ru
194223 St. Petersburg, Russia

A. A Kovalenko

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: aleksey_zaitsev@mail.ru
194223 St. Petersburg, Russia

A. V Zaitsev

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: aleksey_zaitsev@mail.ru
194223 St. Petersburg, Russia

References

  1. Fattorusso, A., Matricardi, S., Mencaroni, E., Dell'Isola, G. B., Di Cara, G., Striano, P., and Verrotti, A. (2021) The pharmacoresistant epilepsy: an overview on existant and new emerging therapies, Front. Neurol., 12, 1030, doi: 10.3389/FNEUR.2021.674483.
  2. Chin, J. H., and Vora, N. (2014) The global burden of neurologic diseases, J. Neurol., 83, 349-351, doi: 10.1212/WNL.0000000000000610.
  3. Fordington, S., and Manford, M. (2020) A review of seizures and epilepsy following traumatic brain injury, J. Neurol., 267, 3105-3111, doi: 10.1007/s00415-020-09926-w.
  4. Engel, J. J. (2001) Mesial temporal lobe epilepsy: what have we learned? Neuroscientist, 7, 340-352, doi: 10.1177/107385840100700410.
  5. Herman, S. T. (2002) Epilepsy after brain insult: targeting epileptogenesis, J. Neurol., 59, S21-S26, doi: 10.1212/wnl.59.9_suppl_5.s21.
  6. Pitk�nen, A., and Lukasiuk, K. (2011) Mechanisms of epileptogenesis and potential treatment targets, Lancet Neurol., 10, 173-186, doi: 10.1016/S1474-4422(10)70310-0.
  7. Goldberg, E. M., and Coulter, D. A. (2013) Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction, Nat. Rev. Neurosci., 14, 337-349, doi: 10.1038/nrn3482.
  8. Thom, M. (2014) Review: hippocampal sclerosis in epilepsy: a neuropathology review, Neuropathol. Appl. Neurobiol., 40, 520-543, doi: 10.1111/nan.12150.
  9. Bliss, T. V. P., and Collingridge, G. L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus, Nature, 361, 31-39, doi: 10.1038/361031a0.
  10. Titiz, A. S., Mahoney, J. M., Testorf, M. E., Holmes, G. L., and Scott, R. C. (2014) Cognitive impairment in temporal lobe epilepsy: role of online and offline processing of single cell information, Hippocampus, 24, 1129-1145, doi: 10.1002/hipo.22297.
  11. Vlooswijk, M. C. G., Jansen, J. F. A., de Krom, M. C. F. T. M., Majoie, H. M., Hofman, P. A. M., Backes, W. H., and Aldenkamp, A. P. (2010) Functional MRI in chronic epilepsy: associations with cognitive impairment, Lancet Neurol., 9, 1018-1027, doi: 10.1016/S1474-4422(10)70180-0.
  12. Zavala-Tecuapetla, C., Cuellar-Herrera, M., and Luna-Munguia, H. (2020) Insights into potential targets for therapeutic intervention in epilepsy, Int. J. Mol. Sci., 21, 8573, doi: 10.3390/ijms21228573.
  13. Curia, G., Longo, D., Biagini, G., Jones, R. S. G., and Avoli, M. (2008) The pilocarpine model of temporal lobe epilepsy, J. Neurosci. Methods, 172, 143-157, doi: 10.1016/j.jneumeth.2008.04.019.
  14. Curia, G., Lucchi, C., Vinet, J., Gualtieri, F., Marinelli, C., Torsello, A., Costantino, L., and Biagini, G. (2014) Pathophysiogenesis of mesial temporal lobe epilepsy: is prevention of damage antiepileptogenic? Curr. Med. Chem., 21, 663-688, doi: 10.2174/0929867320666131119152201.
  15. Zaitsev, A. V., Amakhin, D. V., Dyomina, A. V., Zakharova, M. V., Ergina, J. L., Postnikova, T. Y., Diespirov, G. P., and Magazanik, L. G. (2021) Synaptic dysfunction in epilepsy, J. Evol. Biochem. Physiol., 57, 542-563, doi: 10.1134/S002209302103008X.
  16. De Oliveira, D. L., Fischer, A., Jorge, R. S., Da Silva, M. C., Leite, M., Gon�alves, C. A., Quillfeldt, J. A., Souza, D. O., E Souza, T. M., and Wofchuk, S. (2008) Effects of early-life LiCl-Pilocarpine-induced status epilepticus on memory and anxiety in adult rats are associated with mossy fiber sprouting and elevated CSF S100B protein, Epilepsia, 49, 842-852, doi: 10.1111/j.1528-1167.2007.01484.x.
  17. Morimoto, K., Fahnestock, M., and Racine, R. J. (2004) Kindling and status epilepticus models of epilepsy: rewiring the brain, Prog. Neurobiol., 73, 1-60, doi: 10.1016/j.pneurobio.2004.03.009.
  18. Postnikova, T. Y., Diespirov, G. P., Amakhin, D. V., Vylekzhanina, E. N., Soboleva, E. B., and Zaitsev, A. V. (2021) Impairments of long-term synaptic plasticity in the hippocampus of young rats during the latent phase of the lithium-pilocarpine model of temporal lobe epilepsy, Int. J. Mol. Sci., 22, 13355, doi: 10.3390/ijms222413355.
  19. Plata, A., Lebedeva, A., Denisov, P., Nosova, O., Postnikova, T. Y., Pimashkin, A., Brazhe, A., Zaitsev, A. V., Rusakov, D. A., and Semyanov, A. (2018) Astrocytic atrophy following status epilepticus parallels reduced Ca2+ activity and impaired synaptic plasticity in the rat hippocampus, Front. Mol. Neurosci., 11, 215, doi: 10.3389/fnmol.2018.00215.
  20. Kryukov, K. A., Kim, K. K., Magazanik, L. G., and Zaitsev, A. V. (2016) Status epilepticus alters hippocampal long-term synaptic potentiation in a rat lithium-pilocarpine model, NeuroReport, 27, 1191-1195, doi: 10.1097/WNR.0000000000000656.
  21. Clarkson, C., Smeal, R. M., Hasenoehrl, M. G., White, J. A., Rubio, M. E., and Wilcox, K. S. (2020) Ultrastructural and functional changes at the tripartite synapse during epileptogenesis in a model of temporal lobe epilepsy, Exp. Neurol., 326, 113196, doi: 10.1016/j.expneurol.2020.113196.
  22. Naylor, D. E., Liu, H., Niquet, J., and Wasterlain, C. G. (2013) Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus, Neurobiol. Dis., 54, 225-238, doi: 10.1016/j.nbd.2012.12.015.
  23. Amakhin, D. V., Soboleva, E. B., Ergina, J. L., Malkin, S. L., Chizhov, A. V., and Zaitsev, A. V. (2018) Seizure-induced potentiation of AMPA receptor-mediated synaptic transmission in the entorhinal cortex, Front. Cell. Neurosci., 12, 486, doi: 10.3389/fncel.2018.00486.
  24. Rajasekaran, K., Todorovic, M., and Kapur, J. (2012) Calcium-permeable AMPA receptors are expressed in a rodent model of status epilepticus, Ann. Neurol., 72, 91-102, doi: 10.1002/ana.23570.
  25. Amakhin, D. V., Malkin, S. L., Ergina, J. L., Kryukov, K. A., Veniaminova, E. A., Zubareva, O. E., and Zaitsev, A. V. (2017) Alterations in properties of glutamatergic transmission in the temporal cortex and hippocampus following pilocarpine-induced acute seizures in wistar rats, Front. Cell. Neurosci., 11, 264, doi: 10.3389/fncel.2017.00264.
  26. Malkin, S. L., Amakhin, D. V., Veniaminova, E. A., Kim, K. K., Zubareva, O. E., Magazanik, L. G., and Zaitsev, A. V. (2016) Changes of AMPA receptor properties in the neocortex and hippocampus following pilocarpine-induced status epilepticus in rats, Neuroscience, 327, 146-155, doi: 10.1016/j.neuroscience.2016.04.024.
  27. Zubareva, O. E., Kovalenko, A. A., Kalemenev, S. V., Schwarz, A. P., Karyakin, V. B., and Zaitsev, A. V. (2018) Alterations in mRNA expression of glutamate receptor subunits and excitatory amino acid transporters following pilocarpine-induced seizures in rats, Neurosci. Lett., 686, 94-100, doi: 10.1016/j.neulet.2018.08.047.
  28. Racine, R. J. (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure, Electroencephalogr. Clin. Neurophysiol., 32, 281-294, doi: 10.1016/0013-4694(72)90177-0.
  29. Postnikova, T. Y., Amakhin, D. V., Trofimova, A. M., Smolensky, I. V., and Zaitsev, A. V. (2019) Changes in functional properties of rat hippocampal neurons following pentylenetetrazole-induced status epilepticus, Neuroscience, 399, 103-116, doi: 10.1016/j.neuroscience.2018.12.029.
  30. Schwarz, A. P., Malygina, D. A., Kovalenko, A. A., Trofimov, A. N., and Zaitsev, A. V. (2020) Multiplex qPCR assay for assessment of reference gene expression stability in rat tissues/samples, Mol. Cell. Probes, 53, 101611, doi: 10.1016/j.mcp.2020.101611.
  31. Livak, K. J., and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method, Methods, 25, 402-428, doi: 10.1006/meth.2001.1262.
  32. Bonefeld, B. E., Elfving, B., and Wegener, G. (2008) Reference genes for normalization: a study of rat brain tissue, Synapse, 62, 302-309, doi: 10.1002/syn.20496.
  33. Lin, W., Burks, C. A., Hansen, D. R., Kinnamon, S. C., and Gilbertson, T. A. (2004) Taste receptor cells express pH-sensitive leak K+ channels, J. Neurophysiol., 92, 2909-2919, doi: 10.1152/jn.01198.2003.
  34. Yamaguchi, M., Yamauchi, A., Nishimura, M., Ueda, N., and Naito, S. (2005) Soybean oil fat emulsion prevents cytochrome P450 mRNA down-regulation induced by fat-free overdose total parenteral nutrition in infant rats, Biol. Pharm. Bull., 28, 143-147, doi: 10.1248/bpb.28.143.
  35. Swijsen, A., Nelissen, K., Janssen, D., Rigo, J. M., and Hoogland, G. (2012) Validation of reference genes for quantitative real-time PCR studies in the dentate gyrus after experimental febrile seizures, BMC Res. Notes, 5, 685, doi: 10.1186/1756-0500-5-685.
  36. Pohjanvirta, R., Niittynen, M., Lind�n, J., Boutros, P. C., Moffat, I. D., and Okey, A. B. (2006) Evaluation of various housekeeping genes for their applicability for normalization of mRNA expression in dioxin-treated rats, Chem. Biol. Interact., 160, 134-149, doi: 10.1016/j.cbi.2006.01.001.
  37. Cook, N. L., Vink, R., Donkin, J. J., and van den Heuvel, C. (2009) Validation of reference genes for normalization of real-time quantitative RT-PCR data in traumatic brain injury, J. Neurosci. Res., 87, 34-41, doi: 10.1002/jnr.21846.
  38. Langnaese, K., John, R., Schweizer, H., Ebmeyer, U., and Keilhoff, G. (2008) Selection of reference genes for quantitative real-time PCR in a rat asphyxial cardiac arrest model, BMC Mol. Biol., 9, 53, doi: 10.1186/1471-2199-9-53.
  39. Proudnikov, D., Yuferov, V., Zhou, Y., LaForge, K. S., Ho, A., and Kreek, M. J. (2003) Optimizing primer-probe design for fluorescent PCR, J. Neurosci. Methods, 123, 31-45, doi: 10.1016/S0165-0270(02)00325-4.
  40. Zucker, R. S., and Regehr, W. G. (2002) Short-term synaptic plasticity, Annu. Rev. Physiol., 64, 355-405, doi: 10.1146/annurev.physiol.64.092501.114547.
  41. Owen, B., Bichler, E., and Benveniste, M. (2021) Excitatory synaptic transmission in hippocampal area CA1 is enhanced then reduced as chronic epilepsy progresses, Neurobiol. Dis., 154, 105343, doi: 10.1016/j.nbd.2021.105343.
  42. Cull-Candy, S. G., and Farrant, M. (2021) Ca2+-permeable AMPA receptors and their auxiliary subunits in synaptic plasticity and disease, J. Physiol., 599, 2655-2671, doi: 10.1113/jp279029.
  43. Andre, V., Marescaux, C., Nehlig, A., and Fritschy, J. M. (2001) Alterations of hippocampal GABAergic system contribute to development of spontaneous recurrent seizures in the at lithium-pilocarpine model of temporal lobe epilepsy, Hippocampus, 11, 452-468, doi: 10.1002/hipo.1060.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies