The proteasome interactome and its role in the mechanisms of brain plasticity

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Proteasomes are highly conserved multienzyme complexes responsible for the proteolytic degradation of short-lived, regulatory, misfolded, and damaged proteins. They play an important role in the processes of brain plasticity, and the decrease in their function is accompanied by the development of neurodegenerative pathology. Studies performed in different laboratories both on cultured mammalian and human cells and on preparations of the rat and rabbit brain cortex revealed a large number of proteasome-associated proteins. Since the identified proteins belong to certain metabolic pathways, multiple enrichment of the proteasome fraction with these proteins indicates their important role the proteasome functioning. Extrapolation of the experimental data, obtained on various biological objects, to the human brain, suggests that proteasome-associated proteins account for at least 28% of the human brain proteome. The proteasome interactome of the brain contains a large number of proteins involved in the assembly of these supramolecular complexes, regulation of their functioning, and intracellular localization, which can be changed at different conditions (for example, during oxidative stress) or in different phases of the cell cycle. In the context of the molecular functions of the Gene Ontology (GO) Pathways, the proteins of the proteasome interactome mediate cross-talk between components of more than 30 metabolic pathways annotated in terms of GO. The main result of these interactions is the binding of adenine and guanine nucleotides, crucial for realization of the nucleotide-dependent functions of the 26S and 20S proteasomes. Since the development of neurodegenerative pathology is often associated with a regioselective decrease in the functional activity of proteasomes, a positive therapeutic effect will obviously be provided by factors increasing the proteasomal activity. In any case, the pharmacological regulation of brain proteasomes seems to be realized through changes in the composition and/or activity of proteins associated with proteasomes (deubiquitinase, PKA, CaMKIIα, etc.).

Sobre autores

O. Buneeva

Institute of Biomedical Chemistry

Email: professor57@yandex.ru
119121 Moscow, Russia

A. Kopylov

Institute of Biomedical Chemistry

Email: professor57@yandex.ru
119121 Moscow, Russia

A. Medvedev

Institute of Biomedical Chemistry

Email: professor57@yandex.ru
119121 Moscow, Russia

Bibliografia

  1. Tanaka, K. (2009) The proteasome: overview of structure and functions, Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 85, 12-36, doi: 10.2183/pjab.85.12.
  2. Schmidt, M., and Finley, D. (2014) Regulation of proteasome activity in health and disease, Biochim. Biophys. Acta, 1843, 13-25, doi: 10.1016/j.bbamcr.2013.08.012.
  3. Goldberg, A. L. (2003) Protein degradation and protection against misfolded or damaged proteins, Nature, 426, 895-899, doi: 10.1038/nature02263.
  4. Hershko, A., and Ciechanover, A. (1992) The ubiquitin system for protein degradation, Annu. Rev. Biochem., 61, 761-807, doi: 10.1146/annurev.bi.61.070192.003553.
  5. Driscoll, J., and Goldberg, A. L. (1990) The proteasome (multicatalytic protease) is a component of the 1500-kDa proteolytic complex which degrades ubiquitin-conjugated proteins, J. Biol. Chem., 265, 4789-4792, doi: 10.1016/S0021-9258(19)34041-4.
  6. Schwartz, A. L., and Ciechanover, A. (2009) Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology, Annu. Rev. Pharmacol. Toxicol., 49, 73-96, doi: 10.1146/annurev.pharmtox.051208.165340.
  7. Ben-Nissan, G., and Sharon, M. (2014) Regulating the 20S proteasome ubiquitin-independent degradation pathway, Biomolecules, 4, 862-884, doi: 10.3390/biom4030862.
  8. Orlowski, M., and Wilk, S. (2003) Ubiquitin-independent proteolytic functions of the proteasome, Arch. Biochem. Biophys., 415, 1-5, doi: 10.1016/s0003-9861(03)00197-8.
  9. Erales, J., and Coffino, P. (2014) Ubiquitin-independent proteasomal degradation, Biochim. Biophys. Acta, 1843, 216-221, doi: 10.1016/j.bbamcr.2013.05.008.
  10. Sánchez-Lanzas, R., and Castaño, J. G. (2014) Proteins directly interacting with mammalian 20S proteasomal subunits and ubiquitin-independent proteasomal degradation, Biomolecules, 4, 1140-1154, doi: 10.3390/biom4041140.
  11. Бунеева О. А., Медведев А. Е. (2018) Убиквитин-независимая деградация белков в протеасомах, Биомед. Хим., 64, 134-148, doi: 10.18097/PBMC20186402134.
  12. Uversky, V. N., Oldfield, C. J., and Dunker, A. K. (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling, J. Mol. Recognit., 18, 343-384, doi: 10.1002/jmr.747.
  13. Sharon, M., Witt, S., Felderer, K., Rockel, B., Baumeister, W., and Robinson, C. V. (2006) 20S proteasomes have the potential to keep substrates in store for continual degradation, J. Biol. Chem., 281, 9569-9575, doi: 10.1074/jbc.M511951200.
  14. Bard, J. A. M., Goodall, E. A., Greene, E. R., Jonsson, E., Dong, K. C., and Martin, A. (2018) Structure and function of the 26S proteasome, Annu. Rev. Biochem., 87, 697-724, doi: 10.1146/annurev-biochem-062917-011931.
  15. Kanehisa, M., Sato, Y., and Kawashima, M. (2022) KEGG mapping tools for uncovering hidden features in biological data, Protein Sci., 31, 47-53, doi: 10.1002/pro.4172.
  16. Pickering, A. M., and Davies, K. J. A. (2012) Differential roles of proteasome and immunoproteasome regulators Pa28 alpha beta, Pa28 gamma and Pa200 in the degradation of oxidized proteins, Arch. Biochem. Biophys., 523, 181-190, doi: 10.1016/j.abb.2012.04.018.
  17. Funderburk, K. E., Kang, J., and Li, H. J. (2022) Regulation of life & death by REGγ, Cells, 11, 2281, doi: 10.3390/cells11152281.
  18. Díaz-Villanueva, J. F., Díaz-Molina, R., and García-González, V. (2015) Protein folding and mechanisms of proteostasis, Int. J. Mol. Sci., 16, 17193-17230, doi: 10.3390/ijms160817193.
  19. Fu, H., Sadis, S., Rubin, D. M., Glickman, M., van Nocker, S., Finley, D., and Vierstra, R. D. (1998) Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26 S proteasome subunit Mcb1, J. Biol. Chem., 273, 1970-1981, doi: 10.1074/jbc.273.4.1970.
  20. Schreiner, P., Chen, X., Husnjak, K., Randles, L., Zhang, N., Elsasser, S., Finley, D., Dikic, I., Walters, K. J., and Groll, M. (2008) Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction, Nature, 453, 548-552, doi: 10.1038/nature06924.
  21. Husnjak, K., Elsasser, S., Zhang, N., Chen, X., Randles, L., Shi, Y., Hofmann, K., Walters, K. J., Finley, D., and Dikic, I. (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor, Nature, 453, 481-488, doi: 10.1038/nature06926.
  22. Shi, Y., Chen, X., Elsasser, S., Stocks, B. B., Tian, G., Lee, B. H., Shi, Y., Zhang, N., de Poot, S. A. H., Tuebing, F., Sun, S., Vannoy, J., Tarasov, S. G., Engen, J. R., Finley, D., and Walters, K. J. (2016) Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome, Science, 351, 6275, doi: 10.1126/science.aad9421.
  23. Martinez-Fonts, K., Davis, C., Tomita, T., Elsasser, S., Nager, A. R., Shi, Y., Finley, D., and Matouschek, A. (2020) The proteasome 19S cap and its ubiquitin receptors provide a versatile recognition platform for substrates, Nat. Commun., 11, 477, doi: 10.1038/s41467-019-13906-8.
  24. Liu, Z., Dong, X., Yi, H. W., Yang, J., Gong, Z., Wang, Y., Liu, K., Zhang, W. P., and Tang, C. (2019) Structural basis for the recognition of K48-linked Ub chain by proteasomal receptor Rpn13, Cell. Discov., 5, 19, doi: 10.1038/s41421-019-0089-7.
  25. Kish-Trier, E., and Hill, C. P. (2013) Structural biology of the proteasome, Annu. Rev. Biophys., 42, 29-49, doi: 10.1146/annurev-biophys-083012-130417.
  26. Da Fonseca, P. C., and Morris, E. P., (2008) Structure of the human 26S proteasome: subunit radial displacements open the gate into the proteolytic core, J. Biol. Chem., 283, 23305-23314, doi: 10.1074/jbc.M802716200.
  27. Sahu, I., and Glickman, M. H. (2021) Proteasome in action: substrate degradation by the 26S proteasome, Biochem. Soc. Trans., 49, 629-644, doi: 10.1042/BST20200382.
  28. Leggett, D. S., Hanna, J., Borodovsky, A., Crosas, B., Schmidt, M., Baker, R. T., Walz, T., Ploegh, H., and Finley, D. (2002) Multiple associated proteins regulate proteasome structure and function, Mol. Cell, 10, 495-507, doi: 10.1016/s1097-2765(02)00638-x.
  29. Lander, G. C., Estrin, E., Matyskiela, M. E., Bashore, C., Nogales, E., and Martin, A. (2012) Complete subunit architecture of the proteasome regulatory particle, Nature, 482, 186-191, doi: 10.1038/nature10774.
  30. Guterman, A., and Glickman, M. H. (2004) Complementary roles for Rpn11 and Ubp6 in deubiquitination and proteolysis by the proteasome, J. Biol. Chem., 279, 1729-1738, doi: 10.1074/jbc.M307050200.
  31. Smith, D. M., Chang, S. C., Park, S., Finley, D., Cheng, Y., and Goldberg, A. L. (2007) Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry, Mol. Cell., 27, 731-744, doi: 10.1016/j.molcel.2007.06.033.
  32. Gallastegui, N., and Groll, M. (2010) The 26S proteasome: assembly and function of a destructive machine, Trends Biochem. Sci., 35, 634-642, doi: 10.1016/j.tibs.2010.05.005.
  33. Kleijnen, M. F., Roelofs, J., Park, S., Hathaway, N. A., Glickman, M., King, R. W., and Finley, D. (2007) Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites, Nat. Struct. Mol. Biol., 14, 1180-1188, doi: 10.1038/nsmb1335.
  34. Yazgili, A. S., Ebstein, F., and Meiners, S. (2022) The proteasome activator PA200/PSME4: an emerging new player in health and disease, Biomolecules, 12, 1150, doi: 10.3390/biom12081150.
  35. Griffin, T. A., Nandi, D., Cruz, M., Fehling, H. J., Kaer, L. V., Monaco, J. J., and Colbert, R. A. (1998) Immunoproteasome assembly: cooperative incorporation of interferon gamma (IFN-gamma)-inducible subunits, J. Exp. Med., 187, 97-104, doi: 10.1084/jem.187.1.97.
  36. Kloetzel, P. M., and Ossendorp, F. (2004) Proteasome and peptidase function in MHC-class-I-mediated antigen presentation, Curr. Opin. Immunol., 16, 76-81, doi: 10.1016/j.coi.2003.11.004.
  37. Johnston-Carey, H. K., Pomatto, L. C., and Davies, K. J. (2015) The immunoproteasome in oxidative stress, aging, and disease, Crit. Rev. Biochem. Mol. Biol., 51, 268-281, doi: 10.3109/10409238.2016.1172554.
  38. Ferrington, D. A., and Gregerson, D. S. (2012) Immunoproteasomes: structure, function, and antigen presentation, Prog. Mol. Biol. Transl. Sci., 109, 75-112, doi: 10.1016/B978-0-12-397863-9.00003-1.
  39. Wang, X., Chemmama, I. E., Yu, C., Huszagh, A., Xu, Y., Viner, R., Block, S. A., Cimermancic, P., Rychnovsky, S. D., Ye, Y., Sali, A., and Huang, L. (2017) The proteasome-interacting Ecm29 protein disassembles the 26S proteasome in response to oxidative stress, J. Biol. Chem., 292, 16310-16320, doi: 10.1074/jbc.M117.803619.
  40. Minis, A., Rodriguez, J. A., Levin, A., Liu, K., Govek, E. E., Hatten, M. E., and Steller, H. (2019) The proteasome regulator PI31 is required for protein homeostasis, synapse maintenance, and neuronal survival in mice, Proc. Natl. Acad. Sci. USA, 116, 24639-24650, doi: 10.1073/pnas.1911921116.
  41. Budenholzer, L., Cheng, C. L., Li, Y., and Hochstrasser, M. (2017) Proteasome structure and assembly, J. Mol. Biol., 429, 3500-3524, doi: 10.1016/j.jmb.2017.05.027.
  42. Livneh, I., Cohen-Kaplan, V., Cohen-Rosenzweig, C., Avni, N., and Ciechanover, A. (2016) The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death, Cell Res., 26, 869-885, doi: 10.1038/cr.2016.86.
  43. Rousseau, A., and Bertolotti, A. (2018) Regulation of proteasome assembly and activity in health and disease, Nat. Rev. Mol. Cell Biol., 19, 697-712, doi: 10.1038/s41580-018-0040-z.
  44. Meul, T., Berschneider, K., Schmitt, S., Mayr, C. H., Mattner, L. F., Schiller, H. B., Yazgili, A. S., Wang, X., Lukas, C., Schlesser, C., Prehn, C., Adamski, J., Graf, E., Schwarzmayr, T., Perocchi, F., Kukat, A., Trifunovic, A., Kremer, L., Prokisch, H., Popper, B., von Toerne, C., Hauck, S. M., Zischka, H., and Meiners, S. (2020) Mitochondrial regulation of the 26S proteasome, Cell Rep., 32, 108059, doi: 10.1016/j.celrep.2020.108059.
  45. Enenkel, C., Kang, R. W., Wilfling, F., and Ernst, O. P. (2022) Intracellular localization of the proteasome in response to stress conditions, J. Biol. Chem., 298, 102083, doi: 10.1016/j.jbc.2022.102083.
  46. Herter, J. R., and Fuchs, S. Y. (2002) Recognition of substrate and Skp1 by the Homologue of Slimb (HOS) ubiquitin ligase receptor D role of the F-box, Med. Sci. Monit., 8, BR283-BR288.
  47. Dawson, S., Hastings, R., Takayanagi, K., Reynolds, S., Low, P., Billett, M., and Mayer, R. J. (1997) The 26S-proteasome: regulation and substrate recognition, Mol. Biol. Rep., 24, 39-44, doi: 10.1023/a:1006800522814.
  48. Devine, T., and Dai, M. S. (2013) Targeting the ubiquitin-mediated proteasome degradation of p53 for cancer therapy, Curr. Pharm. Des., 19, 3248-3262, doi: 10.2174/1381612811319180009.
  49. de Almeida, M., Hinterndorfer, M., Brunner, H., Grishkovskaya, I., Singh, K., Schleiffer, A., Jude, J., Deswal, S., Kalis, R., Vunjak, M., Lendl, T., Imre, R., Roitinger, E., Neumann, T., Kandolf, S., Schutzbier, M., Mechtler, K., Versteeg, G. A., Haselbach, D., and Zuber, J. (2021) AKIRIN2 controls the nuclear import of proteasomes in vertebrates, Nature, 599, 491-496, doi: 10.1038/s41586-021-04035-8.
  50. Uriarte, M., Sen Nkwe, N., Tremblay, R., Ahmed, O., Messmer, C., Mashtalir, N., Barbour, H., Masclef, L., Voide, M., Viallard, C., Daou, S., Abdelhadi, D., Ronato, D., Paydar, M., Darracq, A., Boulay, K., Desjardins-Lecavalier, N., Sapieha, P., Masson J.-Y., Sergeev, M., Kwok, B. H., Hulea, L., Mallette F. A., Milot, E., Larrivée, B., Wurtele, H., and Affar, E. B. (2021) Starvation-induced proteasome assemblies in the nucleus link amino acid supply to apoptosis, Nat. Commun., 12, 6984, doi: 10.1038/s41467-021-27306-4.
  51. Yasuda, S., Tsuchiya, H., Kaiho, A., Guo, Q., Ikeuchi, K., Endo, A., Arai N, Ohtake, F., Murata, S., Inada, T., Baumeister, W., Fernández-Busnadiego, R., Tanaka, K., and Saeki, Y. (2020) Stress- and ubiquitylation-dependent phase separation of the proteasome, Nature, 578, 296-300, doi: 10.1038/s41586-020-1982-9.
  52. Kaganovich, D., Kopito, R., and Frydman, J. (2008) Misfolded proteins partition between two distinct quality control compartments, Nature, 454, 1088-1095, doi: 10.1038/nature07195.
  53. Gu, Z. C., Wu, E., Sailer, C., Jando, J., Styles, E., Eisenkolb, I., Kuschel, M., Bitschar, K., Wang, X., Huang, L., Vissa, A., Yip, C.M., Yedidi. R.S., Friesen, H., and Enenkel, C. (2017) Ubiquitin orchestrates proteasome dynamics between proliferation and quiescence in yeast, Mol. Biol. Cell, 28, 2479-2491, doi: 10.1091/mbc.E17-03-0162.
  54. Fabunmi, R. P., Wigley, W. C., Thomas, P. J., and DeMartino, G. N. (2001) Interferon gamma regulates accumulation of the proteasome activator PA28 and immunoproteasomes at nuclear PML bodies, J. Cell Sci., 114, 29-36, doi: 10.1242/jcs.114.1.29.
  55. Mediani, L., Guillen-Boixet, J., Vinet, J., Franzmann, T. M., Bigi, I., Mateju, D., Carrà, A.D., Morelli, F.F., Tiago, T., Poser, I., Alberti, S., and Carra, S. (2019) Defective ribosomal products challenge nuclear function by impairing nuclear condensate dynamics and immobilizing ubiquitin, EMBO J., 38, 101341, doi: 10.15252/embj.2018101341.
  56. Ramachandran, K. V., and Margolis, S. S. (2017) A mammalian nervous-system-specific plasma membrane proteasome complex that modulates neuronal function, Nat. Struct. Mol. Biol., 24, 419-430, doi: 10.1038/nsmb.3389.
  57. Türker, F., Cook, E. K., and Margolis, S. S. (2021) The proteasome and its role in the nervous system, Cell. Chem. Biol., 28, 903-917, doi: 10.1016/j.chembiol.2021.04.003.
  58. Guo, X., Huang, X., and Chen, M. J. (2017) Reversible phosphorylation of the 26S proteasome, Protein Cell, 8, 255-272, doi: 10.1007/s13238-017-0382-x.
  59. Myeku, N., Clelland, C. L., Emrani, S., Kukushkin, N. V., Yu, W. H., Goldberg, A. L., and Duff, K. E. (2016) Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling, Nat. Med., 22, 46-53, doi: 10.1038/nm.4011.
  60. VerPlank, J. J. S., Tyrkalska, S. D., Fleming, A., Rubinsztein, D. C., and Goldberg, A. L. (2020) CGMP via PKG activates 26S proteasomes and enhances degradation of proteins, including ones that cause neurodegenerative diseases, Proc. Natl. Acad. Sci. USA, 117, 14220-14230, doi: 10.1073/pnas.2003277117.
  61. Zhang, F., Su, K., Yang, X., Bowe, D. B., Paterson, A. J., and Kudlow, J. E. (2003) O-GlcNAc modification is an endogenous inhibitor of the proteasome, Cell, 115, 715-725, doi: 10.1016/S0092-8674(03)00974-7.
  62. Cho-Park, P. F., and Steller, H. (2013) Proteasome regulation by ADP-ribosylation, Cell, 153, 614-627, doi: 10.1016/j.cell.2013.03.040.
  63. Gomes, A. V., Zong, C., Edmondson, R. D., Li, X., Stefani, E., Zhang, J., Jones, R. C., Thyparambil, S., Wang, G. W., Qiao, X., Bardag-Gorce, F., and Ping, P. (2006) Mapping the murine cardiac 26S proteasome complexes, Circ. Res., 99, 362-371, doi: 10.1161/01.RES.0000237386.98506.f7.
  64. Guo, X. (2022) Localized proteasomal degradation: from the nucleus to cell periphery, Biomolecules, 12, 229, doi: 10.3390/biom12020229.
  65. Wang, D., Fang, C., Zong, N. C., Liem, D. A., Cadeiras, M., Scruggs, S. B., Yu, H., Kim, A. K., Yang, P., Deng, M., Lu, H., and Ping, P. (2013) Regulation of acetylation restores proteolytic function of diseased myocardium in mouse and human, Mol. Cell. Proteomics, 12, 3793-3802, doi: 10.1074/mcp.M113.028332.
  66. Bi, M., Du, X., Jiao, Q., Chen, X., and Jiang, H. (2021) Expanding the role of proteasome homeostasis in Parkinson's disease: beyond protein breakdown, Cell Death Dis., 12, 154, doi: 10.1038/s41419-021-03441-0.
  67. Silva, G. M., Netto, L. E., Discola, K. F., Piassa-Filho, G. M., Pimenta, D. C., Bárcena, J. A., and Demasi, M. (2008) Role of glutaredoxin 2 and cytosolic thioredoxins in cysteinyl-based redox modification of the 20S proteasome, FEBS J., 275, 2942-2955, doi: 10.1111/j.1742-4658.2008.06441.
  68. Wang, X., Chen, C. F., Baker, P. R., Chen, P. L., Kaiser, P., and Huang, L. (2007) Mass spectrometric characterization of the affinity-purified human 26S proteasome complex, Biochemistry, 46, 3553-3565, doi: 10.1021/bi061994u.
  69. Tai, H. C., Besche, H., Goldberg, A. L., and Schuman, E. M. (2010) Characterization of the brain 26S proteasome and its interacting proteins, Front. Mol. Neurosci., 3, 12, doi: 10.3389/fnmol.2010.00012.
  70. Verma, R., Chen, S., Feldman, R., Schieltz, D., Yates, J., Dohmen, J., and Deshaies, R. J. (2000) Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes, Mol. Biol. Cell, 11, 3425-3439, doi: 10.1091/mbc.11.10.3425.
  71. Guerrero, C., Tagwerker, C., Kaiser, P., and Huang, L. (2006) An integrated mass spectrometry-based proteomic approach: quantitative analysis of tandem affinity-purified in vivo cross-linked protein complexes (QTAX) to decipher the 26 S proteasome-interacting network, Mol. Cell. Proteomics, 5, 366-378, doi: 10.1074/mcp.M500303-MCP200.
  72. Guerrero, C., Milenkovic, T., Przulj, N., Kaiser, P., and Huang, L. (2008) Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis, Proc. Natl. Acad. Sci. USA, 105, 13333-13338, doi: 10.1073/pnas.0801870105.
  73. Зайкова Ю. Я., Куличкова В. А., Ермолаева Ю. Б., Боттрилл А., Барлев Н. А., Цимоха А. С. (2013) Характеристика внеклеточных протеасом и ассоциированных с ними белков методом iTRAQ-масс-спектрометрии, Цитология, 55, 111-122, doi: 10.1134/S1990519X13030139.
  74. Yu, C., Yang, Y., Wang, X., Guan, S., Fang, L., Liu, F., Walters, K. J., Kaiser, P., and Huang, L. (2016) Characterization of dynamic UbR-proteasome subcomplexes by in vivo cross-linking (X) assisted bimolecular tandem affinity purification (XBAP) and label-free quantitation, Mol. Cell. Proteomics, 15, 2279-2292, doi: 10.1074/mcp.M116.058271.
  75. Артамонова Т. О., Ходорковский М. А., Цимоха А. С. (2014) Масс-спектрометрический анализ аффинно-очищенных протеасом из клеток миелогенной лейкемии человека линии К562, Биоорг. Химия, 40, 720-734, doi: 10.1134/s1068162014060041.
  76. Buneeva, O., Kopylov, A., Kaloshina, S., Zgoda, V., and Medvedev, A. (2021) 20S and 26S proteasome-binding proteins of the rabbit brain: a proteomic dataset, Data Brief, 38, 107276, doi: 10.1016/j.dib.2021.107276.
  77. Бунеева О. А., Копылов А. Т., Згода В. Г., Гнеденко О. В., Калошина С. А., Медведева М. В., Иванов А. С., Медведев А. Е. (2022) Сравнительный анализ белков, ассоциированных с 26S и 20S протеасомами мозга и печени кролика, Биомед. Хим., 68, 18-31, doi: 10.18097/PBMC20226801018.
  78. Besche, H. C., Haas, W., Gygi, S. P., and Goldberg, A. L. (2009) Isolation of mammalian 26S proteasomes and p97/VCP complexes using the ubiquitin-like domain from HHR23B reveals novel proteasome-associated proteins, Biochemistry, 48, 2538-2549, doi: 10.1021/bi802198q.
  79. Schubert, U., Antón, L. C., Gibbs, J., Norbury, C. C., Yewdell, J. W., and Bennink, J. R. (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes, Nature, 404, 770-774, doi: 10.1038/35008096.
  80. Jia, J., Arif, A., Willard, B., Smith, J. D., Stuehr, D. J., Hazen, S. L., and Fox, P. L. (2012) Protection of extraribosomal RPL13a by GAPDH and dysregulation by S-nitrosylation, Mol. Cell, 47, 656-663, doi: 10.1016/j.molcel.2012.06.006.
  81. Lazarev, V. F., Nikotina, A. D., Mikhaylova, E. R., Nudler, E., Polonik, S. G., Guzhova, I. V., and Margulis, B. A. (2016) Hsp70 chaperone rescues C6 rat glioblastoma cells from oxidative stress by sequestration of aggregating GAPDH, Biochem. Biophys. Res. Commun., 470, 766-771, doi: 10.1016/j.bbrc.2015.12.076.
  82. Ishihama, Y., Oda, Y., Tabata, T., Sato, T., Nagasu, T., Rappsilber, J., and Mann, M. (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein, Mol. Cell. Proteomics, 4, 1265-1272, doi: 10.1074/mcp.M500061-MCP200.
  83. Binns, D., Dimmer, E., Huntley, R., Barrell, D., O'Donovan, C., and Apweiler, R. (2009) QuickGO: a web-based tool for gene ontology searching, Bioinformatics, 25, 3045-3046, doi: 10.1093/bioinformatics/btp536.
  84. Kohr, M. J., Murphy, E., and Steenbergen, C. (2014) Glyceraldehyde-3-phosphate dehydrogenase acts as a mitochondrial trans-S-nitrosylase in the heart, PLoS One, 9, 111448, doi: 10.1371/journal.pone.0111448.
  85. Qiao, G., Wu, A., Chen, X., Tian, Y., and Lin, X. (2021) Enolase 1, a moonlighting protein, as a potential target for cancer treatment, Int. J. Biol. Sci., 17, 3981-3992, doi: 10.7150/ijbs.63556.
  86. Didiasova, M., Schaefer, L., and Wygrecka, M. (2019) When place matters: shuttling of enolase-1 across cellular compartments, Front. Cell Dev. Biol., 7, 61, doi: 10.3389/fcell.2019.00061.
  87. Ejiri, S. (2002) Moonlighting functions of polypeptide elongation factor 1: from actin bundling to zinc finger protein R1-associated nuclear localization, Biosci. Biotechnol. Biochem., 66, 1-21, doi: 10.1271/bbb.66.1.
  88. Pirovich, D. B., Da'dara, A. A., and Skelly, P. J. (2021) Multifunctional fructose 1,6-bisphosphate aldolase as a therapeutic target, Front. Mol. Biosci., 8, 719678, doi: 10.3389/fmolb.2021.719678.
  89. Gizak, A., Wiśniewski, J., Heron, P., Mamczur, P., Sygusch, J., and Rakus, D. (2019) Targeting a moonlighting function of aldolase induces apoptosis in cancer cells, Cell Death Dis., 10, 712, doi: 10.1038/s41419-019-1968-4.
  90. Conrad, M., Schneider, M., Seiler, A., and Bornkamm, G. W. (2007) Physiological role of phospholipid hydroperoxide glutathione peroxidase in mammals, Biol Chem., 388, 1019-1025, doi: 10.1515/BC.2007.130.
  91. Haraguchi, C. M., Mabuchi, T., Hirata, S., Shoda, T., Yamada, A. T., Hoshi, K., and Yokota, S. (2003) Spatiotemporal changes of levels of a moonlighting protein, phospholipid hydroperoxide glutathione peroxidase, in subcellular compartments during spermatogenesis in the rat testis, Biol. Reprod., 69, 885-895, doi: 10.1095/biolreprod.102.013524.
  92. Jeffery, C. J. (2018) Protein moonlighting: what is it, and why is it important? Philos. Trans. R. Soc. Lond. B Biol Sci., 373, 20160523, doi: 10.1098/rstb.2016.0523.
  93. Brighenti, E., Carnicelli, D., Brigotti, M., and Fiume, L. (2017) The inhibition of lactate dehydrogenase A hinders the transcription of histone 2B gene independently from the block of aerobic glycolysis, Biochem. Biophys. Res. Commun., 485, 742-745, doi: 10.1016/j.bbrc.2017.02.119.
  94. Auer, J., Camoin, L., Courtot, A. M., Hotellier, F., and De Almeida, M. (2004) Evidence that P36, a human sperm acrosomal antigen involved in the fertilization process is triosephosphate isomerase, Mol. Reprod. Dev., 68, 515-523, doi: 10.1002/mrd.20107.
  95. Медведев А. Е., Бунеева О. А., Копылов А. Т., Тихонова О. В., Медведева М. В., Неробкова Л. Н., Капица И. Г., Згода В. Г. (2017) Митохондриальный субпротеом Rpn10-связывающих белков мозга и его изменения, индуцированные нейротоксином МФТП и нейропротектором изатином, Биохимия, 82, 470-480, doi: 10.1134/S0006297917030117.
  96. Deveraux, Q., Ustrell, V., Pickart, C., and Rechsteiner, M. (1994) A 26S protease subunit that binds ubiquitin conjugates, J. Biol. Chem., 269, 7059-7061.
  97. Hamazaki, J., Sasaki, K., Kawahara, H., Hisanaga, S., Tanaka, K., and Murata, S. (2007) Rpn10-mediated degradation of ubiquitinated proteins is essential for mouse development, Mol. Cell. Biol., 19, 6629-6638, doi: 10.1128/MCB.00509-07.
  98. Buneeva, O. A., Kopylov, A. T., and Medvedev, A. E. (2020) Qualitative difference of mitochondrial subproteoms of brain RPN10- and RPN13-binding proteins, Biomed. Khim., 66, 138-144, doi: 10.18097/PBMC20206602138.
  99. Asano, S., Fukuda, Y., Beck, F., Aufderheide, A., Förster, F., Danev, R., and Baumeister, W. (2015) Proteasomes. A molecular census of 26S proteasomes in intact neurons, Science, 347, 439-442, doi: 10.1126/science.1261197.
  100. Wójcik, C., and DeMartino, G. N. (2003) Intracellular localization of proteasomes, Int. J. Biochem. Cell Biol., 35, 579-589, doi: 10.1016/s1357-2725(02)00380-1.
  101. Otero, M. G., Alloatti, M., Cromberg, L. E., Almenar-Queralt, A., Encalada, S. E., Pozo Devoto, V. M., Bruno, L., Goldstein, L. S., and Falzone, T. L. (2014) Fast axonal transport of the proteasome complex depends on membrane interaction and molecular motor function, J. Cell Sci., 127, 1537-1549, doi: 10.1242/jcs.140780.
  102. Oddo, S. (2008) The ubiquitin-proteasome system in Alzheimer's disease, J. Cell. Mol. Med., 12, 363-373, doi: 10.1111/j.1582-4934.2008.00276.x.
  103. Yi, J. J., and Ehlers, M. D. (2007) Emerging roles for ubiquitin and protein degradation in neuronal function, Pharmacol. Rev., 59, 14-39, doi: 10.1124/pr.59.1.4.
  104. Hsu, M. T., Guo, C. L., Liou, A. Y., Chang, T. Y., Ng, M. C., Florea, B. I., Overkleeft, H. S., Wu, Y. L., Liao, J. C., and Cheng, P. L. (2015) Stage-dependent axon transport of proteasomes contributes to axon development, Dev. Cell, 35, 418-431, doi: 10.1016/j.devcel.2015.10.018.
  105. Kreko-Pierce, T., and Eaton, B. A (2017) The Drosophila LC8 homolog cut up specifies the axonal transport of proteasomes, J. Cell Sci., 130, 3388-3398, doi: 10.1242/jcs.207027.
  106. Ibañez-Vega, J., Del Valle Batalla, F., Saez, J. J., Soza, A., and Yuseff, M. I. (2019) Proteasome dependent actin remodeling facilitates antigen extraction at the immune synapse of B cells, Front. Immunol., 10, 225, doi: 10.3389/fimmu.2019.00225.
  107. Bader, M., Benjamin, S., Wapinski, O. L., Smith, D. M., Goldberg, A. L., and Steller, H. (2011) A conserved F box regulatory complex controls proteasome activity in Drosophila, Cell, 145, 371-382, doi: 10.1016/j.cell.2011.03.021.
  108. Liu, K., Jones, S., Minis, A., Rodriguez, J., Molina, M., and Steller, H. (2019) PI31 is an adaptor protein for proteasome transport in axons and required for synaptic development, Dev. Cell, 50, 509-524, doi: 10.1016/j.devcel.2019.06.009.
  109. Buneeva, O., and Medvedev, A. (2022) Atypical ubiquitination and Parkinson's disease, Int. J. Mol. Sci., 23, 3705, doi: 10.3390/ijms23073705.
  110. Gorbea, C., Pratt, G., Ustrell, V., Bell, R., Sahasrabudhe, S., Hughes, R. E., and Rechsteiner, M. (2010) A protein interaction network for Ecm29 links the 26 S proteasome to molecular motors and endosomal components, J. Biol. Chem., 285, 31616-31633, doi: 10.1074/jbc.M110.154120.
  111. Zhao, J., Fok, A. H. K., Fan, R., Kwan, P.Y., Chan, H. L., Lo, L. H., Chan, Y. S., Yung, W. H., Huang, J., Lai, C. S. W., and Lai, K. O. (2020) Specific depletion of the motor protein KIF5B leads to deficits in dendritic transport, synaptic plasticity and memory, eLife, 9, e53456, doi: 10.7554/eLife.53456.
  112. Kundrat, L., and Regan, L. (2010) Balance between folding and degradation for Hsp90-dependent client proteins: a key role forCHIP, Biochemistry, 49, 7428-7438, doi: 10.1021/bi100386w.
  113. Luders, J., Demand, J., and Hohfeld, J. (2000) The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome, J. Biol. Chem., 275, 4613-4617, doi: 10.1074/jbc.275.7.4613.
  114. Murata, S., Minami, Y., Minami, M., Chiba, T., and Tanaka, K. (2001) CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein, EMBO Rep., 2, 1133-1138, doi: 10.1093/embo-reports/kve246.
  115. Reeg, S., Jung, T., Castro, J. P., Davies, K. J. A., Henze, A., and Grune, T. (2016) The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome, Free Radic. Biol. Med., 99, 153-166, doi: 10.1016/j.freeradbiomed.2016.08.002.
  116. Davies, K. J. (2001) Degradation of oxidized proteins by the 20S proteasome, Biochimie, 83, 301-310, doi: 10.1016/s0300-9084(01)01250-0.
  117. Reinhecke, T., Sitte, N., Ullrich, O., Kuckelkorn, U., Davies, K. J., and Grune, T. (1998) Comparative resistance of the 20S and 26S proteasome to oxidative stress, Biochem. J., 335, 637-642, doi: 10.1042/bj3350637.
  118. Reinheckel, T., Ullrich, O., Sitte, N., and Grune, T. (2000) Differential impairment of 20S and 26S proteasome activities in human hematopoietic K562 cells during oxidative stress, Arch. Biochem. Biophys., 377, 65-68, doi: 10.1006/abbi.2000.1717.
  119. Conconi, M., Petropoulos, I., Emod, I., Turlin, E., Biville, F., and Friguet, B. (1998) Protection from oxidative inactivation of the 20S proteasome by heat-shock protein 90, Biochem. J., 333, 407-415, doi: 10.1042/bj3330407.
  120. Whittier, J. E., Xiong, Y., Rechsteiner, M. C., and Squier, T. C. (2004) Hsp90 enhances degradation of oxidized calmodulin by the 20 S proteasome, J. Biol. Chem., 279, 46135-46142, doi: 10.1074/jbc.M406048200.
  121. Bingol, B., Wang, C. F., Arnott, D., Cheng, D., Peng, J., and Sheng, M. (2010) Autophosphorylated CaMKIIα acts as a scaffold to recruit proteasomes to dendritic spines, Cell, 140, 567-578, doi: 10.1016/j.cell.2010.01.024.
  122. Djakovic, S. N., Marquez-Lona, E. M., Jakawich, S. K., Wright, R., Chu, C., Sutton, M. A., and Patrick, G. N. (2012) Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons, J. Neurosci., 32, 5126-5131, doi: 10.1523/JNEUROSCI.4427-11.2012.
  123. Hamilton, A. M., Oh, W. C., Vega-Ramirez, H., Stein, I. S., Hell, J. W., Patrick, G. N., and Zito, K. (2012) Activity-dependent growth of new dendritic spines is regulated by the proteasome, Neuron, 74, 1023-1030, doi: 10.1016/j.neuron.2012.04.031.
  124. Jarome, T. J., Kwapis, J. L., Ruenzel, W. L., and Helmstetter, F. J. (2013) CaMKII, but not protein kinase A, regulates Rpt6 phosphorylation and proteasome activity during the formation of long-term memories, Front. Behav. Neurosci., 7, 115, doi: 10.3389/fnbeh.2013.00115.
  125. Jarome, T. J., Ferrara, N. C., Kwapis, J. L., and Helmstetter, F. J. CaMKII regulates proteasome phosphorylation and activity and promotes memory destabilization following retrieval, Neurobiol. Learn. Mem., 128, 103-109, doi: 10.1016/j.nlm.2016.01.001.
  126. Feng, Y., Longo, D. L., and Ferris, D. K. (2001) Polo-like kinase interacts with proteasomes and regulates their activity, Cell Growth Differ., 12, 29-37.
  127. Metselaar, D. S., du Chatinier, A., Meel, M. H., Ter Huizen, G., Waranecki, P., Goulding, J. R., Bugiani, M., Koster, J., Kaspers, G. J. L., and Hulleman, E. (2022) AURKA and PLK1 inhibition selectively and synergistically block cell cycle progression in diffuse midline glioma, iScience, 25, 104398, doi: 10.1016/j.isci.2022.104398.
  128. Colbran, R. J., and Brown, A. M. (2004) Calcium/calmodulin-dependent protein kinase II and synaptic plasticity, Curr. Opin. Neurobiol., 14, 318-327, doi: 10.1016/j.conb.2004.05.008.
  129. Tarcsa, E., Szymanska, G., Lecker, S., O'Connor, C. M., and Goldberg, A. L. (2000) Ca2+-free calmodulin and calmodulin damaged by in vitro aging are selectively degraded by 26 S proteasomes without ubiquitination, J. Biol. Chem., 275, 20295-20301, doi: 10.1074/jbc.M001555200.
  130. Kito, Y., Matsumoto, M., Hatano, A., Takami, T., Oshikawa, K., Matsumoto, A., and Nakayama, K. I. (2020) Cell cycle-dependent localization of the proteasome to chromatin, Sci. Rep., 10, 5801, doi: 10.1038/s41598-020-62697-2.
  131. Beckelman, B. C., Day, S., Zhou, X., Donohue, M., Gouras, G. K., Klann, E., Keene, C. D., and Ma, T. (2016) Dysregulation of elongation factor 1A expression is correlated with synaptic plasticity impairments in Alzheimer's disease, J. Alzheimers Dis., 54, 669-678, doi: 10.3233/JAD-160036.
  132. Chuang, S. M., Chen, L., Lambertson, D., Anand, M., Kinzy, T. G., and Madura, K. (2005) Proteasome-mediated degradation of cotranslationally damaged proteins involves translation elongation factor 1A, Mol. Cell. Biol., 25, 403-413, doi: 10.1128/MCB.25.1.403-413.2005.
  133. Beckelman, B. C., Zhou, X., Keene, C. D., and Ma, T. (2016) Impaired eukaryotic elongation factor 1A expression in Alzheimer's disease, Neurodegener. Dis., 16, 39-43, doi: 10.1159/000438925.
  134. Olshina, M. A., Arkind, G., Deshmukh, F. K., Fainer, I., Taranavsky, M., Hayat, D., Ben-Dor, S., Ben-Nissan, G., and Sharon, M. (2020) Regulation of the 20S proteasome by a novel family of inhibitory proteins, Antioxid. Redox Signal., 32, 636-655, doi: 10.1089/ars.2019.7816.
  135. Hashimoto, T., Hussien, R., Cho, H. S., Kaufer, D., and Brooks, G. A. (2008) Evidence for the mitochondrial lactate oxidation complex in rat neurons: demonstration of an essential component of brain lactate shuttles, PLoS One, 3, e2915, doi: 10.1371/journal.pone.0002915.
  136. Thomas, P.D., Ebert, D., Muruganujan, A., Mushayahama, T., Albou, L.P., and Mi, H. (2022) PANTHER: Making genome-scale phylogenetics accessible to all, Protein Sci., 31, 8-22, doi: 10.1002/pro.4218.
  137. Rabl, J., Smith, D. M., Yu, Y., Chang, S. C., Goldberg, A. L., and Cheng, Y. (2008) Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases, Mol Cell, 30, 360-368, doi: 10.1016/j.molcel.2008.03.004.
  138. Smith, D. M., Fraga, H., Reis, C., Kafri, G., and Goldberg, A. L. (2011) ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle, Cell, 144, 526-538, doi: 10.1016/j.cell.2011.02.005.
  139. Myeku, N., and Duff K. E. (2018) Targeting the 26S proteasome to protect against proteotoxic diseases, Trends Mol. Med., 24, 18-29, doi: 10.1016/j.molmed.2017.11.006.

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies