Recognition of γ-subunit by β-subunit. Stabilization of the GTP-bound state of translation initiation factor 2 in archaea and eukaryotes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Eukaryotic and archaeal translation initiation factor 2 (e/aIF2) functions as a heterotrimeric complex. It consists of three subunits (α,β, γ). The α- and β-subunits are linked to the γ-subunit by hydrogen bonds and van der Waals interactions, but do not contact each other. Although the main functions of the factor are performed by the γ-subunit reliable formation of αγ- and βγ-complexes is necessary for its proper functioning. In this work, we made mutations in the recognition part of the βγ interface and showed that both in eukaryotes and archaea, the hydrophobic effect plays a decisive role in the recognition of subunits. The shape and properties of the hollow on the surface of the γ-subunit facilitates the transition of the disordered recognition part of the β-subunit into the α-helix containing approximately the same number of residues in archaea and eukaryotes. In addition, based on the newly obtained data, it was concluded that in archaea and eukaryotes, the transition of the γ-subunit to the active state leads to additional contact between its switch 1 and the C-terminal part of the β-subunit, which stabilizes the helical conformation of the switch.

About the authors

O. S Nikonov

Institute of Protein Research, Russian Academy of Sciences

Email: alik@vega.protres.ru
142290 Pushchino, Moscow Region, Russia

E. Yu Nikonova

Institute of Protein Research, Russian Academy of Sciences

Email: alik@vega.protres.ru
142290 Pushchino, Moscow Region, Russia

A. G Tarabarova

Institute of Protein Research, Russian Academy of Sciences

Email: alik@vega.protres.ru
142290 Pushchino, Moscow Region, Russia

A. O Mikhaylina

Institute of Protein Research, Russian Academy of Sciences

Email: alik@vega.protres.ru
142290 Pushchino, Moscow Region, Russia

O. V Kravchenko

Institute of Protein Research, Russian Academy of Sciences

Email: alik@vega.protres.ru
142290 Pushchino, Moscow Region, Russia

N. A Nevskaya

Institute of Protein Research, Russian Academy of Sciences

Email: alik@vega.protres.ru
142290 Pushchino, Moscow Region, Russia

S. V Nikonov

Institute of Protein Research, Russian Academy of Sciences

Email: alik@vega.protres.ru
142290 Pushchino, Moscow Region, Russia

References

  1. Algire, M. A., Maag, D., and Lorsch, J. R. (2005) Pi release from eIF2, not GTP hydrolysis, is the step controlled by start-site selection during eukaryotic translation initiation, Mol. Cell, 20, 251-262, doi: 10.1016/j.molcel.2005.09.08.
  2. Kapp, L. D., and Lorsch, J. R. (2004) The molecular mechanisms of eukaryotic translation, Annu. Rev. Biochem., 73, 657-704, doi: 10.1146/annurev.biochem.73.030403.080419.
  3. Jackson, R. J., Hellen, C. U., and Pestova, T. V. (2010) The mechanism of eukaryotic translation initiation and principles of its regulation, Nat. Rev. Mol. Cell Biol., 11, 113-127, doi: 10.1038/nrm2838.
  4. Sokabe, M., Yao, M., Sakai, N., Toya, S., and Tanaka, I. (2006) Structure of archaeal translational initiation factor 2bg-GDP reveals significant conformational change of the b-subunit and switch 1 region, Proc. Natl. Acad. Sci. USA, 103, 13016-13021, doi: 10.1073/pnas.0604165103.
  5. Yatime, L., Mechulam, Y., Blanquet, S., and Schmitt, E. (2007) Structure of an archaeal heterotrimeric initiation factor 2 reveals a nucleotide state between the GTP and the GDP states, Proc. Natl. Acad. Sci. USA, 104, 18445-18450, doi: 10.1073/pnas.0706784104.
  6. Stolboushkina, E., Nikonov, S., Nikulin, A., Bläsi, U., Manstein, D. J., Fedorov, R., Garber, M., and Nikonov, O. (2008) Crystal structure of the intact archaeal translation initiation factor 2 demonstrates very high conformational flexibility in the α- and β-subunits, J. Mol. Biol., 382, 680-691, doi: 10.1016/j.jmb.2008.07.039.
  7. Adomavicius, T., Guaita, M., Zhou, Y., Jennings, M. D., Latif, Z., Roseman, A. M., and Pavitt, G. D. (2019) The structural basis of translational control by eIF2 phosphorylation, Nat. Commun., 10, 2136-2146, doi: 10.1038/s41467-019-10167-3.
  8. Querido, J., Sokabe, M., Kraatz, S., Gordiyenko, Y., Skehel, J. M., Fraser, C., and Ramakrishnan, V. (2020) Structure of a human 48S translational initiation complex, Science, 369, 1220-1227, doi: 10.1126/science.aba4904.
  9. Thoms, M., Buschauer, R., Ameismeier, M., Koepke, L., Denk, T., Hirschenberger, M., Kratzat, H., Hyan, M., Mackens-Kiani, T., Cheng, J., Straub, J. H., Sturzel, C. M., Frohlich, T., Berninghausen, O., Becker, T., Kirchhoff, F., Sparrer, K. M. J., and Beckmann, R. (2020) Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2, Science, 369, 1249-1255, doi: 10.1126/science.abc8665.
  10. Thompson, G. M., Pacheco, E., Melo, E. O., and Castilho, B. A. (2000) Conserved sequences in the β subunit of archaeal and eukaryal translation initiation factor 2 (eIF2), absent from eIF5, mediate interaction with eIF2γ, Biochem. J., 347, 703-709, doi: 10.1042/bj3470703.
  11. Kashiwagi, K., Yokoyama, T., Nishimoto, M., Takahashi, M., Sakamoto, A., Yonemochi, M., Shirouzu, M., and Ito, T. (2019) Structural basis for eIF2B inhibition in integrated stress response, Science, 364, 495-499, doi: 10.1126/science.AAW4104.
  12. Laurino, J. P., Thompson, G. M., Pacheco, E., and Castilho, B. A. (1999) The β subunit of eukaryotic translation initiation factor 2 binds mRNA through the lysine repeats and a region comprising the C2-C2 motif, Mol. Cell. Biol., 19, 173-181, doi: 10.1128/mcb.19.1.173.
  13. Hashimoto, N. N., Carnevalli, L. S., and Castilho, B. A. (2002) Translation initiation at non-AUG codons mediated by a weakened association of eukaryotic initiation factor (eIF) 2 subunits, Biochem. J., 367, 359-368, doi: 10.1042/bj20020556.
  14. Huang, H. K., Yoon, H., Hanning, E. M., and Donahue, T. F. (1997) GTP hydrolysis controls stringent selection of the AUG start codon during translation initiation in Saccharomyces cerevisiae, Genes Dev., 11, 2396-2413, doi: 10.1101/gad.11.18.2396.
  15. Donahue, T. F., Cigan, A. M., Pabich, E. K., and Valavicius, B. C. (1988) Mutations at a Zn(II) finger motif in the yeast eIF-2 β gene alter ribosomal start-site selection during the scanning process, Cell, 54, 621-632, doi: 10.1016/s0092-8674(88)80006-0.
  16. Castilho-Valavicius, B., Thompson, G. M., and Donahue, T. F. (1992) Mutation analysis of the Cys-X2-Cys-X19-Cys-X2-Cys motif in the β subunit of eukaryotic translation initiation factor 2, Gene Expr., 2, 297-309.
  17. Borck, G., Shin, B.-S., Stiller, B., Mimouni-Bloch, A., Thiele, H., Kim, J.-R., Thakur, M., Skinner, C., Aschenbach, L., Smirin-Yosef, P., Har-Zabav, A., Nurnberg, G., Altmuller, J., Frommolt, P., Hofmann, K., Konen, O., Nurnberg, P., Munnich, A., Schwartz, C. E., Gothelf, D., Colleaus, L., Dever, T. E., Kubisch, C., and Basel-Vanagaite, L. (2012) eIF2γ mutation that disrupts eIF2 complex integrity links intellectual disability to impaired translation initiation, Mol. Cell, 48, 641-646, doi: 10.1016/j.molcel.2012.09.005.
  18. Никонов О. С., Кравченко О. В., Невская Н. А., Столбоушкина Е. А., Гарбер М. Б., Никонов С. В. (2021) Влияние миссенс-мутации Ile222Thr в SsoIF2 на сродство γ- и β-субъединиц aIF2, Кристаллография, 66, 772-776, doi: 10.31857/S0023476121050155.
  19. Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., and Steinegger, M. (2022) ColabFold: making protein folding accessible to all, Nat. Methods, 19, 679-682, doi: 10.1038/s41592-022-01488-1.
  20. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Ží-dek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P., and Hassabis, D. (2021) Highly accurate protein structure prediction with AlphaFold, Nature, 596, 583-589, doi: 10.1038/s41586-021-03819-2.
  21. Mirdita, M., Steinegger, M., and Söding, J. (2019) MMseqs2 desktop and local web server app for fast, interactive sequence searches, Bioinformatics, 35, 2856-2858, doi: 10.1093/bioinformatics/bty1057.
  22. Steinegger, M., Meier, M., Mirdita, M., Vöhringer, H., Haunsberger, S. J., and Söding, J. (2019) HH-suite3 for fast remote homology detection and deep protein annotation, BMC Bioinformatics, 20, 473, doi: 10.1186/s12859-019-3019-7.
  23. Eastman, P., Swails, J., Chodera, J. D., McGibbon, R. T., Zhao, Y., Beauchamp, K.A., Wang, L-P., Simmonett, A. C., Harrigan, M. P., Stern, C. D., Wiewiora, R. P., Brooks, B. R., and Pande, V. S. (2017) OpenMM 7: Rapid development of high performance algorithms for molecular dynamics, PLOS Comput. Biol., 13, e1005659, doi: 10.1371/journal.pcbi.1005659.
  24. Emsley, P., Lohkamp, B., Scott, W., and Cowtan, K. (2010) Features and Development of Coot, Acta Crystallogr. Sec. D Biol. Crystallogr., 66, 486-501, doi: 10.1107/S0907444910007493.
  25. Nikonov, O., Stolboushkina, E., Arkhipova, V., Kravchenko, O., Nikonov, S., and Garber, M. (2014) Conformational transitions in the γ subunit of the archaeal translation initiation factor 2, Acta Cryst., D70, 658-667, doi: 10.1107/S1399004713032240.
  26. Dubiez, E., Aleksandrov, A., Lazennec-Schurdevin, C., Mechulam, Y., and Schmitt, E. (2015) Identification of a second GTP-bound magnesium ion in archaeal initiation factor 2, Nucleic Acids Res., 43, 2946-2957, doi: 10.1093/nar/gkv053.
  27. Gutierrez, P., Osborne, M.J., Siddiqui, N., Trempe, J. F., Arrowsmith, C. and Gehring, K. (2004) Structure of the archaeal translation initiation factor aIF2β from Methanobacterium thermoautotrophicum: implications for translation initiation, Protein Sci., 13, 659-667, doi: 10.1110/ps.03506604.
  28. Vasile, F., Pechkova, E., and Nicolini, C. (2008) Solution structure of the β-subunit of the translation initiation factor aIF2 from archaebacteria Sulfolobus solfataricus, Proteins, 70, 1112-1115, doi: 10.1002/Prot.21797.
  29. Schmitt, E., Naveau, M., and Mechulam, Y. (2010) Eukaryotic and archaeal translation initiation factor 2: a heterotrimeric tRNA carrier, FEBS Lett., 584, 405-412, doi: 10.1016/j.febslet.2009.11.002.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies