Epithelial-mesenchymal transition of breast cancer cells activated by SNAIL1 transcription factor

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cancer cells use the program of epithelial-mesenchymal transition for initiation of the invasion-metastasis cascade. Using confocal and video-microscopy, in breast cancer MCF-7 cells undergoing Snail1-induced epithelial-mesenchymal transition reorganization of cytoskeleton was studied. We used the line of MCF-7 cells stably expressing tetOff SNAI1 construct (MCF-7-SNAI1 cells). After tetracycline washing and Snail1 activation MCF-7-SNAI1 cells underwent EMT and acquired a migratory phenotype retaining expression of E-cadherin. We identified five variants of the mesenchymal phenotype, differing in cell morphology and migration rate. Migrating cells had high degree of plasticity which allowed them to quickly change both the phenotype and the speed of movement. The changes of phenotype of MCF-7-SNAI1 cells are based on Arp2/3-mediated branched actin polymerization in lamellipodia, myosin-based contractility in the zone behind the nucleus, redistribution of adhesive proteins from cell-cell contacts to the leading edge and reorganization of intermediate keratin filaments.

About the authors

N. I Litovka

N. N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation

Email: natglu@hotmail.com
115478 Moscow, Russia

I. Y Zhitnyak

N. N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation

Email: natglu@hotmail.com
115478 Moscow, Russia

N. A Gloushankova

N. N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation

Email: natglu@hotmail.com
115478 Moscow, Russia

References

  1. Nieto, M. A., Huang, R. Y. Y. J., Jackson, R. A. A., and Thiery, J. P. P. (2016) EMT: 2016, Cell, 166, 21-45, doi: 10.1016/J.CELL.2016.06.028.
  2. Lambert, A. W., Pattabiraman, D. R., and Weinberg, R. A. (2017) Emerging biological principles of metastasis, Cell, 168, 670-691, doi: 10.1016/J.CELL.2016.11.037.
  3. Dongre, A., and Weinberg, R. A. (2019) New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer, Nat. Rev. Mol. Cell Biol., 20, 69-84, doi: 10.1038/S41580-018-0080-4.
  4. Nikolaou, S., and Machesky, L. M. (2020) The stressful tumour environment drives plasticity of cell migration programmes, contributing to metastasis, J. Pathol., 250, 612-623, doi: 10.1002/PATH.5395.
  5. Joseph, J. P., Harishankar, M. K., Pillai, A. A., and Devi, A. (2018) Hypoxia induced EMT: A review on the mechanism of tumor progression and metastasis in OSCC, Oral Oncol., 80, 23-32, doi: 10.1016/J.ORALONCOLOGY.2018.03.004.
  6. Peinado, H., Olmeda, D., and Cano, A. (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat. Rev. Cancer, 7, 415-428, doi: 10.1038/NRC2131.
  7. Stemmler, M. P., Eccles, R. L., Brabletz, S., and Brabletz, T. (2019) Non-redundant functions of EMT transcription factors, Nat. Cell Biol., 21, 102-112, doi: 10.1038/S41556-018-0196-Y.
  8. Thompson, E. W., and Nagaraj, S. H. (2018) Transition states that allow cancer to spread, Nature, 556, 442-444, doi: 10.1038/D41586-018-04403-X.
  9. Lu, W., and Kang, Y. (2019) Epithelial-mesenchymal plasticity in cancer progression and metastasis, Dev. Cell, 49, 361-374, doi: 10.1016/J.DEVCEL.2019.04.010.
  10. Batlle, E., Sancho, E., Francí, C., Domínguez, D., Monfar, M., Baulida, J., and De Herreros, A. G. (2000) The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells, Nat. Cell Biol., 2, 84-89, doi: 10.1038/35000034.
  11. Cano, A., Pérez-Moreno, M. A., Rodrigo, I., Locascio, A., Blanco, M. J., Del Barrio, M. G., Portillo, F., and Nieto, M. A. (2000) The transcription factor Snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression, Nat. Cell Biol., 2, 76-83, doi: 10.1038/35000025.
  12. Kaufhold, S., and Bonavida, B. (2014) Central role of Snail1 in the regulation of EMT and resistance in cancer: a target for therapeutic intervention, J. Exp. Clin. Cancer Res., 33, 62, doi: 10.1186/S13046-014-0062-0.
  13. Wang, Y., Shi, J., Chai, K., Ying, X., and Zhou, B. (2014) The role of Snail in EMT and tumorigenesis, Curr. Cancer Drug Targets, 13, 963-972, doi: 10.2174/15680096113136660102.
  14. Barrallo-Gimeno, A., and Nieto, M. A. (2005) The Snail genes as inducers of cell movement and survival: implications in development and cancer, Development, 132, 3151-3161, doi: 10.1242/DEV.01907.
  15. Kume, K., Haraguchi, M., Hijioka, H., Ishida, T., Miyawaki, A., Nakamura, N., and Ozawa, M. (2013) The transcription factor Snail enhanced the degradation of E-cadherin and desmoglein 2 in oral squamous cell carcinoma cells, Biochem. Biophys. Res. Commun., 430, 889-94, doi: 10.1016/J.BBRC.2012.12.060.
  16. De Craene, B., Gilbert, B., Stove, C., Bruyneel, E., Van Roy, F., and Berx, G. (2005) The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program, Cancer Res., 65, 6237-6244, doi: 10.1158/0008-5472.CAN-04-3545.
  17. Whiteman, E. L., Liu, C. J., Fearon, E. R., and Margolis, B. (2008) The transcription factor snail represses Crumbs3 expression and disrupts apico-basal polarity complexes, Oncogene, 27, 3875-3879, doi: 10.1038/ONC.2008.9.
  18. Ikenouchi, J., Matsuda, M., Furuse, M., and Tsukita, S. (2003) Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail, J. Cell Sci., 116, 1959-1967, doi: 10.1242/JCS.00389.
  19. Vincent, T., Neve, E. P. A., Johnson, J. R., Kukalev, A., Rojo, F., Albanell, J., Pietras, K., Virtanen, I., Philipson, L., Leopold, P. L., Crystal, R. G., de Herreros, A. G., Moustakas, A., Pettersson, R. F., and Fuxe, J. (2009) A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-β mediated epithelial-mesenchymal transition, Nat. Cell Biol., 11, 943-950, doi: 10.1038/NCB1905.
  20. Haraguchi, M., Okubo, T., Miyashita, Y., Miyamoto, Y., Hayashi, M., Crotti, T. N., McHugh, K. P., and Ozawa, M. (2008) Snail regulates cell-matrix adhesion by regulation of the expression of integrins and basement membrane proteins, J. Biol. Chem., 283, 23514-23523, doi: 10.1074/JBC.M801125200.
  21. Shields, M. A., Krantz, S. B., Bentrem, D. J., Dangi-Garimella, S., and Munshi, H. G. (2012) Interplay between β1-integrin and Rho signaling regulates differential scattering and motility of pancreatic cancer cells by snail and slug proteins, J. Biol. Chem., 287, 6218-6229, doi: 10.1074/JBC.M111.308940.
  22. Yokoyama, K., Kamata, N., Fujimoto, R., Tsutsumi, S., Tomonari, M., Taki, M., Hosokawa, H., and Nagayama, M. (2003) Increased invasion and matrix metalloproteinase-2 expression by Snail-induced mesenchymal transition in squamous cell carcinomas, Int. J. Oncol., 22, 891-898, doi: 10.3892/IJO.22.4.891.
  23. Li, C. F., Chen, J. Y., Ho, Y. H., Hsu, W. H., Wu, L. C., Lan, H. Y., Hsu, D. S. S., Tai, S. K., Chang, Y. C., and Yang, M. H. (2019) Snail-induced claudin-11 prompts collective migration for tumour progression, Nat. Cell Biol., 21, 251-262, doi: 10.1038/S41556-018-0268-Z.
  24. Santamaria, P. G., Moreno-Bueno, G., Portillo, F., and Cano, A. (2017) EMT: present and future in clinical oncology, Mol. Oncol., 11, 718-738, doi: 10.1002/1878-0261.12091.
  25. Usami, Y., Satake, S., Nakayama, F., Matsumoto, M., Ohnuma, K., Komori, T., Semba, S., Ito, A., and Yokozaki, H. (2008) Snail-associated epithelial-mesenchymal transition promotes oesophageal squamous cell carcinoma motility and progression, J. Pathol., 215, 330-339, doi: 10.1002/path.2365.
  26. Henderson, V., Smith, B., Burton, L. J., Randle, D., Morris, M., and Odero-Marah, V. A. (2015) Snail promotes cell migration through PI3K/AKT-dependent Rac1 activation as well as PI3K/AKT-independent pathways during prostate cancer progression, Cell Adhes. Migr., 9, 255-264, doi: 10.1080/19336918.2015.1013383.
  27. Beach, S., Tang, H., Park, S., Dhillon, A. S., Keller, E. T., Kolch, W., and Yeung, K. C. (2008) Snail is a repressor of RKIP transcription in metastatic prostate cancer cells, Oncogene, 27, 2243, doi: 10.1038/SJ.ONC.1210860.
  28. Yatskou, M., Novikov, E., Vetter, G., Muller, A., Barillot, E., Vallar, L., and Friederich, E. (2008) Advanced spot quality analysis in two-colour microarray experiments, BMC Res. Notes, 1, 80, doi: 10.1186/1756-0500-1-80.
  29. Guelstein, V. I., Tchypysheva, T. A., Ermilova, V. D., Litvinova, L. V., Troyanovsky, S. M., and Bannikov, G. A. (1988) Monoclonal antibody mapping of keratins 8 and 17 and of vimentin in normal human mammary gland, benign tumors, dysplasias and breast cancer, Int. J. Cancer, 42, 147-153, doi: 10.1002/IJC.2910420202.
  30. Vetter, G., Le Béchec, A., Muller, J., Muller, A., Moes, M., Yatskou, M., Al Tanoury, Z., Poch, O., Vallar, L., and Friederich, E. (2009) Time-resolved analysis of transcriptional events during SNAI1-triggered epithelial to mesenchymal transition, Biochem. Biophys. Res. Commun., 385, 485-491, doi: 10.1016/j.bbrc.2009.05.025.
  31. Wee, K., Hediyeh-Zadeh, S., Duszyc, K., Verma, S., Nanavati, B. N., Khare, S., Varma, A., Daly, R. J., Yap, A. S., Davis, M. J., and Budnar, S. (2020) Snail induces epithelial cell extrusion by regulating RhoA contractile signalling and cell-matrix adhesion, J. Cell Sci., 133, jcs235622, doi: 10.1242/jcs.235622.
  32. Reinhold, W. C., Reimers, M. A., Lorenzi, P., Ho, J., Shankavaram, U. T., Ziegler, M. S., Bussey, K. J., Nishizuka, S., Ikediobi, O., Pommier, Y. G., and Weinstein, J. N. (2010) Multifactorial regulation of E-cadherin expression: an integrative study, Mol. Cancer Ther., 9, 1-16, doi: 10.1158/1535-7163.MCT-09-0321.
  33. Ayollo, D. V., Zhitnyak, I. Y., Vasiliev, J. M., and Gloushankova, N. A. (2009) Rearrangements of the actin cytoskeleton and E-cadherin-based adherens junctions caused by neoplasic transformation change cell-cell interactions, PLoS One, 4, e8027, doi: 10.1371/JOURNAL.PONE.0008027.
  34. Zhitnyak, I. Y., Rubtsova, S. N., Litovka, N. I., and Gloushankova, N. A. (2020) Early events in actin cytoskeleton dynamics and E-cadherin-mediated cell-cell adhesion during epithelial-mesenchymal transition, Cells, 9, 578, doi: 10.3390/CELLS9030578.
  35. Suarez, C., and Kovar, D. R. (2016) Internetwork competition for monomers governs actin cytoskeleton organization, Nat. Rev. Mol. Cell Biol., 17, 799-810, doi: 10.1038/NRM.2016.106.
  36. Miki, H., Suetsugu, S., and Takenawa, T. (1998) WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac, EMBO J., 17, 6932-6941, doi: 10.1093/EMBOJ/17.23.6932.
  37. Campellone, K. G., and Welch, M. D. (2010) A nucleator arms race: cellular control of actin assembly, Nat. Rev. Mol. Cell Biol., 11, 237-251, doi: 10.1038/NRM2867.
  38. Buckley, C. D., Tan, J., Anderson, K. L., Hanein, D., Volkmann, N., Weis, W. I., Nelson, W. J., and Dunn, A. R. (2014) The minimal cadherin-catenin complex binds to actin filaments under force, Science, 346, 1254211, doi: 10.1126/SCIENCE.1254211.
  39. Mukherjee, A., Melamed, S., Damouny-Khoury, H., Amer, M., Feld, L., Nadjar-Boger, E., Sheetz, M. P., and Wolfenson, H. (2022) α-Catenin links integrin adhesions to F-actin to regulate ECM mechanosensing and rigidity dependence, J. Cell Biol., 221, e202102121, doi: 10.1083/JCB.202102121.
  40. Yamaguchi, H., Ito, Y., Miura, N., Nagamura, Y., Nakabo, A., Fukami, K., Honda, K., and Sakai, R. (2017) Actinin-1 and actinin-4 play essential but distinct roles in invadopodia formation by carcinoma cells, Eur. J. Cell Biol., 96, 685-694, doi: 10.1016/J.EJCB.2017.07.005.
  41. Jimenez, A. J., Schaeffer, A., De Pascalis, C., Letort, G., Vianay, B., Bornens, M., Piel, M., Blanchoin, L., and Théry, M. (2021) Acto-myosin network geometry defines centrosome position, Curr. Biol., 31, 1206-1220.e5, doi: 10.1016/j.cub.2021.01.002.
  42. Vicente-Manzanares, M., Ma, X., Adelstein, R. S., and Horwitz, A. R. (2009) Non-muscle myosin II takes centre stage in cell adhesion and migration, Nat. Rev. Mol. Cell Biol., 10, 778, doi: 10.1038/NRM2786.
  43. Lowery, J., Kuczmarski, E. R., Herrmann, H., and Goldma, R. D. (2015) Intermediate filaments play a pivotal role in regulating cell architecture and function, J. Biol. Chem., 290, 17145, doi: 10.1074/JBC.R115.640359.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies