Recombinant strains of oncolytic vaccinia virus for cancer immunotherapy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cancer virotherapy is an alternative therapeutic approach based on the viruses that selectively infect and kill tumor cells. Vaccinia virus (VV) is a member of the Poxviridae family of enveloped viruses with a large linear double-stranded DNA genome. The proven safety of VV strains as well as considerable transgene capacity of the viral genome, make VV an excellent platform for creating recombinant oncolytic viruses for cancer therapy. Furthermore, various genetic modifications can increase tumor selectivity and therapeutic efficacy of VV by arming it with the immune-modulatory genes or proapoptotic molecules, boosting the host immune system, and increasing cross-priming recognition of the tumor cells by T-cells or NK cells. In this review, we summarized the data on bioengineering approaches to develop recombinant VV strains for enhanced cancer immunotherapy.

About the authors

Y. Shakiba

Moscow Institute of Physics and Technology;Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

141701 Dolgoprudny, Moscow Region, Russia;119991 Moscow, Russia

P. O Vorobyev

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

119991 Moscow, Russia

M. Mahmoud

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

119991 Moscow, Russia

A. Hamad

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

119991 Moscow, Russia

D. V Kochetkov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

119991 Moscow, Russia

G. M Yusubalieva

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences;Federal Research Clinical Center for Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency (FMBA);Federal Center of Brain Research and Neurotechnologies of the FMBA of Russia

119991 Moscow, Russia;115682 Moscow, Russia;117513 Moscow, Russia

V. P Baklaushev

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences;Federal Research Clinical Center for Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency (FMBA);Federal Center of Brain Research and Neurotechnologies of the FMBA of Russia

119991 Moscow, Russia;115682 Moscow, Russia;117513 Moscow, Russia

P. M Chumakov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

119991 Moscow, Russia

A. V Lipatova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: lipatovaanv@gmail.com
119991 Moscow, Russia

References

  1. Carter, G. C., Law, M., Hollinshead, M., and Smith, G. L. (2005) Entry of the vaccinia virus intracellular mature virion and its interactions with glycosaminoglycans, J. Gen. Virol., 86, 1279-1290, doi: 10.1099/vir.0.80831-0.
  2. Roberts, K. L., and Smith, G. L. (2008) Vaccinia virus morphogenesis and dissemination, Trends Microbiol., 16, 472-479, doi: 10.1016/j.tim.2008.07.009.
  3. Levaditi, C., and Nicolau, S. (1922) On the culture of the vaccinal virus in epithelial neoplasia [in French], CR Soc. Biol., 86, 928.
  4. Guse, K., Cerullo, V., and Hemminki, A. (2011) Oncolytic vaccinia virus for the treatment of cancer, Expert Opin. Biol. Ther., 11, 595-608, doi: 10.1517/14712598.2011.558838.
  5. Schlom, J. (2012) Therapeutic cancer vaccines: current status and moving forward, J. Natl. Cancer Inst., 104, 599-613, doi: 10.1093/jnci/djs033.
  6. Fenner, F. (1989) Risks and benefits of vaccinia vaccine use in the worldwide smallpox eradication campaign, Res. Virol., 140, 465-466; discussion 487-491, doi: 10.1016/s0923-2516(89)80126-8.
  7. Fenner, F. (1993) Smallpox: emergence, global spread, and eradication, Hist. Philos. Life Sci., 15, 397-420.
  8. Thorne, S. H., Bartlett, D. L., and Kirn, D. H. (2005) The use of oncolytic vaccinia viruses in the treatment of cancer: a new role for an old ally? Curr. Gene Ther., 5, 429-443, doi: 10.2174/1566523054546215.
  9. Hermiston, T. (2000) Gene delivery from replication-selective viruses: arming guided missiles in the war against cancer, J. Clin. Invest., 105, 1169-1172, doi: 10.1172/JCI9973.
  10. Thorne, S. H., Hwang, T. H., and Kirn, D. H. (2005) Vaccinia virus and oncolytic virotherapy of cancer, Curr. Opin. Mol. Ther., 7, 359-365.
  11. Gammon, D. B., Gowrishankar, B., Duraffour, S., Andrei, G., Upton, C., and Evans, D. H. (2010) Vaccinia virus-encoded ribonucleotide reductase subunits are differentially required for replication and pathogenesis, PLoS Pathog., 6, e1000984, doi: 10.1371/journal.ppat.1000984.
  12. Wang, L. C., Lynn, R. C., Cheng, G., Alexander, E., Kapoor, V., Moon, E. K., Sun, J., Fridlender, Z. G., Isaacs, S. N., Thorne, S. H., and Albelda, S. M. (2012) Treating tumors with a vaccinia virus expressing IFNβ illustrates the complex relationships between oncolytic ability and immunogenicity, Mol. Ther., 20, 736-748, doi: 10.1038/mt.2011.228.
  13. Thorne, S. H. (2012) Next-generation oncolytic vaccinia vectors, Methods Mol. Biol., 797, 205-215, doi: 10.1007/978-1-61779-340-0_14.
  14. Smith, G. L., Benfield, C. T. O., Maluquer de Motes, C., Mazzon, M., Ember, S. W. J., Ferguson, B. J., and Sumner, R. P. (2013) Vaccinia virus immune evasion: mechanisms, virulence and immunogenicity, J. Gen. Virol., 94, 2367-2392, doi: 10.1099/vir.0.055921-0.
  15. Hu, W., Wang, G., Huang, D., Sui, M., and Xu, Y. (2019) Cancer immunotherapy based on natural killer cells: current progress and new opportunities, Front. Immunol., 10, 1205, doi: 10.3389/fimmu.2019.01205.
  16. Kirwan, S., Merriam, D., Barsby, N., McKinnon, A., and Burshtyn, D. N. (2006) Vaccinia virus modulation of natural killer cell function by direct infection, Virology, 347, 75-87, doi: 10.1016/j.virol.2005.11.037.
  17. Chisholm, S. E., and Reyburn, H. T. (2006) Recognition of vaccinia virus-infected cells by human natural killer cells depends on natural cytotoxicity receptors, J. Virol., 80, 2225-2233, doi: 10.1128/JVI.80.5.2225-2233.2006.
  18. Benfield, C. T. O., Ren, H., Lucas, S. J., Bahsoun, B., and Smith, G. L. (2013) Vaccinia virus protein K7 is a virulence factor that alters the acute immune response to infection, J. Gen. Virol., 94, 1647-1657, doi: 10.1099/vir.0.052670-0.
  19. Li, F., Sheng, Y., Hou, W., Sampath, P., Byrd, D., Thorne, S., and Zhang, Y. (2020) CCL5-armed oncolytic virus augments CCR5-engineered NK cell infiltration and antitumor efficiency, J. Immunother. Cancer, 8, e000131, doi: 10.1136/jitc-2019-000131.
  20. Karupiah, G., Coupar, B. E., Andrew, M. E., Boyle, D. B., Phillips, S. M., Mullbacher, A., Blanden, R. V., and Ramshaw, I. A. (1990) Elevated natural killer cell responses in mice infected with recombinant vaccinia virus encoding murine IL-2, J. Immunol., 144, 290-298.
  21. McKenzie, R., Kotwal, G. J., Moss, B., Hammer, C. H., and Frank, M. M. (1992) Regulation of complement activity by vaccinia virus complement-control protein, J. Infect. Dis., 166, 1245-1250, doi: 10.1093/infdis/166.6.1245.
  22. Girgis, N. M., Dehaven, B. C., Xiao, Y., Alexander, E., Viner, K. M., and Isaacs, S. N. (2011) The Vaccinia virus complement control protein modulates adaptive immune responses during infection, J. Virol., 85, 2547-2556, doi: 10.1128/JVI.01474-10.
  23. Isaacs, S. N., Kotwal, G. J., and Moss, B. (1992) Vaccinia virus complement-control protein prevents antibody-dependent complement-enhanced neutralization of infectivity and contributes to virulence, Proc. Natl. Acad. Sci. USA, 89, 628-632, doi: 10.1073/pnas.89.2.628.
  24. Jefferson, A., Cadet, V. E., and Hielscher, A. (2015) The mechanisms of genetically modified vaccinia viruses for the treatment of cancer, Crit. Rev. Oncol. Hematol., 95, 407-416, doi: 10.1016/j.critrevonc.2015.04.001.
  25. Thorne, S. H. (2011) Immunotherapeutic potential of oncolytic vaccinia virus, Immunol. Res., 50, 286-293, doi: 10.1007/s12026-011-8211-4.
  26. Bowie, A., Kiss-Toth, E., Symons, J. A., Smith, G. L., Dower, S. K., and O'Neill, L. A. (2000) A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling, Proc. Natl. Acad. Sci. USA, 97, 10162-10167, doi: 10.1073/pnas.160027697.
  27. Alcami, A., Symons, J. A., and Smith, G. L. (2000) The vaccinia virus soluble alpha/beta interferon (IFN) receptor binds to the cell surface and protects cells from the antiviral effects of IFN, J. Virol., 74, 11230-11239, doi: 10.1128/jvi.74.23.11230-11239.2000.
  28. Kirn, D. H., Wang, Y., Le Boeuf, F., Bell, J., and Thorne, S. H. (2007) Targeting of interferon-beta to produce a specific, multi-mechanistic oncolytic vaccinia virus, PLoS Med., 4, e353, doi: 10.1371/journal.pmed.0040353.
  29. Gerlic, M., Faustin, B., Postigo, A., Yu, E. C., Proell, M., Gombosuren, N., Krajewska, M., Flynn, R., Croft, M., Way, M., Satterthwait, A., Liddington, R. C., Salek-Ardakani, S., Matsuzawa, S., and Reed, J. C. (2013) Vaccinia virus F1L protein promotes virulence by inhibiting inflammasome activation, Proc. Natl. Acad. Sci. USA, 110, 7808-7813, doi: 10.1073/pnas.1215995110.
  30. Symons, J. A., Adams, E., Tscharke, D. C., Reading, P. C., Waldmann, H., and Smith, G. L. (2002) The vaccinia virus C12L protein inhibits mouse IL-18 and promotes virus virulence in the murine intranasal model, J. Gen. Virol., 83, 2833-2844, doi: 10.1099/0022-1317-83-11-2833.
  31. Alcamí, A., Symons, J. A., Collins, P. D., Williams, T. J., and Smith, G. L. (1998) Blockade of chemokine activity by a soluble chemokine binding protein from vaccinia virus, J. Immunol., 160, 624-633.
  32. Lehmann, M. H., Kastenmuller, W., Kandemir, J. D., Brandt, F., Suezer, Y., and Sutter, G. (2009) Modified vaccinia virus ankara triggers chemotaxis of monocytes and early respiratory immigration of leukocytes by induction of CCL2 expression, J. Virol., 83, 2540-2552, doi: 10.1128/JVI.01884-08.
  33. Alejo, A., Ruiz-Argüello, M. B., Ho, Y., Smith, V. P., Saraiva, M., and Alcami, A. (2006) A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus, Proc. Natl. Acad. Sci. USA, 103, 5995-6000, doi: 10.1073/pnas.0510462103.
  34. Ylosmaki, E., and Cerullo, V. (2020) Design and application of oncolytic viruses for cancer immunotherapy, Curr. Opin. Biotechnol., 65, 25-36, doi: 10.1016/j.copbio.2019.11.016.
  35. Guse, K., Sloniecka, M., Diaconu, I., Ottolino-Perry, K., Tang, N., Ng, C., Le Boeuf, F., Bell, J. C., McCart, J. A., Ristimäki, A., Pesonen, S., Cerullo, V., and Hemminki, A. (2010) Antiangiogenic arming of an oncolytic vaccinia virus enhances antitumor efficacy in renal cell cancer models, J. Virol., 84, 856-866, doi: 10.1128/JVI.00692-09.
  36. Gholami, S., Marano, A., Chen, N. G., Aguilar, R. J., Frentzen, A., Chen, C. H., Lou, E., Fujisawa, S., Eveno, C., Belin, L., Zanzonico, P., Szalay, A., and Fong, Y. (2014) A novel vaccinia virus with dual oncolytic and anti-angiogenic therapeutic effects against triple-negative breast cancer, Breast Cancer Res. Treat., 148, 489-499, doi: 10.1007/s10549-014-3180-7.
  37. Moss, B. (1996) Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety, Proc. Natl. Acad. Sci. USA, 93, 11341-11348, doi: 10.1073/pnas.93.21.11341.
  38. Hung, C. F., Tsai, Y. C., He, L., Coukos, G., Fodor, I., Qin, L., Levitsky, H., and Wu, T. C. (2007) Vaccinia virus preferentially infects and controls human and murine ovarian tumors in mice, Gene Ther., 14, 20-29, doi: 10.1038/sj.gt.3302840.
  39. Heo, J., Reid, T., Ruo, L., Breitbach, C. J., Rose, S., Bloomston, M., Cho, M., Lim, H. Y., Chung, H. C., Kim, C. W., Burke, J., Lencioni, R., Hickman, T., Moon, A., Lee, Y. S., Kim, M. K., Daneshmand, M., Dubois, K., Longpre, L., Ngo, M., et al. (2013) Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer, Nat. Med., 19, 329-336, doi: 10.1038/nm.3089.
  40. Mori, K. M., Giuliano, P. D., Lopez, K. L., King, M. M., Bohart, R., and Goldstein, B. H. (2019) Pronounced clinical response following the oncolytic vaccinia virus GL-ONC1 and chemotherapy in a heavily pretreated ovarian cancer patient, Anticancer Drugs, 30, 1064-1066, doi: 10.1097/CAD.0000000000000836.
  41. McCart, J. A., Ward, J. M., Lee, J., Hu, Y., Alexander, H. R., Libutti, S. K., Moss, B., and Bartlett, D. L. (2001) Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes, Cancer Res., 61, 8751-8757.
  42. Buller, R. M., Chakrabarti, S., Cooper, J. A., Twardzik, D. R., and Moss, B. (1988) Deletion of the vaccinia virus growth factor gene reduces virus virulence, J. Virol., 62, 866-874, doi: 10.1128/JVI.62.3.866-874.1988.
  43. Schweneker, M., Lukassen, S., Späth, M., Wolferstätter, M., Babel, E., Brinkmann, K., Wielert, U., Chaplin, P., Suter, M., and Hausmann, J. (2012) The vaccinia virus O1 protein is required for sustained activation of extracellular signal-regulated kinase 1/2 and promotes viral virulence, J. Virol., 86, 2323-2336, doi: 10.1128/JVI.06166-11.
  44. Wee, P., and Wang, Z. (2017) Epidermal growth factor receptor cell proliferation signaling pathways, Cancers (Basel), 9, 52, doi: 10.3390/cancers9050052.
  45. Li, S., Balmain, A., and Counter, C. M. (2018) A model for RAS mutation patterns in cancers: finding the sweet spot, Nat. Rev. Cancer, 18, 767-777, doi: 10.1038/s41568-018-0076-6.
  46. Yuan, T. L., Amzallag, A., Bagni, R., Yi, M., Afghani, S., Burgan, W., Fer, N., Strathern, L. A., Powell, K., Smith, B., Waters, A. M., Drubin, D., Thomson, T., Liao, R., Greninger, P., Stein, G. T., Murchie, E., Cortez, E., Egan, R. K., Procter, L., et al. (2018) Differential effector engagement by oncogenic KRAS, Cell Rep, 22, 1889-1902, doi: 10.1016/j.celrep.2018.01.051.
  47. Gopinath, P., and Ghosh, S. S. (2008) Implication of functional activity for determining therapeutic efficacy of suicide genes in vitro, Biotechnol. Lett., 30, 1913-1921, doi: 10.1007/s10529-008-9787-1.
  48. Kurosaki, H., Nakatake, M., Sakamoto, T., Kuwano, N., Yamane, M., Ishii, K., Fujiwara, Y., and Nakamura, T. (2021) Anti-tumor effects of MAPK-dependent tumor-selective oncolytic vaccinia virus armed with CD/UPRT against pancreatic ductal adenocarcinoma in mice, Cells, 10, 985, doi: 10.3390/cells10050985.
  49. Guo, H., Callaway, J. B., and Ting, J. P. (2015) Inflammasomes: mechanism of action, role in disease, and therapeutics, Nat. Med., 21, 677-687, doi: 10.1038/nm.3893.
  50. Guo, Z. S., Naik, A., O'Malley, M. E., Popovic, P., Demarco, R., Hu, Y., Yin, X., Yang, S., Zeh, H. J., Moss, B., Lotze, M. T., and Bartlett, D. L. (2005) The enhanced tumor selectivity of an oncolytic vaccinia lacking the host range and antiapoptosis genes SPI-1 and SPI-2, Cancer Res., 65, 9991-9998, doi: 10.1158/0008-5472.CAN-05-1630.
  51. Legrand, F. A., Verardi, P. H., Chan, K. S., Peng, Y., Jones, L. A., and Yilma, T. D. (2005) Vaccinia viruses with a serpin gene deletion and expressing IFN-gamma induce potent immune responses without detectable replication in vivo, Proc. Natl. Acad. Sci. USA, 102, 2940-2945, doi: 10.1073/pnas.0409846102.
  52. Sharma, P., Hu-Lieskovan, S., Wargo, J. A., and Ribas, A. (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy, Cell, 168, 707-723, doi: 10.1016/j.cell.2017.01.017.
  53. Pearl, T. M., Markert, J. M., Cassady, K. A., and Ghonime, M. G. (2019) Oncolytic virus-based cytokine expression to improve immune activity in brain and solid tumors, Mol. Ther. Oncolytics, 13, 14-21, doi: 10.1016/j.omto.2019.03.001.
  54. Yang, J. C., Sherry, R. M., Steinberg, S. M., Topalian, S. L., Schwartzentruber, D. J., Hwu, P., Seipp, C. A., Rogers-Freezer, L., Morton, K. E., White, D. E., Liewehr, D. J., Merino, M. J., and Rosenberg, S. A. (2003) Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer, J. Clin. Oncol., 21, 3127-3132, doi: 10.1200/JCO.2003.02.122.
  55. Liu, Z., Ge, Y., Wang, H., Ma, C., Feist, M., Ju, S., Guo, Z. S., and Bartlett, D. L. (2018) Modifying the cancer-immune set point using vaccinia virus expressing re-designed interleukin-2, Nat. Commun., 9, 4682, doi: 10.1038/s41467-018-06954-z.
  56. Scholl, S., Squiban, P., Bizouarne, N., Baudin, M., Acres, B., Von Mensdorff-Pouilly, S., Shearer, M., Beuzeboc, P., Van Belle, S., Uzielly, B., Pouillart, P., Taylor-Papadimitriou, J., and Miles, D. (2003) Metastatic breast tumour regression following treatment by a gene-modified vaccinia virus expressing MUC1 and IL-2, J. Biomed. Biotechnol., 2003, 194-201, doi: 10.1155/S111072430320704X.
  57. Yigit, R., Massuger, L. F., Figdor, C. G., and Torensma, R. (2010) Ovarian cancer creates a suppressive microenvironment to escape immune elimination, Gynecol. Oncol., 117, 366-372, doi: 10.1016/j.ygyno.2010.01.019.
  58. Brooks, D. G., Trifilo, M. J., Edelmann, K. H., Teyton, L., McGavern, D. B., and Oldstone, M. B. (2006) Interleukin-10 determines viral clearance or persistence in vivo, Nat. Med., 12, 1301-1309, doi: 10.1038/nm1492.
  59. Stearns, M. E., Wang, M., Hu, Y., Garcia, F. U., and Rhim, J. (2003) Interleukin 10 blocks matrix metalloproteinase-2 and membrane type 1-matrix metalloproteinase synthesis in primary human prostate tumor lines, Clin. Cancer Res., 9, 1191-1199.
  60. Schock, S. N., Chandra, N. V., Sun, Y., Irie, T., Kitagawa, Y., Gotoh, B., Coscoy, L., and Winoto, A. (2017) Induction of necroptotic cell death by viral activation of the RIG-I or STING pathway, Cell Death Differ., 24, 615-625, doi: 10.1038/cdd.2016.153.
  61. Emmerich, J., Mumm, J. B., Chan, I. H., LaFace, D., Truong, H., McClanahan, T., Gorman, D. M., and Oft, M. (2012) IL-10 directly activates and expands tumor-resident CD8+ T cells without de novo infiltration from secondary lymphoid organs, Cancer Res., 72, 3570-3581, doi: 10.1158/0008-5472.CAN-12-0721.
  62. Tanaka, F., Tominaga, K., Shiota, M., Ochi, M., Kuwamura, H., Tanigawa, T., Watanabe, T., Fujiwara, Y., Oshitani, N., Higuchi, K., Iwao, H., and Arakawa, T. (2008) Interleukin-10 gene transfer to peritoneal mesothelial cells suppresses peritoneal dissemination of gastric cancer cells due to a persistently high concentration in the peritoneal cavity, Cancer Gene Ther., 15, 51-59, doi: 10.1038/sj.cgt.7701104.
  63. Chard, L. S., Maniati, E., Wang, P., Zhang, Z., Gao, D., Wang, J., Cao, F., Ahmed, J., El Khouri, M., Hughes, J., Wang, S., Li, X., Denes, B., Fodor, I., Hagemann, T., Lemoine, N. R., and Wang, Y. (2015) A vaccinia virus armed with interleukin-10 is a promising therapeutic agent for treatment of murine pancreatic cancer, Clin. Cancer Res., 21, 405-416, doi: 10.1158/1078-0432.CCR-14-0464.
  64. Trinchieri, G., and Scott, P. (1994) The role of interleukin 12 in the immune response, disease and therapy, Immunol. Today, 15, 460-463, doi: 10.1016/0167-5699(94)90189-9.
  65. Scott, P. (1993) IL-12: initiation cytokine for cell-mediated immunity, Science, 260, 496-497, doi: 10.1126/science.8097337.
  66. Nastala, C. L., Edington, H. D., McKinney, T. G., Tahara, H., Nalesnik, M. A., Brunda, M. J., Gately, M. K., Wolf, S. F., Schreiber, R. D., and Storkus, W. J. (1994) Recombinant IL-12 administration induces tumor regression in association with IFN-gamma production, J. Immunol., 153, 1697-1706.
  67. Mu, J., Zou, J. P., Yamamoto, N., Tsutsui, T., Tai, X. G., Kobayashi, M., Herrmann, S., Fujiwara, H., and Hamaoka, T. (1995) Administration of recombinant interleukin 12 prevents outgrowth of tumor cells metastasizing spontaneously to lung and lymph nodes, Cancer Res., 55, 4404-4408.
  68. Meko, J. B., Tsung, K., and Norton, J. A. (1996) Cytokine production and antitumor effect of a nonreplicating, noncytopathic recombinant vaccinia virus expressing interleukin-12, Surgery, 120, 274-282; discussion 282-273, doi: 10.1016/s0039-6060(96)80298-4.
  69. Waldmann, T. A. (2015) The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy, Cancer Immunol. Res., 3, 219-227, doi: 10.1158/2326-6066.CIR-15-0009.
  70. Conlon, K. C., Miljkovic, M. D., and Waldmann, T. A. (2019) Cytokines in the treatment of cancer, J. Interferon Cytokine Res., 39, 6-21, doi: 10.1089/jir.2018.0019.
  71. Rhode, P. R., Egan, J. O., Xu, W., Hong, H., Webb, G. M., Chen, X., Liu, B., Zhu, X., Wen, J., You, L., Kong, L., Edwards, A. C., Han, K., Shi, S., Alter, S., Sacha, J. B., Jeng, E. K., Cai, W., and Wong, H. C. (2016) Comparison of the superagonist complex, ALT-803, to IL15 as cancer immunotherapeutics in animal models, Cancer Immunol. Res., 4, 49-60, doi: 10.1158/2326-6066.CIR-15-0093-T.
  72. Van den Bergh, J. M., Lion, E., Van Tendeloo, V. F., and Smits, E. L. (2017) IL-15 receptor alpha as the magic wand to boost the success of IL-15 antitumor therapies: the upswing of IL-15 transpresentation, Pharmacol. Ther., 170, 73-79, doi: 10.1016/j.pharmthera.2016.10.012.
  73. Epardaud, M., Elpek, K. G., Rubinstein, M. P., Yonekura, A. R., Bellemare-Pelletier, A., Bronson, R., Hamerman, J. A., Goldrath, A. W., and Turley, S. J. (2008) Interleukin-15/interleukin-15R alpha complexes promote destruction of established tumors by reviving tumor-resident CD8+ T cells, Cancer Res., 68, 2972-2983, doi: 10.1158/0008-5472.CAN-08-0045.
  74. Kowalsky, S. J., Liu, Z., Feist, M., Berkey, S. E., Ma, C., Ravindranathan, R., Dai, E., Roy, E. J., Guo, Z. S., and Bartlett, D. L. (2018) Superagonist IL-15-armed oncolytic virus elicits potent antitumor immunity and therapy that are enhanced with PD-1 blockade, Mol. Ther., 26, 2476-2486, doi: 10.1016/j.ymthe.2018.07.013.
  75. Kinter, A. L., Godbout, E. J., McNally, J. P., Sereti, I., Roby, G. A., O'Shea, M. A., and Fauci, A. S. (2008) The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands, J. Immunol., 181, 6738-6746, doi: 10.4049/jimmunol.181.10.6738.
  76. Moroz, A., Eppolito, C., Li, Q., Tao, J., Clegg, C. H., and Shrikant, P. A. (2004) IL-21 enhances and sustains CD8+ T cell responses to achieve durable tumor immunity: comparative evaluation of IL-2, IL-15, and IL-21, J. Immunol., 173, 900-909, doi: 10.4049/jimmunol.173.2.900.
  77. Chen, T., Ding, X., Liao, Q., Gao, N., Chen, Y., Zhao, C., Zhang, X., and Xu, J. (2021) IL-21 arming potentiates the anti-tumor activity of an oncolytic vaccinia virus in monotherapy and combination therapy, J. Immunother. Cancer, 9, e001647, doi: 10.1136/jitc-2020-001647.
  78. Sun, Y., Zhang, Z., Zhang, C., Zhang, N., Wang, P., Chu, Y., Chard Dunmall, L. S., Lemoine, N. R., and Wang, Y. (2022) An effective therapeutic regime for treatment of glioma using oncolytic vaccinia virus expressing IL-21 in combination with immune checkpoint inhibition, Mol. Ther. Oncolytics, 26, 105-119, doi: 10.1016/j.omto.2022.05.008.
  79. Gasson, J. C. (1991) Molecular physiology of granulocyte-macrophage colony-stimulating factor, Blood, 77, 1131-1145.
  80. Bauer, T. V., Tregubchak, T. V., Maksyutov, A. Z., Kolosova, I. V., Maksyutov, R. A., and Gavrilova, E. V. (2020) Development of the drug oncolytic immunotherapy based on vaccinia viruses (Vaccinia virus, Orthopoxvirus, Chordopoxvirinae, Poxviridae) against breast cancer [in Russian], Vopr. Virusol., 65, 49-56, doi: 10.36233/0507-4088-2020-65-1-49-56.
  81. Deng, L., Yang, X., Fan, J., Ding, Y., Peng, Y., Xu, D., Huang, B., and Hu, Z. (2020) An oncolytic vaccinia virus armed with GM-CSF and IL-24 double genes for cancer targeted therapy, Onco Targets Ther., 13, 3535-3544, doi: 10.2147/OTT.S249816.
  82. Duggan, M. C., Jochems, C., Donahue, R. N., Richards, J., Karpa, V., Foust, E., Paul, B., Brooks, T., Tridandapani, S., Olencki, T., Pan, X., Lesinski, G. B., Schlom, J., and Carson III, W. E. (2016) A phase I study of recombinant (r) vaccinia-CEA(6D)-TRICOM and rFowlpox-CEA(6D)-TRICOM vaccines with GM-CSF and IFN-alpha-2b in patients with CEA-expressing carcinomas, Cancer Immunol. Immunother., 65, 1353-1364, doi: 10.1007/s00262-016-1893-7.
  83. Heinrich, B., Klein, J., Delic, M., Goepfert, K., Engel, V., Geberzahn, L., Lusky, M., Erbs, P., Preville, X., and Moehler, M. (2017) Immunogenicity of oncolytic vaccinia viruses JX-GFP and TG6002 in a human melanoma in vitro model: studying immunogenic cell death, dendritic cell maturation and interaction with cytotoxic T lymphocytes, Onco Targets Ther., 10, 2389-2401, doi: 10.2147/OTT.S126320.
  84. Inoue, T., Byrne, T., Inoue, M., Tait, M. E., Wall, P., Wang, A., Dermyer, M. R., Laklai, H., Binder, J. J., Lees, C., Hollingsworth, R., Maruri-Avidal, L., Kirn, D. H., and McDonald, D. M. (2021) Oncolytic vaccinia virus gene modification and cytokine expression effects on tumor infection, immune response, and killing, Mol. Cancer Ther., 20, 1481-1494, doi: 10.1158/1535-7163.MCT-20-0863.
  85. Kannanganat, S., Wyatt, L. S., Gangadhara, S., Chamcha, V., Chea, L. S., Kozlowski, P. A., LaBranche, C. C., Chennareddi, L., Lawson, B., Reddy, P. B., Styles, T. M., Vanderford, T. H., Montefiori, D. C., Moss, B., Robinson, H. L., and Amara, R. R. (2016) High doses of GM-CSF inhibit antibody responses in rectal secretions and diminish modified vaccinia Ankara/Simian immunodeficiency virus vaccine protection in TRIM5alpha-restrictive macaques, J. Immunol., 197, 3586-3596, doi: 10.4049/jimmunol.1600629.
  86. Witmer-Pack, M. D., Olivier, W., Valinsky, J., Schuler, G., and Steinman, R. M. (1987) Granulocyte/macrophage colony-stimulating factor is essential for the viability and function of cultured murine epidermal Langerhans cells, J. Exp. Med., 166, 1484-1498, doi: 10.1084/jem.166.5.1484.
  87. McLaughlin, J. P., Abrams, S., Kantor, J., Dobrzanski, M. J., Greenbaum, J., Schlom, J., and Greiner, J. W. (1997) Immunization with a syngeneic tumor infected with recombinant vaccinia virus expressing granulocyte-macrophage colony-stimulating factor (GM-CSF) induces tumor regression and long-lasting systemic immunity, J. Immunother., 20, 449-459, doi: 10.1097/00002371-199711000-00004.
  88. Kochneva, G., Sivolobova, G., Tkacheva, A., Grazhdantseva, A., Troitskaya, O., Nushtaeva, A., Tkachenko, A., Kuligina, E., Richter, V., and Koval, O. (2016) Engineering of double recombinant vaccinia virus with enhanced oncolytic potential for solid tumor virotherapy, Oncotarget, 7, 74171-74188, doi: 10.18632/oncotarget.12367.
  89. Koval, O., Kochneva, G., Tkachenko, A., Troitskaya, O., Sivolobova, G., Grazhdantseva, A., Nushtaeva, A., Kuligina, E., and Richter, V. (2017) Recombinant vaccinia viruses coding transgenes of apoptosis-inducing proteins enhance apoptosis but not immunogenicity of infected tumor cells, Biomed Res. Int., 2017, 3620510, doi: 10.1155/2017/3620510.
  90. Shakiba, Y., Naberezhnaya, E., Kochetkov, D., Yusubalieva, G., Vorobyev, P., Chumakov, P., Baklaushev, V., and Lipatova, A. (2023) Comparison of the oncolytic activity of recombinant vaccinia virus strains LIVP-RFP and MVA-RFP against solid tumors, Bull. RSMU, 2023, doi: 10.24075/brsmu.2023.010.
  91. Grazhdantseva, A. A., Sivolobova, G. F., Tkacheva, A. V., Gileva, I. P., Kuligina, E. V., Rikhter, V. A., and Kochneva, G. V. (2016) Highly effective production of biologically active, secreted, human granulocyte-macrophage colony-stimulating factor by recombinant vaccinia virus, Appl. Biochem. Microbiol., 52, 685-691, doi: 10.1134/S0003683816070036.
  92. Vasileva, N., Ageenko, A., Dmitrieva, M., Nushtaeva, A., Mishinov, S., Kochneva, G., Richter, V., and Kuligina, E. (2021) Double recombinant vaccinia virus: a candidate drug against human glioblastoma, Life (Basel), 11, 1084, doi: 10.3390/life11101084.
  93. Von Krempelhuber, A., Vollmar, J., Pokorny, R., Rapp, P., Wulff, N., Petzold, B., Handley, A., Mateo, L., Siersbol, H., Kollaritsch, H., and Chaplin, P. (2010) A randomized, double-blind, dose-finding Phase II study to evaluate immunogenicity and safety of the third generation smallpox vaccine candidate IMVAMUNE, Vaccine, 28, 1209-1216, doi: 10.1016/j.vaccine.2009.11.030.
  94. Verardi, P. H., Titong, A., and Hagen, C. J. (2012) A vaccinia virus renaissance: new vaccine and immunotherapeutic uses after smallpox eradication, Hum. Vaccin Immunother., 8, 961-970, doi: 10.4161/hv.21080.
  95. Collins, M., Ling, V., and Carreno, B. M. (2005) The B7 family of immune-regulatory ligands, Genome Biol., 6, 223, doi: 10.1186/gb-2005-6-6-223.
  96. Kaufman, H. L., Deraffele, G., Mitcham, J., Moroziewicz, D., Cohen, S. M., Hurst-Wicker, K. S., Cheung, K., Lee, D. S., Divito, J., Voulo, M., Donovan, J., Dolan, K., Manson, K., Panicali, D., Wang, E., Hörig, H., and Marincola, F. M. (2005) Targeting the local tumor microenvironment with vaccinia virus expressing B7.1 for the treatment of melanoma, J. Clin. Invest., 115, 1903-1912, doi: 10.1172/JCI24624.
  97. Hodge, J. W., McLaughlin, J. P., Abrams, S. I., Shupert, W. L., Schlom, J., and Kantor, J. A. (1995) Admixture of a recombinant vaccinia virus containing the gene for the costimulatory molecule B7 and a recombinant vaccinia virus containing a tumor-associated antigen gene results in enhanced specific T-cell responses and antitumor immunity, Cancer Res., 55, 3598-3603.
  98. Hodge, J. W., Sabzevari, H., Yafal, A. G., Gritz, L., Lorenz, M. G., and Schlom, J. (1999) A triad of costimulatory molecules synergize to amplify T-cell activation, Cancer Res., 59, 5800-5807.
  99. Kudo-Saito, C., Hodge, J. W., Kwak, H., Kim-Schulze, S., Schlom, J., and Kaufman, H. L. (2006) 4-1BB ligand enhances tumor-specific immunity of poxvirus vaccines, Vaccine, 24, 4975-4986, doi: 10.1016/j.vaccine.2006.03.042.
  100. Hayashi, F., Smith, K. D., Ozinsky, A., Hawn, T. R., Yi, E. C., Goodlett, D. R., Eng, J. K., Akira, S., Underhill, D. M., and Aderem, A. (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5, Nature, 410, 1099-1103, doi: 10.1038/35074106.
  101. Kofoed, E. M., and Vance, R. E. (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity, Nature, 477, 592-595, doi: 10.1038/nature10394.
  102. Weimer, E. T., Lu, H., Kock, N. D., Wozniak, D. J., and Mizel, S. B. (2009) A fusion protein vaccine containing OprF epitope 8, OprI, and type A and B flagellins promotes enhanced clearance of nonmucoid Pseudomonas aeruginosa, Infect. Immun., 77, 2356-2366, doi: 10.1128/IAI.00054-09.
  103. De Melo, F. M., Braga, C. J., Pereira, F. V., Maricato, J. T., Origassa, C. S., Souza, M. F., Melo, A. C., Silva, P., Tomaz, S. L., Gimenes, K. P., Scutti, J. A., Juliano, M. A., Zamboni, D. S., Câmara, N. O., Travassos, L. R., Ferreira, L. C., and Rodrigues, E. G. (2015) Anti-metastatic immunotherapy based on mucosal administration of flagellin and immunomodulatory P10, Immunol. Cell Biol., 93, 86-98, doi: 10.1038/icb.2014.74.
  104. Mizel, S. B., and Bates, J. T. (2010) Flagellin as an adjuvant: cellular mechanisms and potential, J. Immunol., 185, 5677-5682, doi: 10.4049/jimmunol.1002156.
  105. Sanos, S. L., Kassub, R., Testori, M., Geiger, M., Pätzold, J., Giessel, R., Knallinger, J., Bathke, B., Gräbnitz, F., Brinkmann, K., Chaplin, P., Suter, M., Hochrein, H., and Lauterbach, H. (2017) NLRC4 inflammasome-driven immunogenicity of a recombinant MVA mucosal vaccine encoding flagellin, Front. Immunol., 8, 1988, doi: 10.3389/fimmu.2017.01988.
  106. Chen, W., Zheng, R., Zhang, S., Zhao, P., Li, G., Wu, L., and He, J. (2013) The incidences and mortalities of major cancers in China, 2009, Chin. J. Cancer, 32, 106-112, doi: 10.5732/cjc.013.10018.
  107. Strong, V. E., Wu, A. W., Selby, L. V., Gonen, M., Hsu, M., Song, K. Y., Park, C. H., Coit, D. G., Ji, J. F., and Brennan, M. F. (2015) Differences in gastric cancer survival between the U.S. and China, J. Surg. Oncol., 112, 31-37, doi: 10.1002/jso.23940.
  108. Conrad, S. J., El-Aswad, M., Kurban, E., Jeng, D., Tripp, B. C., Nutting, C., Eversole, R., Mackenzie, C., and Essani, K. (2015) Oncolytic tanapoxvirus expressing FliC causes regression of human colorectal cancer xenografts in nude mice, J. Exp. Clin. Cancer Res., 34, 19, doi: 10.1186/s13046-015-0131-z.
  109. Wang, M., Luo, Y., Sun, T., Mao, C., Jiang, Y., Yu, X., Li, Z., Xie, T., Wu, F., Yan, H., and Teng, L. (2020) The ectopic expression of survivinT34A and FilC can enhance the oncolytic effects of vaccinia virus in murine gastric cancer, Onco Targets Ther., 13, 1011-1025, doi: 10.2147/OTT.S230902.
  110. Andersen, M. H., Svane, I. M., Becker, J. C., and Straten, P. T. (2007) The universal character of the tumor-associated antigen survivin, Clin. Cancer Res., 13, 5991-5994, doi: 10.1158/1078-0432.CCR-07-0686.
  111. Shakiba, Y., Vorobyev, P. O., Naumenko, V. A., Kochetkov, D. V., Zajtseva, K. V., Valikhov, M. P., Yusubalieva, G. M., Gumennaya, Y. D., Emelyanov, E. A., Semkina, A. S., Baklaushev, V. P., Chumakov, P. M., and Lipatova, A. V. (2023) Oncolytic efficacy of a recombinant vaccinia virus strain expressing bacterial flagellin in solid tumor models, Viruses, 15, 828.
  112. Barber, D. L., Wherry, E. J., Masopust, D., Zhu, B., Allison, J. P., Sharpe, A. H., Freeman, G. J., and Ahmed, R. (2006) Restoring function in exhausted CD8 T cells during chronic viral infection, Nature, 439, 682-687, doi: 10.1038/nature04444.
  113. Shi, Z., Liu, B., Huang, C., Xie, W., Cen, Y., Chen, L., and Liang, M. (2021) An oncolytic vaccinia virus armed with anti-human-PD-1 antibody and anti-human-4-1BB antibody double genes for cancer-targeted therapy, Biochem. Biophys. Res. Commun., 559, 176-182, doi: 10.1016/j.bbrc.2021.04.078.
  114. Marchand, J.-B., Semmrich, M., Fend, L., Rehn, M., Silvestre, N., Teige, I., Foloppe, F., Mårtensson, L., Quéméneur, E., and Frendeus, B. (2020) BT-001, an oncolytic vaccinia virus armed with a Treg-depletion-optimized recombinant human anti-CTLA4 antibody and GM-CSF to target the tumor microenvironment, Cancer Res., 8, doi: 10.1136/jitc-2020-SITC2020.0594.
  115. Dushek, O., Goyette, J., and van der Merwe, P. A. (2012) Non-catalytic tyrosine-phosphorylated receptors, Immunol Rev, 250, 258-276, doi: 10.1111/imr.12008.
  116. Zuo, S., Wei, M., He, B., Chen, A., Wang, S., Kong, L., Zhang, Y., Meng, G., Xu, T., Wu, J., Yang, F., Zhang, H., Wang, S., Guo, C., Wu, J., Dong, J., and Wei, J. (2021) Enhanced antitumor efficacy of a novel oncolytic vaccinia virus encoding a fully monoclonal antibody against T-cell immunoglobulin and ITIM domain (TIGIT), EBioMedicine, 64, 103240, doi: 10.1016/j.ebiom.2021.103240.
  117. Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L., and Kroemer, G. (2017) Immunogenic cell death in cancer and infectious disease, Nat. Rev. Immunol., 17, 97-111, doi: 10.1038/nri.2016.107.
  118. Van Hoecke, L., Van Lint, S., Roose, K., Van Parys, A., Vandenabeele, P., Grooten, J., Tavernier, J., De Koker, S., and Saelens, X. (2018) Treatment with mRNA coding for the necroptosis mediator MLKL induces antitumor immunity directed against neo-epitopes, Nat. Commun., 9, 3417, doi: 10.1038/s41467-018-05979-8.
  119. Van Hoecke, L., Riederer, S., Saelens, X., Sutter, G., and Rojas, J. J. (2020) Recombinant viruses delivering the necroptosis mediator MLKL induce a potent antitumor immunity in mice, Oncoimmunology, 9, 1802968, doi: 10.1080/2162402X.2020.1802968.
  120. Kochneva, G. V., Babkina, I. N., Lupan, T. A., Grazhdantseva, A. A., Iudin, P. V., Sivolobova, G. F., Shvalov, A. N., Popov, E. G., Babkin, I. V., Netesov, S. V., and Chumakov, P. M. (2013) Apoptin enhances the oncolytic activity of vaccinia virus [in Russian], Mol. Biol. (Mosk), 47, 842-852.
  121. Kochneva, G., Zonov, E., Grazhdantseva, A., Yunusova, A., Sibolobova, G., Popov, E., Taranov, O., Netesov, S., Chumakov, P., and Ryabchikova, E. (2014) Apoptin enhances the oncolytic properties of vaccinia virus and modifies mechanisms of tumor regression, Oncotarget, 5, 11269-11282, doi: 10.18632/oncotarget.2579.
  122. Di Pilato, M., Mejías-Pérez, E., Sorzano, C. O. S., and Esteban, M. (2017) Distinct roles of vaccinia virus NF-κB inhibitor proteins A52, B15, and K7 in the immune response, J. Virol., 91, doi: 10.1128/JVI.00575-17.
  123. Holgado, M. P., Falivene, J., Maeto, C., Amigo, M., Pascutti, M. F., Vecchione, M. B., Bruttomesso, A., Calamante, G., Del Médico-Zajac, M. P., and Gherardi, M. M. (2016) Deletion of A44L, A46R and C12L vaccinia virus genes from the MVA genome improved the vector immunogenicity by modifying the innate immune response generating enhanced and optimized specific T-cell responses, Viruses, 8, 139, doi: 10.3390/v8050139.
  124. Tsang, K. Y., Palena, C., Yokokawa, J., Arlen, P. M., Gulley, J. L., Mazzara, G. P., Gritz, L., Yafal, A. G., Ogueta, S., Greenhalgh, P., Manson, K., Panicali, D., and Schlom, J. (2005) Analyses of recombinant vaccinia and fowlpox vaccine vectors expressing transgenes for two human tumor antigens and three human costimulatory molecules, Clin. Cancer Res., 11, 1597-1607, doi: 10.1158/1078-0432.CCR-04-1609.
  125. Ylösmäki, E., Malorzo, C., Capasso, C., Honkasalo, O., Fusciello, M., Martins, B., Ylösmäki, L., Louna, A., Feola, S., Paavilainen, H., Peltonen, K., Hukkanen, V., Viitala, T., and Cerullo, V. (2018) Personalized cancer vaccine platform for clinically relevant oncolytic enveloped viruses, Mol. Ther., 26, 2315-2325, doi: 10.1016/j.ymthe.2018.06.008.
  126. Chalikonda, S., Kivlen, M. H., O'Malley, M. E., Eric Dong, X. D., McCart, J. A., Gorry, M. C., Yin, X. Y., Brown, C. K., Zeh, H. J., Guo, Z. S., and Bartlett, D. L. (2008) Oncolytic virotherapy for ovarian carcinomatosis using a replication-selective vaccinia virus armed with a yeast cytosine deaminase gene, Cancer Gene Ther., 15, 115-125, doi: 10.1038/sj.cgt.7701110.
  127. Seubert, C. M., Stritzker, J., Hess, M., Donat, U., Sturm, J. B., Chen, N., von Hof, J. M., Krewer, B., Tietze, L. F., Gentschev, I., and Szalay, A. A. (2011) Enhanced tumor therapy using vaccinia virus strain GLV-1h68 in combination with a β-galactosidase-activatable prodrug seco-analog of duocarmycin SA, Cancer Gene Ther., 18, 42-52, doi: 10.1038/cgt.2010.49.
  128. Marchini, A., Scott, E. M., and Rommelaere, J. (2016) Overcoming barriers in oncolytic virotherapy with HDAC inhibitors and immune checkpoint blockade, Viruses, 8, 9, doi: 10.3390/v8010009.
  129. MacTavish, H., Diallo, J. S., Huang, B., Stanford, M., Le Boeuf, F., De Silva, N., Cox, J., Simmons, J. G., Guimond, T., Falls, T., McCart, J. A., Atkins, H., Breitbach, C., Kirn, D., Thorne, S., and Bell, J. C. (2010) Enhancement of vaccinia virus based oncolysis with histone deacetylase inhibitors, PLoS One, 5, e14462, doi: 10.1371/journal.pone.0014462.
  130. Francis, L., Guo, Z. S., Liu, Z., Ravindranathan, R., Urban, J. A., Sathaiah, M., Magge, D., Kalinski, P., and Bartlett, D. L. (2016) Modulation of chemokines in the tumor microenvironment enhances oncolytic virotherapy for colorectal cancer, Oncotarget, 7, 22174-22185, doi: 10.18632/oncotarget.7907.
  131. Kim, M., Nitschké, M., Sennino, B., Murer, P., Schriver, B. J., Bell, A., Subramanian, A., McDonald, C. E., Wang, J., Cha, H., Bourgeois-Daigneault, M. C., Kirn, D. H., Bell, J. C., De Silva, N., Breitbach, C. J., and McDonald, D. M. (2018) Amplification of oncolytic vaccinia virus widespread tumor cell killing by sunitinib through multiple mechanisms, Cancer Res., 78, 922-937, doi: 10.1158/0008-5472.CAN-15-3308.
  132. Zhang, B., and Cheng, P. (2020) Improving antitumor efficacy via combinatorial regimens of oncolytic virotherapy, Mol. Cancer, 19, 158, doi: 10.1186/s12943-020-01275-6.
  133. Mell, L. K., Brumund, K. T., Daniels, G. A., Advani, S. J., Zakeri, K., Wright, M. E., Onyeama, S. J., Weisman, R. A., Sanghvi, P. R., Martin, P. J., and Szalay, A. A. (2017) Phase I trial of intravenous oncolytic vaccinia virus (GL-ONC1) with cisplatin and radiotherapy in patients with locoregionally advanced head and neck carcinoma, Clin. Cancer Res., 23, 5696-5702, doi: 10.1158/1078-0432.CCR-16-3232.
  134. Ramlau, R., Quoix, E., Rolski, J., Pless, M., Lena, H., Levy, E., Krzakowski, M., Hess, D., Tartour, E., Chenard, M. P., Limacher, J. M., Bizouarne, N., Acres, B., Halluard, C., and Velu, T. (2008) A phase II study of Tg4010 (Mva-Muc1-Il2) in association with chemotherapy in patients with stage III/IV Non-small cell lung cancer, J. Thorac. Oncol., 3, 735-744, doi: 10.1097/JTO.0b013e31817c6b4f.
  135. Song, C. K., Han, H. D., Noh, K. H., Kang, T. H., Park, Y. S., Kim, J. H., Park, E. S., Shin, B. C., and Kim, T. W. (2007) Chemotherapy enhances CD8+ T cell-mediated antitumor immunity induced by vaccination with vaccinia virus, Mol. Ther., 15, 1558-1563, doi: 10.1038/sj.mt.6300221.
  136. Chen, W. Y., Chen, Y. L., Lin, H. W., Chang, C. F., Huang, B. S., Sun, W. Z., and Cheng, W. F. (2021) Stereotactic body radiation combined with oncolytic vaccinia virus induces potent anti-tumor effect by triggering tumor cell necroptosis and DAMPs, Cancer Lett., 523, 149-161, doi: 10.1016/j.canlet.2021.09.040.
  137. Klebanoff, C. A., Khong, H. T., Antony, P. A., Palmer, D. C., and Restifo, N. P. (2005) Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy, Trends Immunol., 26, 111-117, doi: 10.1016/j.it.2004.12.003.
  138. Kim, H. S., Kim-Schulze, S., Kim, D. W., and Kaufman, H. L. (2009) Host lymphodepletion enhances the therapeutic activity of an oncolytic vaccinia virus expressing 4-1BB ligand, Cancer Res., 69, 8516-8525, doi: 10.1158/0008-5472.CAN-09-2522.
  139. Prieto, P. A., Yang, J. C., Sherry, R. M., Hughes, M. S., Kammula, U. S., White, D. E., Levy, C. L., Rosenberg, S. A., and Phan, G. Q. (2012) CTLA-4 blockade with ipilimumab: long-term follow-up of 177 patients with metastatic melanoma, Clin. Cancer Res., 18, 2039-2047, doi: 10.1158/1078-0432.CCR-11-1823.
  140. Vaddepally, R. K., Kharel, P., Pandey, R., Garje, R., and Chandra, A. B. (2020) Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence, Cancers (Basel), 12, 738, doi: 10.3390/cancers12030738.
  141. Schaedler, E., Remy-Ziller, C., Hortelano, J., Kehrer, N., Claudepierre, M. C., Gatard, T., Jakobs, C., Préville, X., Carpentier, A. F., and Rittner, K. (2017) Sequential administration of a MVA-based MUC1 cancer vaccine and the TLR9 ligand Litenimod (Li28) improves local immune defense against tumors, Vaccine, 35, 577-585, doi: 10.1016/j.vaccine.2016.12.020.
  142. Remy-Ziller, C., Thioudellet, C., Hortelano, J., Gantzer, M., Nourtier, V., Claudepierre, M. C., Sansas, B., Préville, X., Bendjama, K., Quemeneur, E., and Rittner, K. (2018) Sequential administration of MVA-based vaccines and PD-1/PD-L1-blocking antibodies confers measurable benefits on tumor growth and survival: preclinical studies with MVA-βGal and MVA-MUC1 (TG4010) in a murine tumor model, Hum. Vaccin Immunother., 14, 140-145, doi: 10.1080/21645515.2017.1373921.
  143. Foy, S. P., Mandl, S. J., dela Cruz, T., Cote, J. J., Gordon, E. J., Trent, E., Delcayre, A., Breitmeyer, J., Franzusoff, A., and Rountree, R. B. (2016) Poxvirus-based active immunotherapy synergizes with CTLA-4 blockade to increase survival in a murine tumor model by improving the magnitude and quality of cytotoxic T cells, Cancer Immunol. Immunother., 65, 537-549, doi: 10.1007/s00262-016-1816-7.
  144. Mandl, S. J., Rountree, R. B., Dalpozzo, K., Do, L., Lombardo, J. R., Schoonmaker, P. L., Dirmeier, U., Steigerwald, R., Giffon, T., Laus, R., and Delcayre, A. (2012) Immunotherapy with MVA-BN®-HER2 induces HER-2-specific Th1 immunity and alters the intratumoral balance of effector and regulatory T cells, Cancer Immunol. Immunother., 61, 19-29, doi: 10.1007/s00262-011-1077-4.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies