Phytohormones affect the differentiation of human dermal fibroblasts via UPR activation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Normalization of secretory activity and the level of differentiation of mesenchymal cells, including fibroblasts, is the important biomedical problem. One of the plausible solutions to this problem is to affect the unfolded protein response (UPR) signaling cascade, which is activated during fibroblast differentiation. In the present study, the effect of phytohormones on the secretory activity and differentiation of cultured human dermal fibroblasts was investigated. By analyzing the expression level of genes encoding UPR markers in these cells, we found that phytohormone abscisic acid (ABA) upregulated the expression of GRP78 and ATF4 genes, while phytohormone gibberellic acid (GA) upregulated the expression of CHOP. Evaluation of the biosynthetic activity of fibroblasts showed that ABA elevated the level of secretion and synthesis of procollagen I and the level of fibronectin synthesis, as well as total production of collagen and non-collagen proteins of extracellular matrix. ABA also stimulated the synthesis of smooth muscle actin α (α-SMA) and increased the number of myofibroblasts in cell population. On the contrary, GA increased the level of fibronectin secretion, but decreased the level of procollagen I synthesis, and reduced the total production of collagen proteins of extracellular matrix. Concomitantly, in these conditions we observed the decreased level of α-SMA synthesis and the number of myofibroblasts in the cell population. Our results suggest that phytohormones are the modulators of the biosynthetic activity of fibroblasts and affect their differentiation status.

About the authors

E. P Turishcheva

Faculty of Biology, Lomonosov Moscow State University

Email: kitten-caterina@yandex.ru
119991 Moscow, Russia

M. S Vildanova

Faculty of Biology, Lomonosov Moscow State University

119991 Moscow, Russia

P. A Vishnyakova

National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation;Peoples’ Friendship University of Russia

117997 Moscow, Russia;117198 Moscow, Russia

D. K Matveeva

Institute of Biomedical Problems, Russian Academy of Sciences

123007 Moscow, Russia

A. A Saidova

Faculty of Biology, Lomonosov Moscow State University

119991 Moscow, Russia

G. E Onishchenko

Faculty of Biology, Lomonosov Moscow State University

119991 Moscow, Russia

E. A Smirnova

Faculty of Biology, Lomonosov Moscow State University

119991 Moscow, Russia

References

  1. Desai, V. D., Hsia, H. C., and Schwarzbauer, J. E. (2014) Reversible modulation of myofibroblast differentiation in adipose-derived mesenchymal stem cells, PLoS One, 9, e86865, doi: 10.1371/journal.pone.0086865.
  2. Heindryckx, F., Binet, F., Ponticos, M., Rombouts, K., Lau, J., et al. (2016) Endoplasmic reticulum stress enhances fibrosis through IRE 1α-mediated degradation of miR-150 and XBP-1 splicing, EMBO Mol. Med., 8, 729-744, doi: 10.15252/emmm.201505925.
  3. Hinz, B. (2016) The role of myofibroblasts in wound healing, Curr. Res. Transl. Med., 64, 171-177, doi: 10.1016/j.retram.2016.09.003.
  4. Ko, U. H., Choi, J., Choung, J., Moon, S., and Shin, J. H. (2019) Physicochemically tuned myofibroblasts for wound healing strategy, Sci. Rep., 9, 16070, doi: 10.1038/s41598-019-52523-9.
  5. Las Heras, K., Igartua, M., Santos-Vizcaino, E., and Hernandez, R. M. (2020) Chronic wounds: Current status, available strategies and emerging therapeutic solutions, J. Control. Release, 328, 532-550, doi: 10.1016/j.jconrel.2020.09.039.
  6. Zou, M. L., Teng, Y. Y., Wu, J. J., Liu, S. Y., Tang, X. Y., Jia, Y., Chen, Z. H., Zhang, K. W., Sun, Z. L., Li, X., Ye, J. X., Xu, R. S., and Yuan, F. L. (2021) Fibroblasts: heterogeneous cells with potential in regenerative therapy for scarless wound healing, Front. Cell Dev. Biol., 9, 713605, doi: 10.3389/fcell.2021.713605.
  7. Talchai, C., Xuan, S., Lin, H. V., Sussel, L., and Accili, D. (2012) Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure, Cell, 150, 1223-1234, doi: 10.1016/j.cell.2012.07.029.
  8. Efrat, S. (2019) Beta-cell dedifferentiation in type 2 diabetes: concise review, STEM Cells, 37, 1267-1272, doi: 10.1002/stem.3059.
  9. Lenghel, A., Gheorghita, A. M., Vacaru, A. M., and Vacaru, A.-M. (2021) What is the sweetest UPR flavor for the β-cell? That is the question, Front. Endocrinol., 11, 614123, doi: 10.3389/fendo.2020.614123.
  10. Eastell, R., O'Neill, T. W., Hofbauer, L. C., Langdahl, B., Reid, I. R., Gold, D. T., and Cummings, S. R. (2016) Postmenopausal osteoporosis, Nat. Rev. Dis. Primers, 2, 16069, doi: 10.1038/nrdp.2016.69.
  11. Zhang, W., Feng, D., Li, Y., Iida, K., McGrath, B., and Cavener, D. R. (2006) PERK EIF2AK3 control of pancreatic β cell differentiation and proliferation is required for postnatal glucose homeostasis, Cell Metab., 4, 491-497, doi: 10.1016/j.cmet.2006.11.002.
  12. Saito, A., Ochiai, K., Kondo, S., Tsumagari, K., Murakami, T., Cavener, D. R., and Imaizumi, K. (2011) Endoplasmic reticulum stress response mediated by the PERK-eIF2-ATF4 pathway is involved in osteoblast differentiation induced by BMP2, J. Biol. Chem., 286, 4809-4818, doi: 10.1074/jbc.M110.152900.
  13. Baek, H. A., Kim, D. S., Park, H. S., Jang, K. Y., Kang, M. J., Lee, D. G., Moon, W. S., Chae, H. J., and Chung, M. J. (2012) Involvement of endoplasmic reticulum stress in myofibroblastic differentiation of lung fibroblasts, Am. J. Resp. Cell Mol., 46, 731-739, doi: 10.1165/rcmb.2011-0121OC.
  14. Jang, W.-G., Kim, E.-J., Kim, D.-K., Ryoo, H.-M., Lee, K.-B., Kim, S. H., Choi, H. S., and Koh, J. T. (2012) BMP2 protein regulates osteocalcin expression via Runx2-mediated Atf6 gene transcription, J. Biol. Chem., 287, 905-915, doi: 10.1074/jbc.M111.253187.
  15. Chan, J. Y., Luzuriaga, J., Bensellam, M., Biden, T. J., and Laybutt, D. R. (2013) Failure of the adaptive unfolded protein response in islets of obese mice is linked with abnormalities in β-cell gene expression and progression to diabetes, Diabetes, 62, 1557-1568, doi: 10.2337/db12-0701.
  16. Matsuzaki, S., Hiratsuka, T., Taniguchi, M., Shingaki, K., Kubo, T., Kiya, K., Fujiwara, T., Kanazawa, S., Kanematsu, R., Maeda, T., Takamura, H., Yamada, K., Miyoshi, K., Hosokawa, K., Tohyama, M., and Katayama, T. (2015) Physiological ER stress mediates the differentiation of fibroblasts, PLoS One, 10, e0123578, doi: 10.1371/journal.pone.0123578.
  17. Chen, Y. C., Chen, B. C., Huang, H. M., Lin, S. H., and Lin, C. H. (2019) Activation of PERK in ET-1-and thrombin-induced pulmonary fibroblast differentiation: inhibitory effects of curcumin, J. Cell. Physiol., 234, 15977-15988, doi: 10.1002/jcp.28256.
  18. Turishcheva, E., Vildanova, M., Onishchenko, G., and Smirnova, E. (2022) The role of endoplasmic reticulum stress in differentiation of cells of mesenchymal origin, Biochemistry (Moscow), 87, 916-931, doi: 10.1134/S000629792209005X.
  19. Budovsky, A., Yarmolinsky, L., and Ben-Shabat, S. (2015) Effect of medicinal plants on wound healing, Wound Repair Regen., 23, 171-183, doi: 10.1111/wrr.12274.
  20. Alamgir, A. N. M. (2018) Therapeutic Use of Medicinal Plants and Their Extracts: Volume 2. Phytochemistry and Bioactive Compounds, Springer Cham, doi: 10.1007/978-3-319-92387-1.
  21. Addis, R., Cruciani, S., Santaniello, S., Bellu, E., Sarais, G., Ventura, C., Maioli, M., and Pintore, G. (2020) Fibroblast proliferation and migration in wound healing by phytochemicals: evidence for a novel synergic outcome, Int. J. Med. Sci., 17, 1030-1042, doi: 10.7150/ijms.43986.
  22. Sharma, A., Khanna, S., Kaur, G., and Singh, I. (2021) Medicinal plants and their components for wound healing applications, Futur. J. Pharm. Sci., 7, 53, doi: 10.1186/s43094-021-00202-w.
  23. Kasamatsu, A., Iyoda, M., Usukura, K., Sakamoto, Y., Ogawara, K., Shiiba, M., Tanzawa, H., and Uzawa, K. (2012) Gibberellic acid induces α-amylase expression in adipose-derived stem cells, Int. J. Mol. Med., 30, 243-247, doi: 10.3892/ijmm.2012.1007.
  24. Vildanova, M., Vishnyakova, P., Saidova, A., Konduktorova, V., Onishchenko, G., and Smirnova, E. (2021) Gibberellic acid initiates ER stress and activation of differentiation in cultured human immortalized keratinocytes HaCaT and epidermoid carcinoma cells A431, Pharmaceutics, 13, 1813, doi: 10.3390/pharmaceutics13111813.
  25. Bruzzone, S., Bodrato, N., Usai, C., Guida, L., Moreschi, I., Nano, R., Antonioli, B., Fruscione, F., Magnone, M., Scarfì, S., De Flora, A., and Zocchi, E. (2008) Abscisic acid is an endogenous stimulator of insulin release from human pancreatic islets with cyclic ADP ribose as second messenger, J. Biol. Chem., 283, 32188-32197, doi: 10.1074/jbc.M802603200.
  26. Bruzzone, S., Magnone, M., Mannino, E., Sociali, G., Sturla, L., Fresia, C., Booz, V., Emionite, L., De Flora, A., and Zocchi, E. (2015) Abscisic acid stimulates glucagon-like peptide-1 secretion from L-cells and its oral administration increases plasma glucagon-like peptide-1 levels in rats, PLoS One, 10, e0140588, doi: 10.1371/journal.pone.0140588.
  27. Bruzzone, S., Battaglia, F., Mannino, E., Parodi, A., Fruscione, F., Basile, G., Salis, A., Sturla, L., Negrini, S., Kalli, F., Stringara, S., Filaci, G., Zocchi, E., and Fenoglio, D. (2012) Abscisic acid ameliorates the systemic sclerosis fibroblast phenotype in vitro, Biochem. Biophys. Res. Commun., 422, 70-74, doi: 10.1016/j.bbrc.2012.04.107.
  28. Zhang, W., Chen, D.-Q., Qi, F., Wang, J., Xiao, W.-Y., and Zhu, W. Z. (2010) Inhibition of calcium-calmodulin-dependent kinase ii suppresses cardiac fibroblast proliferation and extracellular matrix secretion, J. Cardiovasc. Pharmacol., 55, 96-105, doi: 10.1097/FJC.0b013e3181c9548b.
  29. Матвеева Д. К., Андреева Е. Р., Буравкова Л. Б. (2019) Выбор оптимального протокола получения децеллюляризованного внеклеточного маткрикса мезенхимальных стромальных клеток из жировой ткани человека, Вестн. Моск. Унив., 74, 294-300.
  30. Basalova, N., Sagaradze, G., Arbatskiy, M., Evtushenko, E., Kulebyakin, K., Grigorieva, O., Akopyan, Z., Kalinina, N., and Efimenko, A. (2020) Secretome of mesenchymal stromal cells prevents myofibroblasts differentiation by transferring fibrosis-associated microRNAs within extracellular vesicles, Cells, 9, 1272, doi: 10.3390/cells9051272.
  31. Zhivodernikov, I. V., Ratushnyy, A. Yu., Matveeva, D. K., and Buravkova, L. B. (2020) Extracellular matrix proteins and transcription of matrix-associated genes in mesenchymal stromal cells during modeling of the effects of microgravity, Bull. Exp. Biol. Med., 170, 230-232, doi: 10.1007/s10517-020-05040-z.
  32. Grigorieva, O. A., Vigovskiy, M. A., Dyachkova, U. D., Basalova, N. A., Aleksandrushkina, N. A., Kulebyakina, M. A., Zaitsev, I. L., Popov, V. S., and Efimenko, A. Y. (2021) Mechanisms of endothelial-to-mesenchymal transition induction by extracellular matrix components in pulmonary fibrosis, Bull. Exp. Biol. Med., 171, 523-531, doi: 10.1007/s10517-021-05264-7.
  33. Yang, M. C., O'Connor, A. J., Kalionis, B., and Heath, D. E. (2022) Improvement of mesenchymal stromal cell proliferation and differentiation via decellularized extracellular matrix on substrates with a range of surface chemistries, Front. Med. Technol., 4, 834123, doi: 10.3389/fmedt.2022.834123.
  34. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol., 3, RESEARCH0034, doi: 10.1186/gb-2002-3-7-research0034.
  35. Турищева E. П., Вильданова М. С., Поташникова Д. М., Смирнова Е. А. (2020) Различная реакция биосинтетической системы дермальных фибробластов и клеток фибросаркомы человека на действие растительных гормонов, Цитология, 62, 566-580, doi: 10.31857/S0041377120080088.
  36. Kendall, R. T., and Feghali-Bostwick, C. A. (2014) Fibroblasts in fibrosis: novel roles and mediators, Front. Pharmacol., 5, 123, doi: 10.3389/fphar.2014.00123.
  37. Bonnans, C., Chou, J., and Werb, Z. (2014) Remodelling the extracellular matrix in development and disease, Nat. Rev. Mol. Cell Biol., 15, 786-801, doi: 10.1038/nrm3904.
  38. Vega-Avila, E., and Pugsley, M. K. (2011) An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells, Proc. West. Pharmacol. Soc., 54, 10-14.
  39. Sicari, D., Delaunay-Moisan, A., Combettes, L., Chevet, E., and Igbaria, A. (2020) A guide to assessing endoplasmic reticulum homeostasis and stress in mammalian systems, FEBS J., 287, 27-42, doi: 10.1111/febs.15107.
  40. Hetz, C. (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond, Nat. Rev. Mol. Cell Biol., 13, 89-102, doi: 10.1038/nrm3270.
  41. Albacete-Albacete, L., Sanchez-Alvarez, M., and Del Pozo, M. A. (2021) Extracellular vesicles: an emerging mechanism governing the secretion and biological roles of tenascin-C, Front. Immunol., 12, 671485, doi: 10.3389/fimmu.2021.671485.
  42. Chen, X., Ding, C., Liu, W., Liu, X., Zhao, Y., Zheng, Y., Dong, L., Khatoon, S., Hao, M., Peng, X., Zhang, Y., and Chen, H. (2021) Abscisic acid ameliorates oxidative stress, inflammation, and apoptosis in thioacetamide-induced hepatic fibrosis by regulating the NF-kB signaling pathway in mice, Eur. J. Pharmacol., 891, 173652, doi: 10.1016/j.ejphar.2020.173652.
  43. Song, M., Peng, H., Guo, W., Luo, M., Duan, W., Chen, P., and Zhou, Y. (2019) Cigarette smoke extract promotes human lung myofibroblast differentiation by the induction of endoplasmic reticulum stress, Respiration, 98, 347-356, doi: 10.1159/000502099.
  44. Huang, W., Gu, H., Zhan, Z., Wang, R., Song, L., Zhang, Y., Zhang, Y., Li, S., Li, J., Zang, Y., Li, Y., and Qian, B. (2021) The plant hormone abscisic acid stimulates megakaryocyte differentiation from human iPSCs in vitro, Platelets, 33, 462-470, doi: 10.1080/09537104.2021.1944616.
  45. Kovuru, N., Raghuwanshi, S., Sharma, D. S., Dahariya, S., Pallepati, A., and Gutti, R. K. (2020) Endoplasmic reticulum stress induced apoptosis and caspase activation is mediated through mitochondria during megakaryocyte differentiation, Mitochondrion, 50, 115-120, doi: 10.1016/j.mito.2019.10.009.
  46. Tai, Y., Woods, E. L., Dally, J., Kong, D., Steadman, R., Moseley, R., and Midgley, A. C. (2021) Myofibroblasts: function, formation, and scope of molecular therapies for skin fibrosis, Biomolecules, 11, 1095, doi: 10.3390/biom11081095.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies