Structural and functional studies of tropomyosin isoforms Tpm4.1 and Tpm2.1

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Tropomyosin (Tpm) is one of the most important partners of the actin filament, largely determining its properties. In animal organisms, there are different isoforms of Tpm, which are believed to be involved in the regulation of various cellular functions. However, the molecular mechanisms of regulation of the functions of actin filaments by various cytoplasmic isoforms of Tpm are still poorly understood. In our work, we used various methods to study the properties of Tpm2.1 and Tpm4.1 isoforms and compared them both with each other and with the properties of Tpm isoforms that had already been subjected to more detailed study earlier. The isoforms Tpm2.1 and Tpm4.1 almost did not differ from each other in their affinity for F-actin, in the thermal stability of their molecules and in their resistance to limited proteolysis by trypsin, but they differed markedly in viscosity of their solutions and in the thermal stability of their complexes with F-actin. The main difference of Tpm2.1 and Tpm4.1 from other previously studied Tpm isoforms (such, for example, as Tpm1.6 and Tpm1.7) is their extremely low thermal stability measured by CD and DSC methods. The possible causes of this instability are considered in detail when comparing the amino acid sequences of Tpm4.1 and Tpm2.1 with the sequences of isoforms Tpm1.6 and Tpm1.7, which did not differ from Tpm4.1 and Tpm2.1, respectively, by the exon structure of their genes.

About the authors

A. S Logvinov

Research Centre of Biotechnology of the Russian Academy of Sciences;Faculty of Biology, Lomonosov Moscow State University

119071 Moscow, Russia;119991 Moscow, Russia

V. V Nefedova

Research Centre of Biotechnology of the Russian Academy of Sciences

119071 Moscow, Russia

D. S Yampolskaya

Research Centre of Biotechnology of the Russian Academy of Sciences

119071 Moscow, Russia

S. Y Kleymenov

Research Centre of Biotechnology of the Russian Academy of Sciences;Koltzov Institute of Developmental Biology, Russian Academy of Sciences

119071 Moscow, Russia;119334 Moscow, Russia

D. I Levitsky

Research Centre of Biotechnology of the Russian Academy of Sciences

119071 Moscow, Russia

A. M Matyushenko

Research Centre of Biotechnology of the Russian Academy of Sciences

Email: ammatyushenko@mail.ru
119071 Moscow, Russia

References

  1. Gunning, P., O'Neill, G., and Hardeman, E. (2008) Tropomyosin-based regulation of the actin cytoskeleton in time and space, Physiol. Rev., 88, 1-35, doi: 10.1152/physrev.00001.2007.
  2. Nevzorov, I. A., and Levitsky, D. I. (2011) Tropomyosin: double helix from the protein world, Biochemistry (Moscow), 76, 1507-1527, doi: 10.1134/S0006297911130098.
  3. Tardiff, J. C. (2010) Tropomyosin and dilated cardiomyopathy: revenge of the actinomyosin "gatekeeper", J. Am. Coll. Cardiol., 55, 330-332, doi: 10.1016/j.jacc.2009.11.018.
  4. Manstein, D. J., and Mulvihill, D. P. (2016) Tropomyosin-mediated regulation of cytoplasmic myosins, Traffic, 17, 872-877, doi: 10.1111/tra.12399.
  5. Gunning, P. W., Hardeman, E. C., Lappalainen, P., and Mulvihill, D. P. (2015) Tropomyosin - master regulator of actin filament function in the cytoskeleton, J. Cell Sci., 128, 2965-2974, doi: 10.1242/jcs.172502.
  6. Khaitlina, S. Y. (2015) Tropomyosin as a regulator of actin dynamics, Int. Rev. Cell. Mol. Biol., 318, 255-291, doi: 10.1016/bs.ircmb.2015.06.002.
  7. Goldmann, W. H. (2000) Binding of tropomyosin-troponin to actin increases filament bending stiffness, Biochem. Biophys. Res. Commun., 276, 1225-1228, doi: 10.1006/bbrc.2000.3608.
  8. Nabiev, S. R., Ovsyannikov, D. A., Kopylova, G. V., Shchepkin, D. V., Matyushenko, A. M., Koubassova, N. A., Levitsky, D. I., Tsaturyan, A. K., and Bershitsky, S. Y. (2015) Stabilizing the central part of tropomyosin increases the bending stiffness of the thin filament, Biophys. J., 109, 373-379, doi: 10.1016/j.bpj.2015.06.006.
  9. Weigt, C., Schoepper, B., and Wegner, A. (1990) Tropomyosin-troponin complex stabilizes the pointed ends of actin filaments against polymerization and depolymerization, FEBS Lett., 260, 266-268, doi: 10.1016/0014-5793(90)80119-4.
  10. Broschat, K. O. (1990) Tropomyosin prevents depolymerization of actin filaments from the pointed end, J. Biol. Chem., 265, 21323-21329, doi: 10.1016/S0021-9258(17)45363-4.
  11. Schevzov, G., Vrhovski, B., Bryce, N. S., Elmir, S., Qiu, M. R., O'Neill, G. M., Yang, N., Verrills, N. M., Kavallaris, M., and Gunning, P. W. (2005) Tissue-specific tropomyosin isoform composition, J. Histochem. Cytochem., 53, 557-570, doi: 10.1369/jhc.4A6505.2005.
  12. Weinberger, R. P., Henke, R. C., Tolhurst, O., Jeffrey, P. L., and Gunning, P. (1993) Induction of neuron-specific tropomyosin mRNAs by nerve growth factor is dependent on morphological differentiation, J. Cell Biol., 120, 205-215, doi: 10.1083/jcb.120.1.205.
  13. Pelham, R. J. Jr., Lin, J. J., and Wang, Y. L. (1996) A high molecular mass non-muscle tropomyosin isoform stimulates retrograde organelle transport, J. Cell Sci., 109 (Pt 5), 981-989, doi: 10.1242/jcs.109.5.981.
  14. Thoms, J. A., Loch, H. M., Bamburg, J. R., Gunning, P. W., and Weinberger, R. P. (2008) A tropomyosin 1 induced defect in cytokinesis can be rescued by elevated expression of cofilin, Cell Motil. Cytoskeleton, 65, 979-990, doi: 10.1002/cm.20320.
  15. Caldwell, B. J., Lucas, C., Kee, A. J., Gaus, K., Gunning, P. W., Hardeman, E. C., Yap, A. S., and Gomez, G. A. (2014) Tropomyosin isoforms support actomyosin biogenesis to generate contractile tension at the epithelial zonula adherens, Cytoskeleton, 71, 663-676, doi: 10.1002/cm.21202.
  16. McMichael, B. K., and Lee, B. S. (2008) Tropomyosin 4 regulates adhesion structures and resorptive capacity in osteoclasts, Exp. Cell Res., 314, 564-573, doi: 10.1016/j.yexcr.2007.10.018.
  17. Craig, R., and Lehman, W. (2001) Crossbridge and tropomyosin positions observed in native, interacting thick and thin filaments, J. Mol. Biol., 311, 1027-1036, doi: 10.1006/jmbi.2001.4897.
  18. Sweeney, H. L., and Hammers, D. W. (2018) Muscle contraction, Cold Spring Harb. Perspect. Biol., 10, a023200, doi: 10.1101/cshperspect.a023200.
  19. Fath, T. (2013) Tropomodulins and tropomyosins - organizers of cellular microcompartments, Biomol. Concepts, 4, 89-101, doi: 10.1515/bmc-2012-0037.
  20. Gray, K. T., Kostyukova, A. S., and Fath, T. (2017) Actin regulation by tropomodulin and tropomyosin in neuronal morphogenesis and function, Mol. Cell. Neurosci., 84, 48-57, doi: 10.1016/j.mcn.2017.04.002.
  21. Hardeman, E. C., Bryce, N. S., and Gunning, P. W. (2020) Impact of the actin cytoskeleton on cell development and function mediated via tropomyosin isoforms, Semin. Cell Dev. Biol., 102, 122-131, doi: 10.1016/j.semcdb.2019.10.004.
  22. Geeves, M. A., Hitchcock-DeGregori, S. E., and Gunning, P. W. (2015) A systematic nomenclature for mammalian tropomyosin isoforms, J. Muscle Res. Cell Motil., 36, 147-153, doi: 10.1007/s10974-014-9389-6.
  23. Tojkander, S., Gateva, G., Schevzov, G., Hotulainen, P., Naumanen, P., Martin, C., Gunning, P. W., and Lappalainen, P. (2011) A molecular pathway for myosin II recruitment to stress fibers, Curr. Biol., 21, 539-550, doi: 10.1016/j.cub.2011.03.007.
  24. Sanders, C., Burtnick, L. D., and Smillie, L. B. (1986) Native chicken gizzard tropomyosin is predominantly a beta gamma-heterodimer, J. Biol. Chem., 261, 12774-12778, doi: 10.1016/S0021-9258(18)67160-1.
  25. Wolfenson, H., Meacci, G., Liu, S., Stachowiak, M. R., Iskratsch, T., Ghassemi, S., Roca-Cusachs, P., O'Shaughnessy, B., Hone, J., and Sheetz, M. P. (2016) Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on soft matrices, Nat. Cell. Biol., 18, 33-42, doi: 10.1038/ncb3277.
  26. Boyd, J., Risinger, J. I., Wiseman, R. W., Merrick, B. A., Selkirk, J. K., and Barrett, J. C. (1995) Regulation of microfilament organization and anchorage-independent growth by tropomyosin 1, Proc. Natl. Acad. Sci. USA, 92, 11534-11538, doi: 10.1073/pnas.92.25.11534.
  27. Stehn, J. R., Schevzov, G., O'Neill, G. M., and Gunning, P. W. (2006) Specialisation of the tropomyosin composition of actin filaments provides new potential targets for chemotherapy, Curr. Cancer Drug Targets, 6, 245-256, doi: 10.2174/156800906776842948.
  28. Mahadev, K., Raval, G. S., Bharadwaj, S., Willingham, M. C., and Lange, E. M. (2002) Suppression of the transformed phenotype of breast cancer by tropomyosin-1, Exp. Cell Res., 279, 40-51, doi: 10.1006/excr.2002.5583.
  29. Nevzorov, I., Redwood, C., and Levitsky, D. I. (2008) Stability of two beta-tropomyosin isoforms: effects of mutation Arg91Gly, J. Muscle Res. Cell Motil., 29, 173-176, doi: 10.1007/s10974-009-9171-3.
  30. Gateva, G., Kremneva, E., Reindl, T., Kotila, T., and Kogan, K. (2017) Tropomyosin isoforms specify functionally distinct actin filament populations in vitro, Curr. Biol., 27, 705-713, doi: 10.1016/j.cub.2017.01.018.
  31. Coulton, A., Lehrer, S. S., and Geeves, M. A. (2006) Functional homodimers and heterodimers of recombinant smooth muscle tropomyosin, Biochemistry, 45, 12853-12858, doi: 10.1021/bi0613224.
  32. Janco, M., Bonello, T. T., Byun, A., Coster, A. C. F., Lebhar, H., Dedova, I., Gunning, P. W., and Böcking, T. (2016) The impact of tropomyosins on actin filament assembly is isoform specific, Bioarchitecture, 6, 61-75, doi: 10.1080/19490992.2016.1201619.
  33. Jeong, S., Lim, S., Schevzov, G., Gunning, P. W., and Helfman, D. M. (2017) Loss of Tpm4.1 leads to disruption of cell-cell adhesions and invasive behavior in breast epithelial cells via increased Rac1 signaling, Oncotarget, 8, 33544-33559, doi: 10.18632/oncotarget.16825.
  34. Monteiro, P. B., Lataro, R. C., Ferro, J. A., and Reinach, F.-C. (1994) Functional α-tropomyosin produced in Escherichia coli. A dipeptide extension can substitute the amino-terminal acetyl group, J. Biol. Chem., 269, 10461-10466, doi: 10.1016/S0021-9258(17)34082-6.
  35. Matyushenko, A. M., Artemova, N. V., Shchepkin, D. V., Kopylova, G. V., Bershitsky, S. Y., Tsaturyan, A. K., Sluchanko, N. N., and Levitsky, D. I. (2014) Structural and functional effects of two stabilizing substitutions, D137L and G126R, in the middle part of α-tropomyosin molecule, FEBS J., 281, 2004-2016, doi: 10.1111/febs.12756.
  36. Spudich, J. A., and Watt, S. (1971) The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin, J. Biol. Chem., 246, 4866-4871, doi: 10.1016/S0021-9258(18)62016-2.
  37. Matyushenko, A. M., Kleymenov, S. Y., Susorov, D. S., and Levitsky, D. I. (2018) Thermal unfolding of homodimers and heterodimers of different skeletal-muscle isoforms of tropomyosin, Biophys. Chem., 243, 1-7, doi: 10.1016/j.bpc.2018.09.002.
  38. Nefedova, V. V., Marchenko, M. A., Kleymenov, S. Y., Datskevich, P. N., Levitsky, D. I., and Matyushenko, A. M. (2019) Thermal unfolding of various human non-muscle isoforms of tropomyosin, Biochem. Biophys. Res. Commun., 514, 613-617, doi: 10.1016/j.bbrc.2019.05.008.
  39. Marchenko, M., Nefedova, V., Artemova, N., Kleymenov, S., Levitsky, D., and Matyushenko, A. (2021) Structural and functional peculiarities of cytoplasmic tropomyosin isoforms, the products of TPM1 and TPM4 genes, Int. J. Mol. Sci., 22, 5141, doi: 10.3390/ijms22105141.
  40. Marchenko, M. A., Nefedova, V. V., Yampolskaya, D. S., Borzova, V. A., Kleymenov, S. Y., Nabiev, S. R., Nikitina, L. V., Matyushenko, A. M., and Levitsky, D. I. (2021) Comparative structural and functional studies of low molecular weight tropomyosin isoforms, the TPM3 gene products, Arch. Biochem. Biophys., 710, 108999, doi: 10.1016/j.abb.2021.108999.
  41. Matyushenko, A. M., Shchepkin, D. V., Kopylova, G. V., Bershitsky, S. Y., and Levitsky, D. I. (2020) Unique functional properties of slow skeletal muscle tropomyosin, Biochimie, 174, 1-8, doi: 10.1016/j.biochi.2020.03.013.
  42. Lees-Miller, J. P., and Helfman, D. M. (1991) The molecular basis for tropomyosin isoform diversity, Bioessays, 13, 429-437, doi: 10.1002/bies.950130902.
  43. Matyushenko, A. M., Artemova, N. V., Sluchanko, N. N., and Levitsky, D. I. (2015) Effects of two stabilizing substitutions, D137L and G126R, in the middle part of α-tropomyosin on the domain structure of its molecule, Biophys. Chem., 196, 77-85, doi: 10.1016/j.bpc.2014.10.001.
  44. Arndt, K. M., Pelletier, J. N., Müller, K. M., Plückthun, A., and Alber, T. (2002) Comparison of in vivo selection and rational design of heterodimeric coiled coils, Structure, 10, 1235-1248, doi: 10.1016/s0969-2126(02)00838-9.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies