Multiple non-canonical base-stacking interactions as one of the major determinants of RNA tertiary structure organization

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Interplane (stacking) interactions of heterocyclic bases of nucleotide residues (n.t.) of RNA are one of the most important factors in the organization of its secondary and tertiary structure. Most of these (canonical) interactions are carried out between neighbors in the polynucleotide chains of RNA. However, with the accumulation of data on the atomic tertiary structures of a wide variety of RNAs and their complexes with proteins, it became clear that RNA nucleotide residues that are not neighbors in their polynucleotide chains and are sometimes separated in the RNA primary structure by tens or hundreds of n.t. can interact with the help of base stacking (non-canonical). This paper presents an exhaustive database of such elements and their environment in the macromolecules of natural and synthetic RNAs. They were called nonadjacent base-stacking elements (NA-BSE). The analysis of these data showed that the NA-BSE forming nucleotides, on average, account for about a quarter of all nucleotides of a particular RNA, therefore, they should be considered as real motifs in their tertiary structure. The classification of NA-BSE by types of localization in RNA macromolecules is carried out. It is shown that the structure-forming role of NA-BSE consists in the compact folding of single-stranded RNA loops, in the transformation of double-stranded bulges into imperfect helices, as well as in the binding of RNA regions removed in their primary and secondary structure.

About the authors

V. G Metelev

Faculty of Chemistry, Lomonosov Moscow State University

119991 Moscow, Russia

E. F Baulin

Institute of Mathematical Problems of Biology of the Russian Academy of Sciences - the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences

142290 Pushchino, Moscow Region, Russia

A. A Bogdanov

Faculty of Chemistry, Lomonosov Moscow State University;A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University;Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry

Email: bogdanov@belozersky.msu.ru
119991 Moscow, Russia;119992 Moscow, Russia;117997 Moscow, Russia

References

  1. Fresco, J. R., Alberts, B. M., and Doty, P. (1960) Some molecular details of the secondary structure of ribonucleic acids, Nature, 188, 98-101, doi: 10.1038/188098a0.
  2. Spirin, A. S. (1960) On macromolecular structure of native high-polymer ribonucleic acid in solution, J. Mol. Biol., 2, 436-446, doi: 10.1016/S0022-2836(60)80054-X.
  3. Butcher, S. E., and Pyle, A. M. (2011) The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks, Acc. Chem. Res., 44, 1302-1311, doi: 10.1021/ar200098t.
  4. Nissen, P., Ippolito, J. A., Ban, N., Moore, P. B., and Steitz, T. A. (2001) RNA tertiary interactions in the large ribosomal subunit: the A-minor motif, Proc. Natl. Acad. Sci. USA, 98, 4899-4903, doi: 10.1073/pnas.081082398.
  5. Klein, D. J., Schmeing, T. M., Moore, P. B., and Steitz, T. A. (2001) The kink-turn, EMBO J., 20, 4214-4221, doi: 10.1093/emboj/20.15.4214.
  6. Chawla, M., Chermak, E., Zhang, O., Bujnicki, J. M., Oliva, R., and Cavallo, L. (2017) Occurrence and stability of lone pair-stacking interactions between ribose and nucleobases in functional RNAs, Nucleic Acids Res., 45, 11019-11032, doi: 10.1093/nar/gkx757.
  7. Baulin, E., Metelev, V., and Bogdanov, A. (2020) Base-intercalated and base-wedged stacking elements in 3D-structure of RNA and RNA-protein complexes, Nucleic Acids Res., 48, 8675-8685, doi: 10.1093/nar/gkaa610.
  8. Dallas, A., and Moore, P. B. (1997) The loop E-loop D region of Escherichia coli 5S rRNA: the solution structure reveals an unusual loop that may be important for binding ribosomal proteins, Structure, 5, 1639-1653, doi: 10.1016/s0969-2126(97)00311-0.
  9. Cate, J. H., Gooding, A. R., Podell, E., Zhou, K., Golden, B. L., Kundrot, C. E., Cech, T. R., and Doudna, J. A. (1996) Crystal structure of a group I ribozyme domain: principles of RNA packing, Science, 273, 1678-1685, doi: 10.1126/science.273.5282.1678.
  10. Teplova, M., Malinina, L., Darnell, J. C., Song, J., Lu, M., Abagyan, R., Musunuru, K., Teplov, A., Burley, S. K., Darnell, R. B., and Patel, D. J. (2011) Protein-RNA and protein-protein recognition by DualKH1/2 domains of the neuronal splicing factor Nova-1, Structure, 19, 930-944, doi: 10.1016/j.str.2011.05.002.
  11. Leontis, N. B., and Zirbel, C. L. (2012) Nonredundant 3D structure datasets for RNA knowledge extraction and benchmarking, RNA 3D Structure Analysis and Prediction (Leontis, N., and Westhof, E., eds), Nucleic Acids and Molecular Biology, 27, 282-298, Springer-Verlag Berlin Heidelberg, doi: 10.1007/978-3-642-25740-7_13.
  12. Lu, X.-J., Bussemaker, H. J., and Olson, W. K. (2015) DSSR: an integrated software tool for dissecting the spatial structure of RNA, Nucleic Acids Res., 43, e142, doi: 10.1093/nar/gkv716.
  13. Shalybkova, A. A., Mikhailova, D. S., Kulakovskiy, I. V., Fakhranurova, L. I., and Baulin, E. F. (2021) Annotation of the local context of RNA secondary structure improves the classification and prediction of A-minors, RNA, 27, 907-919, doi: 10.1261/rna.078535.120.
  14. Yogesh, K., Gupta, Y. K., Nair, D. T., Wharton, R. P., Aggarwal, A. K. (2008) Structures of human Pumilio with noncognate RNAs reveal molecular mechanisms for binding promiscuity, Structure, 16, 549-557, doi: 10.1016/j.str.2008.01.006.
  15. Guogas, L. M., Filman, D. J., Hogle, J. M., and Gehrke, L. (2004) Cofolding organizes alfalfa mosaic virus RNA and coat protein for replication, Science, 306, 2108-2111, doi: 10.1126/science.1103399.
  16. Mondragón, A. (2013) Structural studies of RNase P, Annu. Rev. Biophys., 42, 537-557, doi: 10.1146/annurev-biophys-083012-130406.
  17. Krasilnikov, A. S., Xiao, Y., Pan, T., and Mondragón, A. (2004) Basis for structural diversity in homologous RNAs, Science, 306, 104-107, doi: 10.1126/science.1101489.
  18. Krasilnikov, A. S., Yang, X., Pan, T., and Mondragón, A. (2003) Crystal structure of the specificity domain of ribonuclease P, Nature, 421, 760-764, doi: 10.1038/nature01386.
  19. Reiter, N. J., Osterman, A., Torres-Larios, A., Swinger, K. K., Pan, T., and Mondragón, A. (2010) Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA, Nature, 468, 784-789, doi: 10.1038/nature09516.
  20. Mignon, P., Loverix, S., Steyaert, J., and Geerlings, P. (2005) Influence of the π-π interaction on the hydrogen bonding capacity of stacked DNA/RNA bases, Nucleic Acids Res., 33, 1779-1789, doi: 10.1093/nar/gki317.
  21. Leontis, N. B., and Westhof, E. (2001) Geometric nomenclature and classification of RNA base pairs, RNA, 7, 499-512, doi: 10.1017/s1355838201002515.
  22. Noller, H. F., Donohue, J. P., and Gutell, R. R. (2022) The universally conserved nucleotides of the small subunit ribosomal RNAs, RNA, 28, 623-644, doi: 10.1261/rna.079019.121.
  23. Sergiev, P. V., Kiparisov, S. V., Burakovsky, D. E., Lesnyak, D. V., Leonov, A. A., Bogdanov, A. A., and Dontsova, O. A. (2005) The conserved A-site finger of the 23S rRNA: just one of the intersubunit bridges or a part of the allosteric communication pathway? J. Mol. Biol., 353, 116-123, doi: 10.1016/j.jmb.2005.08.006.
  24. Walkera, A. S., Russ, W. P., Ranganathanc, R., and Schepartza, A. (2020) RNA sectors and allosteric function within the ribosome, Proc. Natl. Acad. Sci. USA, 117, 19879-19887, doi: 10.1073/pnas.1909634117.
  25. Peselis, A., and Serganov, A. (2021) Cooperativity and allostery in RNA systems, Methods Mol. Biol., 2253, 255-271, doi: 10.1007/978-1-0716-1154-8_15.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies