Natural guanine derivatives exert PARP-inhibitory and cytoprotective effects in a model of cardiomyocyte damage under oxidative stress

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Inhibitors of human poly(ADP-ribose) polymerase (PARP) are considered as promising agents for the treatment of cardiovascular, neurological, and other diseases accompanied by inflammation and oxidative stress. Previously, the ability of the natural compounds 7-methylguanine (7mGua) and 8-hydroxy-7-methylguanine (8h7mGua) to suppress the activity of the recombinant PARP protein was demonstrated. In the present work, we have investigated the possibility of PARP-inhibitory and cytoprotective action of 7mGua and 8h7mGua against rat cardiomyoblast cultures (undifferentiated and differentiated H9c2). It was found that 7mGua and 8h7mGua rapidly penetrate into cells and effectively suppress H2O2-stimulated PARP activation (IC50 = 270 and 55 µM, respectively). The pronounced cytoprotective effects of 7mGua and 8h7mGua were shown in a cellular model of oxidative stress, and 8h7mGua exceeded the classic PARP inhibitor 3-aminobenzamide for effectiveness. The obtained data indicate the prospects for the development of PARP inhibitors based on guanine derivatives and their testing on models of ischemia-reperfusion tissue damage.

About the authors

S. I Shram

Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”

Email: shram-si.img@yandex.ru
123182 Moscow, Russia

T. A Shcherbakova

Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology

119992 Moscow, Russia

T. V Abramova

Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch

630090 Novosibirsk, Russia

E. C Baradieva

Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”

123182 Moscow, Russia

A. S Efremova

Research Centre for Medical Genetics

115522 Moscow, Russia

M. S Smirnovskaya

Faculty of Chemistry, Lomonosov Moscow State University

119991 Moscow, Russia

V. N Silnikov

Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch

630090 Novosibirsk, Russia

V. K Švedas

Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology;Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University

119992 Moscow, Russia;119234 Moscow, Russia

D. K Nilov

Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology

Email: nilovdm@gmail.com
119992 Moscow, Russia

References

  1. Weissmann, B., Bromberg, P. A., and Gutman, A. B. (1957) The purine bases of human urine. I. Separation and identification, J. Biol. Chem., 224, 407-422, doi: 10.1016/S0021-9258(18)65040-9.
  2. Weissmann, B., Bromberg, P. A., and Gutman, A. B. (1957) The purine bases of human urine. II. Semiquantitative estimation and isotope incorporation, J. Biol. Chem., 224, 423-434, doi: 10.1016/S0021-9258(18)65041-0.
  3. Weissmann, B., and Gutman, A. B. (1957) The identification of 6-succinoaminopurine and of 8-hydroxy-7-methylguanine as normal human urinary constituents, J. Biol. Chem., 229, 239-250, doi: 10.1016/S0021-9258(18)70612-1.
  4. Topp, H., Sander, G., Heller-Schöch, G., and Schöch, G. (1987) Determination of 7-methylguanine, N2,N2-dimethylguanosine, and pseudouridine in ultrafiltrated serum of healthy adults by high-performance liquid chromatography, Anal. Biochem., 161, 49-56, doi: 10.1016/0003-2697(87)90650-6.
  5. Svoboda, P., and Kasai, H. (2004) Simultaneous HPLC analysis of 8-hydroxydeoxyguanosine and 7-methylguanine in urine from humans and rodents, Anal. Biochem., 334, 239-250, doi: 10.1016/j.ab.2004.08.021.
  6. Raćkowska, E., Bobrowska-Korczak, B., and Giebułtowicz, J. (2019) Development and validation of a rapid LC-MS/MS method for determination of methylated nucleosides and nucleobases in urine, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 1128, 121775, doi: 10.1016/j.jchromb.2019.121775.
  7. Sander, G., Hülsemann, J., Topp, H., Heller-Schöch, G., and Schöch, G. (1986) Protein and RNA turnover in preterm infants and adults: a comparison based on urinary excretion of 3-methylhistidine and of modified one-way RNA catabolites, Ann. Nutr. Metab., 30, 137-142, doi: 10.1159/000177186.
  8. Tamae, K., Kawai, K., Yamasaki, S., Kawanami, K., Ikeda, M., Takahashi, K., Miyamoto, T., Kato, N., and Kasai, H. (2009) Effect of age, smoking and other lifestyle factors on urinary 7-methylguanine and 8-hydroxydeoxyguanosine, Cancer Sci., 100, 715-721, doi: 10.1111/j.1349-7006.2009.01088.x.
  9. Litwack, M. D., and Weissmann, B. (1966) Source of urinary 8-hydroxy-7-methylguanine in man, Biochemistry, 5, 3007-3012, doi: 10.1021/bi00873a033.
  10. Skupp, S., and Ayvazian, J. H. (1969) Oxidation of 7-methylguanine by human xanthine oxidase, J. Lab. Clin. Med., 73, 909-916.
  11. Нилов Д. К., Тараров В. И., Куликов А. В., Захаренко А. Л., Гущина И. В., Михайлов С. Н., Лаврик О. И., Швядас В. К. (2016) Ингибирование поли(ADP-рибозо)полимеразы метаболитом нуклеиновых кислот 7-метилгуанином, Acta Naturae, 8, 120-128, doi: 10.32607/20758251-2016-8-2-108-115.
  12. Nilov, D., Maluchenko, N., Kurgina, T., Pushkarev, S., Lys, A., Kutuzov, M., Gerasimova, N., Feofanov, A., Švedas, V., Lavrik, O., and Studitsky, V. M. (2020) Molecular mechanisms of PARP-1 inhibitor 7-methylguanine, Int. J. Mol. Sci., 21, 2159, doi: 10.3390/ijms21062159.
  13. Кургина Т. А., Шрам С. И., Кутузов М. М., Абрамова Т. В., Щербакова Т. А., Мальцева Е. А., Поройков В. В., Лаврик О. И., Швядас В. К., Нилов Д. К. (2022) Ингибиторное действие 7-метилгуанина и его метаболита 8-гидрокси-7-метилгуанина на поли(ADP-рибозо)полимеразу 1 человека, Биохимия, 87, 794-803, doi: 10.31857/S0320972522060070.
  14. Manasaryan, G., Suplatov, D., Pushkarev, S., Drobot, V., Kuimov, A., Švedas, V., and Nilov, D. (2021) Bioinformatic analysis of the nicotinamide binding site in poly(ADP-ribose) polymerase family proteins, Cancers (Basel), 13, 1201, doi: 10.3390/cancers13061201.
  15. Шиловский Г. А., Хохлов А. Н., Шрам С. И. (2013) Cистема поли(ADP-рибозил)ирования белков: роль в поддержании стабильности генома и детерминации продолжительности жизни, Биохимия, 78, 473-487.
  16. Gupte, R., Liu, Z., and Kraus, W. L. (2017) PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes, Genes Dev., 31, 101-126, doi: 10.1101/gad.291518.116.
  17. Alemasova, E. E., and Lavrik, O. I. (2019) Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins, Nucleic Acids Res., 47, 3811-3827, doi: 10.1093/nar/gkz120.
  18. Kamaletdinova, T., Fanaei-Kahrani, Z., and Wang, Z. Q. (2019) The enigmatic function of PARP1: from PARylation activity to PAR readers, Cells, 8, 1625, doi: 10.3390/cells8121625.
  19. Нилов Д. К., Пушкарев С. В., Гущина И. В., Манасарян Г. А., Кирсанов К. И., Швядас В. К. (2020) Моделирование фермент-субстратных комплексов поли(ADP-рибозо)полимеразы 1 человека, Биохимия, 85, 116-125, doi: 10.31857/S0320972520010091.
  20. Narne, P., Pandey, V., Simhadri, P. K., and Phanithi, P. B. (2017) Poly(ADP-ribose)polymerase-1 hyperactivation in neurodegenerative diseases: the death knell tolls for neurons, Semin. Cell Dev. Biol., 63, 154-166, doi: 10.1016/j.semcdb.2016.11.007.
  21. Ke, Y., Wang, C., Zhang, J., Zhong, X., Wang, R., Zeng, X., and Ba, X. (2019) The role of PARPs in inflammation-and metabolic-related diseases: molecular mechanisms and beyond, Cells, 8, 1047, doi: 10.3390/cells8091047.
  22. Curtin, N. J., and Szabo, C. (2020) Poly(ADP-ribose) polymerase inhibition: past, present and future, Nat. Rev. Drug Discov., 19, 711-736, doi: 10.1038/s41573-020-0076-6.
  23. Szabó, G., Liaudet, L., Hagl, S., and Szabó, C. (2004) Poly(ADP-ribose) polymerase activation in the reperfused myocardium, Cardiovasc. Res., 61, 471-480, doi: 10.1016/j.cardiores.2003.09.029.
  24. Woolley, S. M., Farivar, A. S., Naidu, B. V., Salzman, A., Szabo, C., Thomas, R., Fraga, C., and Mulligan, M. S. (2004) Role of poly (ADP) ribose synthetase in lung ischemia-reperfusion injury, J. Heart Lung Transplant., 23, 1290-1296, doi: 10.1016/j.healun.2003.08.036.
  25. Van Wijk, S. J., and Hageman, G. J. (2005) Poly(ADP-ribose) polymerase-1 mediated caspase-independent cell death after ischemia/reperfusion, Free Radic. Biol. Med., 39, 81-90, doi: 10.1016/j.freeradbiomed.2005.03.021.
  26. Fujikawa, D. G. (2015) The role of excitotoxic programmed necrosis in acute brain injury, Comput. Struct. Biotechnol. J., 13, 212-221, doi: 10.1016/j.csbj.2015.03.004.
  27. Frampton, J. E. (2015) Olaparib: a review of its use as maintenance therapy in patients with ovarian cancer, BioDrugs, 29, 143-150, doi: 10.1007/s40259-015-0125-6.
  28. Mittica, G., Ghisoni, E., Giannone, G., Genta, S., Aglietta, M., Sapino, A., and Valabrega, G. (2018) PARP inhibitors in ovarian cancer, Recent Pat. Anticancer Drug Discov., 13, 392-410, doi: 10.2174/1574892813666180305165256.
  29. Zimmer, A. S., Gillard, M., Lipkowitz, S., and Lee, J. M. (2018) Update on PARP inhibitors in breast cancer, Curr. Treat. Options Oncol., 19, 21, doi: 10.1007/s11864-018-0540-2.
  30. Virág, L., Robaszkiewicz, A., Rodriguez-Vargas, J. M., and Oliver, F. J. (2013) Poly(ADP-ribose) signaling in cell death, Mol. Aspects Med., 34, 1153-1167, doi: 10.1016/j.mam.2013.01.007.
  31. Curtin, N. J., and Szabo, C. (2013) Therapeutic applications of PARP inhibitors: anticancer therapy and beyond, Mol. Aspects Med., 34, 1217-1256, doi: 10.1016/j.mam.2013.01.006.
  32. Henning, R. J., Bourgeois, M., and Harbison, R. D. (2018) Poly(ADP-ribose) polymerase (PARP) and PARP inhibitors: Mechanisms of action and role in cardiovascular disorders, Cardiovasc. Toxicol., 18, 493-506, doi: 10.1007/s12012-018-9462-2.
  33. Berger, N. A., Besson, V. C., Boulares, A. H., Bürkle, A., Chiarugi, A., Clark, R. S., Curtin, N. J., Cuzzocrea, S., Dawson, T. M., Dawson, V. L., Haskó, G., Liaudet, L., Moroni, F., Pacher, P., Radermacher, P., Salzman, A. L., Snyder, S. H., Soriano, F. G., Strosznajder, R. P., Sümegi, B., Swanson, R. A., and Szabo, C. (2018) Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases, Br. J. Pharmacol., 175, 192-222, doi: 10.1111/bph.13748.
  34. Liu, S., Luo, W., and Wang, Y. (2022) Emerging role of PARP-1 and PARthanatos in ischemic stroke, J. Neurochem., 160, 74-87, doi: 10.1111/jnc.15464.
  35. Pacher, P., and Szabó, C. (2007) Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors, Cardiovasc. Drug Rev., 25, 235-260, doi: 10.1111/j.1527-3466.2007.00018.x.
  36. Tao, R., Kim, S. H., Honbo, N., Karliner, J. S., and Alano, C. C. (2010) Minocycline protects cardiac myocytes against simulated ischemia-reperfusion injury by inhibiting poly(ADP-ribose) polymerase-1, J. Cardiovasc. Pharmacol., 56, 659-668, doi: 10.1097/FJC.0b013e3181faeaf0.
  37. Tiwari, P., Khan, H., Singh, T. G., and Grewal, A. K. (2022) Poly (ADP-ribose) polymerase: an overview of mechanistic approaches and therapeutic opportunities in the management of stroke, Neurochem. Res., 47, 1830-1852, doi: 10.1007/s11064-022-03595-z.
  38. Ohmoto, A., and Yachida, S. (2017) Current status of poly(ADP-ribose) polymerase inhibitors and future directions, Onco Targets Ther., 10, 5195-5208, doi: 10.2147/OTT.S139336.
  39. Walsh, C. (2018) Targeted therapy for ovarian cancer: the rapidly evolving landscape of PARP inhibitor use, Minerva Ginecol., 70, 150-170, doi: 10.23736/S0026-4784.17.04152-1.
  40. Jain, P. G., and Patel, B. D. (2019) Medicinal chemistry approaches of poly ADP-Ribose polymerase 1 (PARP1) inhibitors as anticancer agents - a recent update, Eur. J. Med. Chem., 165, 198-215, doi: 10.1016/j.ejmech.2019.01.024.
  41. Kirsanov, K., Fetisov, T., Antoshina, E., Trukhanova, L., Gor'kova, T., Vlasova, O., Khitrovo, I., Lesovaya, E., Kulbachevskaya, N., Shcherbakova, T., Belitsky, G., Yakubovskaya, M., Švedas, V., and Nilov, D. (2022) Toxicological properties of 7-methylguanine, and preliminary data on its anticancer activity, Front. Pharmacol., 13, 842316, doi: 10.3389/fphar.2022.842316.
  42. Efremova, A. S., Zakharenko, A. L., Shram, S. I., Kulikova, I. V., Drenichev, M. S., Sukhanova, M. V., Khodyreva, S. N., Myasoedov, N. F., Lavrik, O. I., and Mikhailov, S. N. (2013) Disaccharide pyrimidine nucleosides and their derivatives: a novel group of cell-penetrating inhibitors of poly(ADP-ribose) polymerase 1, Nucleosides Nucleotides Nucleic Acids, 32, 510-528, doi: 10.1080/15257770.2013.827793.
  43. Virág, L., and Szabó, C. (2001) Purines inhibit poly(ADP-ribose) polymerase activation and modulate oxidant-induced cell death, FASEB J., 15, 99-107, doi: 10.1096/fj.00-0299com.
  44. Geraets, L., Moonen, H. J., Wouters, E. F., Bast, A., and Hageman, G. J. (2006) Caffeine metabolites are inhibitors of the nuclear enzyme poly(ADP-ribose)polymerase-1 at physiological concentrations, Biochem. Pharmacol., 72, 902-910, doi: 10.1016/j.bcp.2006.06.023.
  45. Hescheler, J., Meyer, R., Plant, S., Krautwurst, D., Rosenthal, W., and Schultz, G. (1991) Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart, Circ. Res., 69, 1476-1486, doi: 10.1161/01.res.69.6.1476.
  46. Branco, A. F., Pereira, S. P., Gonzalez, S., Gusev, O., Rizvanov, A. A., and Oliveira, P. J. (2015) Gene expression profiling of H9c2 myoblast differentiation towards a cardiac-like phenotype, PLoS One, 10, e0129303, doi: 10.1371/journal.pone.0129303.
  47. Kankeu, C., Clarke, K., Van Haver, D., Gevaert, K., Impens, F., Dittrich, A., Roderick, H. L., Passante, E., and Huber, H. J. (2018) Quantitative proteomics and systems analysis of cultured H9C2 cardiomyoblasts during differentiation over time supports a "function follows form" model of differentiation, Mol. Omics, 14, 181-196, doi: 10.1039/c8mo00036k.
  48. Pastor-Anglada, M., Cano-Soldado, P., Molina-Arcas, M., Lostao, M. P., Larráyoz, I., Martínez-Picado, J., and Casado, F. J. (2005) Cell entry and export of nucleoside analogues, Virus Res., 107, 151-164, doi: 10.1016/j.virusres.2004.11.005.
  49. Cano-Soldado, P., and Pastor-Anglada, M. (2012) Transporters that translocate nucleosides and structural similar drugs: structural requirements for substrate recognition, Med. Res. Rev., 32, 428-457, doi: 10.1002/med.20221.
  50. Inoue, K. (2017) Molecular basis of nucleobase transport systems in mammals, Biol. Pharm. Bull., 40, 1130-1138, doi: 10.1248/bpb.b17-00374.
  51. Zingarelli, B., Cuzzocrea, S., Zsengellér, Z., Salzman, A. L., and Szabó, C. (1997) Protection against myocardial ischemia and reperfusion injury by 3-aminobenzamide, an inhibitor of poly (ADP-ribose) synthetase, Cardiovasc. Res., 36, 205-215, doi: 10.1016/s0008-6363(97)00137-5.
  52. Ilnytska, O., Lyzogubov, V. V., Stevens, M. J., Drel, V. R., Mashtalir, N., Pacher, P., Yorek, M. A., and Obrosova, I. G. (2006) Poly(ADP-ribose) polymerase inhibition alleviates experimental diabetic sensory neuropathy, Diabetes, 55, 1686-1694, doi: 10.2337/db06-0067.
  53. Tas Hekimoglu, A., Toprak, G., Akkoc, H., Evliyaoglu, O., Tas, T., Kelle, I., and Colpan, L. (2014) Protective effect of 3-aminobenzamide, an inhibitor of poly (ADP-ribose) polymerase in distant liver injury induced by renal ischemia-reperfusion in rats, Eur. Rev. Med. Pharmacol. Sci., 18, 34-38.
  54. Пушкарев С. В., Винник В. A., Шаповалова И. В., Швядас В. К., Нилов Д. К. (2022) Моделирование структуры комплекса тРНК-гуанинтрансгликозилазы человека с 7-метилгуанином и выявление факторов, определяющих взаимодействие фермента с ингибиторами, Биохимия, 87, 550-557, doi: 10.31857/S0320972522040078.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies