Effects of chronic combined treatment with ketanserin and fluoxetine in B6.CBA-D13Mit76C recombinant mice with abnormal 5-НТ1a receptor functional activity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The recombinant B6.CBA-D13Mit76C mouse strain is characterized by altered sensitivity of 5-HT1A receptors and greater Htr1a gene transcription. Recently, we found that in B6.CBA-D13Mit76C mice, chronic fluoxetine treatment produced pro-depressive effect in a forced swim test. Since 5-HT2A receptor blockade may be beneficial in treatment-resistant depression, we investigated the influence of chronic treatment (14 days, intraperitoneally) with selective 5-HT2A antagonist ketanserin (0.5 mg/kg), fluoxetine (20 mg/kg), or fluoxetine + ketanserin on the behavior, functional activity of 5-HT1A and 5-HT2A receptors, serotonin turnover, and transcription of principal genes of the serotonin system in the brain of B6.CBA-D13Mit76C mice. Ketanserin did not reverse the pro-depressive effect of fluoxetine. Fluoxetine, ketanserin, and fluoxetine + ketanserin decreased functional activity of 5-HT1A receptors and Htr1a gene transcription in the midbrain and hippocampus. Additionally, all the tested drug regimens decreased mRNA levels of Slc6a4 and Maoa in the midbrain. These changes were not accompanied by a significant shift in the levels of serotonin and its metabolite 5-HIAA. Notably, ketanserin upregulated enzymatic activity of tryptophan hydroxylase 2 (TPH2). Thus, despite some benefits (reduced Htr1a, Slc6a4, and Maoa transcription and increased TPH2 activity), prolonged blockade of 5-HT2A receptors failed to ameliorate the adverse effect of fluoxetine during abnormal functioning of 5-HT1A receptors.

About the authors

A. S Tsybko

Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

Email: antoncybko@mail.ru
630090 Novosibirsk, Russia

E. M Kondaurova

Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

630090 Novosibirsk, Russia

E. V Zalivina

Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

630090 Novosibirsk, Russia

V. O Blaginya

Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

630090 Novosibirsk, Russia

V. S Naumenko

Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

630090 Novosibirsk, Russia

References

  1. Papp, M., Cubala, W. J., Swiecicki, L., Newman-Tancredi, A., and Willner, P. (2022) Perspectives for therapy of treatment-resistant depression, Br. J. Pharmacol., 179, 4181-4200, doi: 10.1111/bph.15596.
  2. Kulikov, A. V., Gainetdinov, R. R., Ponimaskin, E., Kalueff, A. V., Naumenko, V. S., and Popova, N. K. (2018) Interplay between the key proteins of serotonin system in SSRI antidepressants efficacy, Expert. Opin. Ther. Targets, 22, 319-330, doi: 10.1080/14728222.2018.1452912.
  3. Vahid-Ansari, F., Zhang, M., Zahrai, A., and Albert, P. R. (2019) Overcoming resistance to selective serotonin reuptake inhibitors: targeting serotonin, serotonin-1A receptors and adult neuroplasticity, Front. Neurosci., 13, 404, doi: 10.3389/fnins.2019.00404.
  4. Popova, N. K., Tsybko, A. S., and Naumenko, V. S. (2022) The implication of 5-HT receptor family members in aggression, depression and suicide: similarity and difference, Int. J. Mol. Sci., 23, 8814, doi: 10.3390/ijms23158814.
  5. Alex, K. D., and Pehek, E. A. (2007) Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission, Pharmacol. Ther., 113, 296-320, doi: 10.1016/j.pharmthera.2006.08.004.
  6. Wyskiel, D. R., and Andrade, R. (2016) Serotonin excites hippocampal CA1 GABAergic interneurons at the stratum radiatum-stratum lacunosum moleculare border, Hippocampus, 26, 1107-1114, doi: 10.1002/hipo.22611.
  7. Sharp, T., Boothman, L., Raley, J., and Quérée, P. (2007) Important messages in the "post": recent discoveries in 5-HT neurone feedback control, Trends Pharmacol. Sci., 28, 629-636, doi: 10.1016/j.tips.2007.10.009.
  8. Berg, K. A., Harvey, J. A., Spampinato, U., and Clarke, W. P. (2008) Physiological and therapeutic relevance of constitutive activity of 5-HT 2A and 5-HT 2C receptors for the treatment of depression, Prog. Brain Res., 172, 287-305, doi: 10.1016/S0079-6123(08)00914-X.
  9. Van Oekelen, D., Luyten, W. H. M. L., and Leysen, J. E. (2003) 5-HT2A and 5-HT2C receptors and their atypical regulation properties, Life Sci., 72, 2429-2449, doi: 10.1016/s0024-3205(03)00141-3.
  10. Aloyo, V. J., Berg, K. A., Spampinato, U., Clarke, W. P., and Harvey, J. A. (2009) Current status of inverse agonism at serotonin2A (5-HT2A) and 5-HT2C receptors, Pharmacol. Ther., 121, 160-173, doi: 10.1016/j.pharmthera.2008.10.010.
  11. Moutkine, I., Quentin, E., Guiard, B. P., Maroteaux, L., and Doly, S. (2017) Heterodimers of serotonin receptor subtypes 2 are driven by 5-HT2C protomers, J. Biol. Chem., 292, 6352-6368, doi: 10.1074/jbc.M117.779041.
  12. Lukasiewicz, S., Polit, A., Kędracka-Krok, S., Wędzony, K., Maćkowiak, M., and Dziedzicka-Wasylewska, M. (2010) Hetero-dimerization of serotonin 5-HT2A and dopamine D(2) receptors, Biochim. Biophys. Acta, 1803, 1347-1358, doi: 10.1016/j.bbamcr.2010.08.010.
  13. Moreno, J. L., Muguruza, C., Umali, A., Mortillo, S., Holloway, T., Pilar-Cuéllar, F., Mocci, G., Seto, J., Callado, L. F., Neve, R. L., Milligan, G., Sealfon, S. C., López-Giménez, J. F., Meana, J. J., Benson, D. L., and González-Maeso, J. (2012) Identification of three residues essential for 5-hydroxytryptamine 2A-metabotropic glutamate 2 (5-HT2A·mGlu2) receptor heteromerization and its psychoactive behavioral function, J. Biol. Chem., 287, 44301-44319, doi: 10.1074/jbc.M112.413161.
  14. Naumenko, V. S., Bazovkina, D. V., and Kondaurova, E. M. (2015) On the functional cross-talk between brain 5-HT1A and 5-HT2A receptors [in Russian], Zhurn. Vyssh. Nerv. Deyat. Im I. P. Pavlova, 65, 240-247.
  15. Borroto-Escuela, D. O., Li, X., Tarakanov, A. O., Savelli, D., Narváez, M., Shumilov, K., Andrade-Talavera, Y., Jimenez-Beristain, A., Pomierny, B., Díaz-Cabiale, Z., Cuppini, R., Ambrogini, P., Lindskog, M., and Fuxe, K. (2017) Existence of brain 5-HT1A-5-HT2A isoreceptor complexes with antagonistic allosteric receptor-receptor interactions regulating 5-HT1A receptor recognition, ACS Omega, 2, 4779-4789, doi: 10.1021/acsomega.7b00629.
  16. Szlachta, M., Kuśmider, M., Pabian, P., Solich, J., Kolasa, M., Żurawek, D., Dziedzicka-Wasylewska, M., and Faron-Górecka, A. (2018) Repeated clozapine increases the level of serotonin 5-HT1AR heterodimerization with 5-HT2A or dopamine D(2) receptors in the mouse cortex, Front. Mol. Neurosci., 11, 40, doi: 10.3389/fnmol.2018.00040.
  17. Wan, Y.-S., Zhai, X.-J., Tan, H.-A., Ai, Y. S., and Zhao, L. B. (2021) Associations between the 1438A/G, 102T/C, and rs7997012G/A polymorphisms of HTR2A and the safety and efficacy of antidepressants in depression: a meta-analysis, Pharmacogenomics J., 21, 200-215, doi: 10.1038/s41397-020-00197-2.
  18. Baeken, C., De Raedt, R., and Bossuyt, A. (2012) Is treatment-resistance in unipolar melancholic depression characterized by decreased serotonin2A receptors in the dorsal prefrontal - anterior cingulate cortex? Neuropharmacology, 62, 340-346, doi: 10.1016/j.neuropharm.2011.07.043.
  19. Vadodaria, K. C., Ji, Y., Skime, M., Paquola, A., Nelson, T., Hall-Flavin, D., Fredlender, C., Heard, K. J., Deng, Y., Le, A. T., Dave, S., Fung, L., Li, X., Marchetto, M. C., Weinshilboum, R., and Gage, F. H. (2019) Serotonin-induced hyperactivity in SSRI-resistant major depressive disorder patient-derived neurons, Mol. Psychiatry, 24, 795-807, doi: 10.1038/s41380-019-0363-y.
  20. Leysen, J. E. (2004) 5-HT2 receptors, Curr. Drug Targets CNS Neurol. Disord., 3, 11-26, doi: 10.2174/1568007043482598.
  21. Celada, P., Puig, M., Amargós-Bosch, M., Adell, A., and Artigas, F. (2004) The therapeutic role of 5-HT1A and 5-HT2A receptors in depression, J. Psychiatry Neurosci., 29, 252-265.
  22. Marek, G. J., Martin-Ruiz, R., Abo, A., and Artigas, F. (2005) The selective 5-HT2A receptor antagonist M100907 enhances antidepressant-like behavioral effects of the SSRI fluoxetine, Neuropsychopharmacology, 30, 2205-2215, doi: 10.1038/sj.npp.1300762.
  23. Pehek, E. A., Nocjar, C., Roth, B. L., Byrd, T. A., and Mabrouk, O. S. (2006) Evidence for the preferential involvement of 5-HT2A serotonin receptors in stress- and drug-induced dopamine release in the rat medial prefrontal cortex, Neuropsychopharmacology, 31, 265-277, doi: 10.1038/sj.npp.1300819.
  24. Mestre, T. A., Zurowski, M., and Fox, S. H. (2013) 5-Hydroxytryptamine2A receptor antagonists as potential treatment for psychiatric disorders, Expert Opin. Investig. Drugs, 22, 411-421, doi: 10.1517/13543784.2013.769957.
  25. McIntyre, R. S., Soczynska, J. K., Woldeyohannes, H. O., Alsuwaidan, M., and Konarski, J. Z. (2007) A preclinical and clinical rationale for quetiapine in mood syndromes, Expert Opin. Pharmacother., 8, 1211-1219, doi: 10.1517/14656566.8.9.1211.
  26. Sanford, M., and Keating, G. M. (2012) Quetiapine: a review of its use in the management of bipolar depression, CNS Drugs, 26, 435-460, doi: 10.2165/11203840-000000000-00000.
  27. Wright, B. M., Eiland, E. H. 3rd, and Lorenz, R. (2013) Augmentation with atypical antipsychotics for depression: a review of evidence-based support from the medical literature, Pharmacotherapy, 33, 344-359, doi: 10.1002/phar.1204.
  28. Miranda, A. S., de Moreira, F. A., and Teixeira, A. L. (2017) The preclinical discovery and development of quetiapine for the treatment of mania and depression, Expert Opin. Drug Discov., 12, 525-535, doi: 10.1080/17460441.2017.1304378.
  29. Kulikova, E. A., Bazovkina, D. V., Akulov, A. E., Tsybko, A. S., Fursenko, D. V., Kulikov, A. V., Naumenko, V. S., Ponimaskin, E., and Kondaurova, E. M. (2016) Alterations in pharmacological and behavioural responses in recombinant mouse line with an increased predisposition to catalepsy: role of the 5-HT1A receptor, Br. J. Pharmacol., 13, 2147-2161, doi: 10.1111/bph.13484.
  30. Kondaurova, E. M., Rodnyy, A. Y., Ilchibaeva, T. V., Tsybko, A. S., Eremin, D. V., Antonov, Y. V., Popova, N. K., and Naumenko, V. S. (2020) Genetic background underlying 5-HT1A receptor functioning affects the response to fluoxetine, Int. J. Mol. Sci., 21, doi: 10.3390/ijms21228784.
  31. Kulikova, E. A., Bazovkina, D. V., Antonov, Y. V., Akulov, A. E., Kulikov, A. V., and Kondaurova, E. M. (2017) Alteration of the brain morphology and the response to the acute stress in the recombinant mouse lines with different predisposition to catalepsy, Neurosci. Res., 117, 14-21, doi: 10.1016/j.neures.2016.11.009.
  32. Hervig, M. E.-S., Jensen, N. C. H., Rasmussen, N. B., Rydbirk, R., Olesen, M. V., Hay-Schmidt, A., Pakkenberg, B., and Aznar, S. (2017) Involvement of serotonin 2A receptor activation in modulating medial prefrontal cortex and amygdala neuronal activation during novelty-exposure, Behav. Brain Res., 326, 1-12, doi: 10.1016/j.bbr.2017.02.050.
  33. Balasubramaniam, G., Lee, H. S., and Mah, S. C. (1993) Differences in the acute and chronic antihypertensive mechanism of action of ketanserin in spontaneously hypertensive rats, J. Pharmacol. Exp. Ther., 264, 129-134.
  34. Hjorth, S. (1985) Hypothermia in the rat induced by the potent serotoninergic agent 8-OH-DPAT, J. Neural Transm., 61, 131-135, doi: 10.1007/BF01253058.
  35. O'Connell, M. T., and Curzon, G. (1996) A comparison of the effects of 8-OH-DPAT pretreatment of different behavioural responses to 8-OH-DPAT, Eur. J. Pharmacol., 312, 137-143, doi: 10.1016/0014-2999(96)00496-7.
  36. Popova, N. K., Naumenko, V. S., Cybko, A. S., and Bazovkina, D. V. (2010) Receptor-genes cross-talk: effect of chronic 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino) tetralin treatment on the expression of key genes in brain serotonin system and on behavior, Neuroscience, 169, 229-235, doi: 10.1016/j.neuroscience.2010.04.044.
  37. Buchborn, T., Lyons, T., and Knöpfel, T. (2018) Tolerance and tachyphylaxis to head twitches induced by the 5-HT2A agonist 25CN-NBOH in mice, Front. Pharmacol., 9, 17, doi: 10.3389/fphar.2018.00017.
  38. Tsybko, A. S., Ilchibaeva, T. V., Filimonova, E. A., Eremin, D. V., Popova, N. K., and Naumenko, V. S. (2020) The chronic treatment with 5-HT2A receptor agonists affects the behavior and the BDNF system in mice, Neurochem. Res., 12, 3059-3075, doi: 10.1007/s11064-020-03153-5.
  39. Kulikov, A. V., Tikhonova, M. A., and Kulikov, V. A. (2008) Automated measurement of spatial preference in the open field test with transmitted lighting, J. Neurosci. Methods, 170, 345-351, doi: 10.1016/j.jneumeth.2008.01.024.
  40. Khotskin, N. V., Plyusnina, A. V., Kulikova, E. A., Bazhenova, E. Y., Fursenko, D. V., Sorokin, I. E., Kolotygin, I., Mormede, P., Terenina, E. E., Shevelev, O. B., and Kulikov, A. V. (2019) On association of the lethal yellow (A(Y)) mutation in the agouti gene with the alterations in mouse brain and behavior, Behav. Brain Res., 359, 446-456, doi: 10.1016/j.bbr.2018.11.013.
  41. Kulikov, A. V., Morozova, M. V., Kulikov, V. A., Kirichuk, V. S., and Popova, N. K. (2010) Automated analysis of antidepressants' effect in the forced swim test, J. Neurosci. Methods, 191, 26-31, doi: 10.1016/j.jneumeth.2010.06.002.
  42. Kulikov, A. V., Naumenko, V. S., Voronova, I. P., Tikhonova, M. A., and Popova, N. K. (2005) Quantitative RT-PCR assay of 5-HT1A and 5-HT2A serotonin receptor mRNAs using genomic DNA as an external standard, J. Neurosci. Methods, 141, 97-101, doi: 10.1016/j.jneumeth.2004.06.005.
  43. Naumenko, V. S., and Kulikov, A. V. (2006) Quantitative assay of 5-HT1A serotonin receptor gene expression in the brain, Mol. Biol. (Mosk.), 40, 30-36, doi: 10.1134/S0026893306010067.
  44. Naumenko, V. S., Osipova, D. V., Kostina, E. V., and Kulikov, A. V. (2008) Utilization of a two-standard system in real-time PCR for quantification of gene expression in the brain, J. Neurosci. Methods, 170, 197-203, doi: 10.1016/j.jneumeth.2008.01.008.
  45. Carr, G. V., and Lucki, I. (2011) The role of serotonin receptor subtypes in treating depression: a review of animal studies, Psychopharmacology, 213, 265-287, doi: 10.1007/s00213-010-2097-z.
  46. Muguruza, C., Miranda-Azpiazu, P., Díez-Alarcia, R., Morentin, B., González-Maeso, J., Callado, L. F., and Meana, J. J. (2014) Evaluation of 5-HT2A and mGlu2/3 receptors in postmortem prefrontal cortex of subjects with major depressive disorder: effect of antidepressant treatment, Neuropharmacology, 86, 311-318, doi: 10.1016/j.neuropharm.2014.08.009.
  47. Guiard, B. P., and Di Giovanni, G. (2015) Central serotonin2A (5-HT2A) receptor dysfunction in depression and epilepsy: the missing link? Front. Pharmacol., 6, 46, doi: 10.3389/fphar.2015.00046.
  48. Rajkumar, R., Pandey, D. K., Mahesh, R., and Radha, R. (2009) 1-(m-Chlorophenyl)piperazine induces depressogenic-like behaviour in rodents by stimulating the neuronal 5-HT2A receptors: proposal of a modified rodent antidepressant assay, Eur. J. Pharmacol., 608, 32-41, doi: 10.1016/j.ejphar.2009.02.041.
  49. Pilar-Cuéllar, F., Vidal, R., and Pazos, A. (2012) Subchronic treatment with fluoxetine and ketanserin increases hippocampal brain-derived neurotrophic factor, β-catenin and antidepressant-like effects, Br. J. Pharmacol., 165, 1046-1057, doi: 10.1111/j.1476-5381.2011.01516.x.
  50. Pandey, D. K., Bhatt, S., Jindal, A., and Gautam, B. (2014) Effect of combination of ketanserin and escitalopram on behavioral anomalies after olfactory bulbectomy: prediction of quick onset of antidepressant action, Indian J. Pharmacol., 46, 639-643, doi: 10.4103/0253-7613.144935.
  51. Yadav, P. N., Kroeze, W. K., Farrell, M. S., and Roth, B. L. (2011) Antagonist functional selectivity: 5-HT2A serotonin receptor antagonists differentially regulate 5-HT2A receptor protein level in vivo, J. Pharmacol. Exp. Ther., 339, 99-105, doi: 10.1124/jpet.111.183780.
  52. Yamauchi, M., Miyara, T., Matsushima, T., and Imanishi, T. (2006) Desensitization of 5-HT2A receptor function by chronic administration of selective serotonin reuptake inhibitors, Brain Res., 1067, 164-169, doi: 10.1016/j.brainres.2005.10.075.
  53. Popova, N. K., and Naumenko, V. S. (2013) 5-HT1A receptor as a key player in the brain 5-HT system, Rev. Neurosci., 24, 191-204, doi: 10.1515/revneuro-2012-0082.
  54. Dygalo, N. N., Shishkina, G. T., Kalinina, T. S., Yudina, A. M., and Ovchinnikova, E. S. (2006) Effect of repeated treatment with fluoxetine on tryptophan hydroxylase-2 gene expression in the rat brainstem, Pharmacol. Biochem. Behav., 85, 220-227, doi: 10.1016/j.pbb.2006.08.004.
  55. Shishkina, G. T., Kalinina, T. S., and Dygalo, N. N. (2007) Up-regulation of tryptophan hydroxylase-2 mRNA in the rat brain by chronic fluoxetine treatment correlates with its antidepressant effect, Neuroscience, 150, 404-412, doi: 10.1016/j.neuroscience.2007.09.017.
  56. Bond, C. M., Johnson, J. C., Chaudhary, V., McCarthy, E. M., McWhorter, M. L., and Woehrle, N. S. (2020) Perinatal fluoxetine exposure results in social deficits and reduced monoamine oxidase gene expression in mice, Brain Res., 1727, 146282, doi: 10.1016/j.brainres.2019.06.001.
  57. Martín-Ruiz, R., Puig, M. V., Celada, P., Shapiro, D. A., Roth, B. L., Mengod, G., and Artigas, F. (2001) Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism, J. Neurosci., 21, 9856-9866, doi: 10.1523/JNEUROSCI.21-24-09856.2001.
  58. Boothman, L. J., Allers, K. A., Rasmussen, K., and Sharp, T. (2003) Evidence that central 5-HT2A and 5-HT2B/C receptors regulate 5-HT cell firing in the dorsal raphe nucleus of the anaesthetised rat, Br. J. Pharmacol., 139, 998-1004, doi: 10.1038/sj.bjp.0705328.
  59. Liu, R., Jolas, T., and Aghajanian, G. (2000) Serotonin 5-HT(2) receptors activate local GABA inhibitory inputs to serotonergic neurons of the dorsal raphe nucleus, Brain Res, 873, 34-45, doi: 10.1016/s0006-8993(00)02468-9.
  60. Naumenko, V. S., Tsybko, A. S., Bazovkina, D. V., and Popova, N. K. (2012) Involvement of 5-HT2A receptors in genetic mechanisms of autoregulation of brain 5-HT system, Mol. Biol., 46, 416-422, doi: 10.1134/S0026893312020100.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies