The role of microRNA in the regulation of cellular responses to hypoxia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The impact of hypoxia causes changes in the transcription of genes that contribute to the adaptation of cells to a lack of oxygen. The main mechanism regulating the cellular response to hypoxia is the activation of a group of transcription factors of the HIF (Hypoxia-Inducible Factor) family, which include several isoforms and control the expression of more than a thousand genes. HIF activity is regulated at various levels, including by small non-coding RNA molecules called microRNAs (miRNAs). miRNAs regulate the cellular response to hypoxia by influencing the activation of HIF, its degradation, and the translation of proteins dependent on it. At the same time, HIF also affects miRNA biogenesis. Data on the relationship of a particular HIF isoform with miRNA are contradictory, since studies are performed using different cell lines, different types of experimental animals and clinical material, as well as at different oxygen concentrations and different durations of hypoxic exposure. In addition, HIF expression may be affected by the initial resistance of organisms to lack of oxygen, which is not taken into account in studies. This review analyzes data on the effect of hypoxia on the biogenesis and functioning of miRNAs, as well as the effect of microRNAs on mRNAs of genes involved in adaptation to oxygen deficiency. Understanding the mechanisms of the relationship between HIF, hypoxia, and miRNA is necessary to develop new approaches to personalized therapy for diseases accompanied by oxygen deficiency.

Keywords

About the authors

M. V Silina

Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery

Email: marusyasilina99@yandex.ru
117418 Moscow, Russia

D. Sh Dzhalilova

Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery

117418 Moscow, Russia

O. V Makarova

Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery;Faculty of Biology, Lomonosov Moscow State University

117418 Moscow, Russia;119234 Moscow, Russia

References

  1. Semenza, G. L., and Wang, G. L. (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation, Mol. Cell. Biol., 12, 5447-5454, doi: 10.1128/mcb.12.12.5447-5454.1992.
  2. Kaelin, W. G., and Ratcliffe, P. J. (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway, Mol. Cell, 30, 393-402, doi: 10.1016/j.molcel.2008.04.009.
  3. Semenza, G. L. (2010) Oxygen homeostasis, WIREs Syst. Biol. Med., 2, 336-361, doi: 10.1002/wsbm.69.
  4. Hirota, K. (2020) Basic biology of hypoxic responses mediated by the transcription factor HIFs and its implication for medicine, Biomedicines, 8, 32, doi: 10.3390/biomedicines8020032.
  5. Rius, J., Guma, M., Schachtrup, C., Akassoglou, K., Zinkernagel, A. S., Nizet, V., Johnson, R. S., Haddad, G. G., and Karin, M. (2008) NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha, Nature, 453, 807-811, doi: 10.1038/NATURE06905.
  6. Kosyreva, A. M., Dzhalilova, D. S., Makarova, O. V., Tsvetkov, I. S., Zolotova, N. A., Diatroptova, M. A., Ponomarenko, E. A., Mkhitarov, V. A., Khochanskiy, D. N., and Mikhailova, L. P. (2020) Sex differences of inflammatory and immune response in pups of Wistar rats with SIRS, Sci. Rep., 10, 15884, doi: 10.1038/s41598-020-72537-y.
  7. Dzhalilova, D., Kosyreva, A., Vishnyakova, P., Zolotova, N., Tsvetkov, I., Mkhitarov, V., Mikhailova, L., Kakturskiy, L., and Makarova, O. (2021) Age-related differences in hypoxia-associated genes and cytokine profile in male Wistar rats, Heliyon, 7, e08085, doi: 10.1016/j.heliyon.2021.e08085.
  8. Kirova, Y. I., Germanova, E. L., and Lukyanova, L. D. (2013) Phenotypic features of the dynamics of HIF-1α levels in rat neocortex in different hypoxia regimens, Bull. Exp. Biol. Med., 154, 718-722, doi: 10.1007/S10517-013-2038-Z.
  9. Dzhalilova, D. S., Kosyreva, A. M., Diatroptov, M. E., Ponomarenko, E. A., Tsvetkov, I. S., Zolotova, N. A., Mkhitarov, V. A., Khochanskiy, D. N., and Makarova, O. V. (2019) Dependence of the severity of the systemic inflammatory response on resistance to hypoxia in male Wistar rats, J. Inflamm. Res., 12, 73-86, doi: 10.2147/JIR.S194581.
  10. Dzhalilova, D. S., Kosyreva, A. M., Diatroptov, M. E., Zolotova, N. A., Tsvetkov, I. S., Mkhitarov, V. A., Makarova, O. V., and Khochanskiy, D. N. (2019) Morphological characteristics of the thymus and spleen and the subpopulation composition of lymphocytes in peripheral blood during systemic inflammatory response in male rats with different resistance to hypoxia, Int. J. Inflam., 1, 7584685, doi: 10.1155/2019/7584685.
  11. Dzhalilova, D. Sh., Zolotova, N. A., Polyakova, M. A., Diatroptov, M. E., Dobrynina, M. T., and Makarova, O. V. (2018) Morphological features of the inflammatory process and subpopulation pattern of peripheral blood lymphocytes during chronic colitis in mice exhibiting different responses to hypoxia [in Russian], Clin. Exp. Morphol., 28, 13-20, doi: 10.31088/2226-5988-2018-28-4-13-20.
  12. Dzhalilova, D. Sh., Polyakova, M. A., Diatroptov, M. E., Zolotova, N. A., and Makarova, O. V. (2018) Morphological changes in the colon and composition of peripheral blood lymphocytes in acute colitis in mice with different resistance to hypoxia [in Russian], Mol. Med., 16, 46-50, doi: 10.29296/24999490-2018-06-08.
  13. Lytle, J. R., Yario, T. A., and Steitz, J. A. (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR, Proc. Natl. Acad. Sci. USA, 104, 9667-9672, doi: 10.1073/pnas.0703820104.
  14. Burtscher, J., Mallet, R. T., Burtscher, M., and Millet, G. P. (2021) Hypoxia and brain aging: Neurodegeneration or neuroprotection? Ageing Res. Rev., 68, 101343, doi: 10.1016/j.arr.2021.101343.
  15. Semenza, G. L. (2012) Hypoxia-inducible factors in physiology and medicine, Cell, 148, 399-408, doi: 10.1016/j.cell.2012.01.021.
  16. Ledent, V., and Vervoort, M. (2001) The basic helix-loop-helix protein family: Comparative genomics and phylogenetic analysis, Genome Res., 11, 754-770, doi: 10.1101/gr.177001.
  17. Hu, C.-J., Sataur, A., Wang, L., Chen, H., and Simon, M. C. (2007) The N-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1α and HIF-2α, Mol. Biol. Cell, 18, 4528-4542, doi: 10.1091/mbc.e06-05-0419.
  18. Ema, M. (1999) Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300, EMBO J., 18, 1905-1914, doi: 10.1093/emboj/18.7.1905.
  19. Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., Gaskell, S. J., von Kriegsheim, A., Hebestreit, H. F., Mukherji, M., Schofield, C. J., Maxwell, P. H., Pugh, C. W., and Ratcliffe, P. J. (2001) Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation, Science, 292, 468-472, doi: 10.1126/science.1059796.
  20. Haase, V. H. (2017) HIF-prolyl hydroxylases as therapeutic targets in erythropoiesis and iron metabolism, Hemodial. Int., 21, S110-S124, doi: 10.1111/hdi.12567.
  21. Maxwell, P. H., Wlesener, M. S., Chang, G. W., Clifford, S. C., Vaux, E. C., Cockman, M. E., Wykoff, C. C., Pugh, C. W., Maher, E. R., and Ratcliffe, P. J. (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis, Nature, 399, 271-275, doi: 10.1038/20459.
  22. Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J. M., Lane, W. S., and Kaelin, W. G., Jr. (2001) HIFα targeted for VHL-Mediated destruction by proline hydroxylation: implications for O2 sensing, Science, 292, 464-468, doi: 10.1126/science.1059817.
  23. Van Uden, P., Kenneth, N. S., and Rocha, S. (2008) Regulation of hypoxia-inducible factor-1alpha by NF-kappaB, Biochem. J., 412, 477-484, doi: 10.1042/BJ20080476.
  24. Van Uden, P., Kenneth, N. S., Webster, R., Müller, H. A., Mudie, S., and Rocha, S. (2011) Evolutionary conserved regulation of HIF-1β by NF-κB, PLoS Genet., 7, e1001285, doi: 10.1371/JOURNAL.PGEN.1001285.
  25. Moniz, S., Biddlestone, J., and Rocha, S. (2014) Grow2: the HIF system, energy homeostasis and the cell cycle, Histol. Histopathol., 29, 589-600, doi: 10.14670/HH-29.10.589.
  26. Koyasu, S., Kobayashi, M., Goto, Y., Hiraoka, M., and Harada, H. (2018) Regulatory mechanisms of hypoxia-inducible factor 1 activity: two decades of knowledge, Cancer Sci., 109, 560-571, doi: 10.1111/CAS.13483.
  27. Treins, C., Giorgetti-Peraldi, S., Murdaca, J., Semenza, G. L., and van Obberghen, E. (2002) Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway, J. Biol. Chem., 277, 27975-27981, doi: 10.1074/JBC.M204152200.
  28. Dodd, K. M., Yang, J., Shen, M. H., Sampson, J. R., and Tee, A. R. (2015) mTORC1 drives HIF-1α and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3, Oncogene, 34, 2239-2250, doi: 10.1038/onc.2014.164.
  29. Masoud, G. N., and Li, W. (2015) HIF-1α pathway: role, regulation and intervention for cancer therapy, Acta Pharm. Sin. B, 5, 378-389, doi: 10.1016/J.APSB.2015.05.007.
  30. Cummins, E. P., Berra, E., Comerford, K. M., Ginouves, A., Fitzgerald, K. T., Seeballuck, F., Godson, C., Nielsen, J. E., Moynagh, P., Pouyssegur, J., and Taylor, C. T. (2006) Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity, Proc. Natl. Acad. Sci. USA, 103, 18154-18159, doi: 10.1073/PNAS.0602235103.
  31. Korbecki, J., Simińska, D., Gąssowska-Dobrowolska, M., Listos, J., Gutowska, I., Chlubek, D., and Baranowska-Bosiacka, I. (2021) Chronic and cycling hypoxia: drivers of cancer chronic inflammation through HIF-1 and NF-κB activation: a review of the molecular mechanisms, Int. J. Mol. Sci., 22, 10701, doi: 10.3390/IJMS221910701.
  32. Bandarra, D., Biddlestone, J., Mudie, S., Müller, H. A. J., and Rocha, S. (2015) HIF-1α restricts NF-κB-dependent gene expression to control innate immunity signals, Dis. Model. Mech., 8, 169-181, doi: 10.1242/DMM.017285.
  33. Chun, Y., and Kim, J. (2021) AMPK-mTOR signaling and cellular adaptations in hypoxia, Int. J. Mol. Sci., 22, 9765, doi: 10.3390/IJMS22189765.
  34. Inoki, K., Corradetti, M. N., and Guan, K. L. (2005) Dysregulation of the TSC-mTOR pathway in human disease, Nat. Genet., 37, 19-24, doi: 10.1038/ng1494.
  35. Kietzmann, T., Mennerich, D., and Dimova, E. Y. (2016) Hypoxia-inducible factors (HIFs) and phosphorylation: Impact on stability, localization, and transactivity, Front. Cell Dev. Biol., 4, 11, doi: 10.3389/fcell.2016.00011.
  36. Leaman, D., Po, Y. C., Fak, J., Yalcin, A., Pearce, M., Unnerstall, U., Marks, D. S., Sander, C., Tuschl, T., and Gaul, U. (2005) Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development, Cell, 121, 1097-1108, doi: 10.1016/j.cell.2005.04.016.
  37. Pocock, R. (2011) Invited review: decoding the microRNA response to hypoxia, Pflugers Arch., 461, 307-315, doi: 10.1007/s00424-010-0910-5.
  38. Ke, Q., and Costa, M. (2006) Hypoxia-inducible factor-1 (HIF-1), Mol. Pharmacol., 70, 1469-1480, doi: 10.1124/mol.106.027029.
  39. Tian, H., Hammer, R. E., Matsumoto, A. M., Russell, D. W., and McKnight, S. L. (1998) The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development, Genes Dev., 12, 3320-3324, doi: 10.1101/gad.12.21.3320.
  40. Appelhoffl, R. J., Tian, Y. M., Raval, R. R., Turley, H., Harris, A. L., Pugh, C. W., Ratcliffe, P. J., and Gleadle, J. M. (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor, J. Biol. Chem., 279, 38458-38465, doi: 10.1074/jbc.M406026200.
  41. Koivunen, P., Hirsilä, M., Günzler, V., Kivirikko, K. I., and Myllyharju, J. (2004) Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases, J. Biol. Chem., 279, 9899-9904, doi: 10.1074/jbc.M312254200.
  42. Befani, C., and Liakos, P. (2018) The role of hypoxia-inducible factor-2 alpha in angiogenesis, J. Cell. Physiol., 233, 9087-9098, doi: 10.1002/JCP.26805.
  43. Taylor, S. E., Bagnall, J., Mason, D., Levy, R., Fernig, D. G., and See, V. (2016) Differential sub-nuclear distribution of hypoxia-inducible factors (HIF)-1 and -2 alpha impacts on their stability and mobility, Open Biol., 6, 160195, doi: 10.1098/RSOB.160195.
  44. Duan, C. (2016) Hypoxia-inducible factor 3 biology: complexities and emerging themes, Am. J. Physiol. Cell Physiol., 310, C260-C269, doi: 10.1152/ajpcell.00315.2015.
  45. Ravenna, L., Salvatori, L., and Russo, M. A. (2016) HIF3α: the little we know, FEBS J., 283, 993-1003, doi: 10.1111/febs.13572.
  46. Pasanen, A., Heikkilä, M., Rautavuoma, K., Hirsilä, M., Kivirikko, K. I., and Myllyharju, J. (2010) Hypoxia-inducible factor (HIF)-3alpha is subject to extensive alternative splicing in human tissues and cancer cells and is regulated by HIF-1 but not HIF-2, Int. J. Biochem. Cell Biol., 42, 1189-1200, doi: 10.1016/J.BIOCEL.2010.04.008.
  47. Maynard, M. A., Qi, H., Chung, J., Lee, E. H. L., Kondo, Y., Hara, S., Conaway, R. C., Conaway, J. W., and Ohh, M. (2003) Multiple splice variants of the human HIF-3α locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex, J. Biol. Chem., 278, 11032-11040, doi: 10.1074/jbc.M208681200.
  48. Loboda, A., Jozkowicz, A., and Dulak, J. (2010) HIF-1 and HIF-2 transcription factors -similar but not identical, Mol. Cells, 29, 435-442, doi: 10.1007/S10059-010-0067-2.
  49. Kalinowski, L., Janaszak-Jasiecka, A., Siekierzycka, A., Bartoszewska, S., Woźniak, M., Lejnowski, D., Collawn, J. F., and Bartoszewski, R. (2016) Posttranscriptional and transcriptional regulation of endothelial nitric-oxide synthase during hypoxia: the role of microRNAs, Cell. Mol. Biol. Lett., 21, 16, doi: 10.1186/S11658-016-0017-X.
  50. Keith, B., Johnson, R. S., and Simon, M. C. (2011) HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression, Nat. Rev. Cancer, 12, 9-22, doi: 10.1038/NRC3183.
  51. Koh, M. Y., and Powis, G. (2012) Passing the baton: the HIF switch, Trends Biochem. Sci., 37, 364-372, doi: 10.1016/J.TIBS.2012.06.004.
  52. Heikkilä, M., Pasanen, A., Kivirikko, K. I., and Myllyharju, J. (2011) Roles of the human hypoxia-inducible factor (HIF)-3α variants in the hypoxia response, Cell. Mol. Life Sci., 68, 3885-3901, doi: 10.1007/s00018-011-0679-5.
  53. Serocki, M., Bartoszewska, S., Janaszak-Jasiecka, A., Ochocka, R. J., Collawn, J. F., and Bartoszewski, R. (2018) miRNAs regulate the HIF switch during hypoxia: a novel therapeutic target, Angiogenesis, 21, 183-202, doi: 10.1007/S10456-018-9600-2.
  54. Janaszak-Jasiecka, A., Bartoszewska, S., Kochan, K., Piotrowski, A., Kalinowski, L., Kamysz, W., Ochocka, R. J., Bartoszewski, R., and Collawn, J. F. (2016) MiR-429 regulates the transition between Hypoxia-inducible factor (HIF)1A and HIF3A expression in human endothelial cells, Sci. Rep., 6, 22775, doi: 10.1038/srep22775.
  55. Zhang, P., Yao, Q., Lu, L., Li, Y., Chen, P.-J., and Duan, C. (2014) Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia, Cell Rep., 6, 1110-1121, doi: 10.1016/j.celrep.2014.02.011.
  56. Jaśkiewicz, M., Moszyńska, A., Serocki, M., Króliczewski, J., Bartoszewska, S., Collawn, J. F., and Bartoszewski, R. (2022) Hypoxia-inducible factor (hif)-3α2 serves as an endothelial cell fate executor during chronic hypoxia, EXCLI J., 21, 454-469, doi: 10.17179/excli2021-4622.
  57. Moszyńska, A., Jaśkiewicz, M., Serocki, M., Cabaj, A., Crossman, D. K., Bartoszewska, S., Gebert, M., Dąbrowski, M., Collawn, J. F., and Bartoszewski, R. (2022) The hypoxia-induced changes in miRNA-mRNA in RNA-induced silencing complexes and HIF-2 induced miRNAs in human endothelial cells, FASEB J., 36, e22412, doi: 10.1096/fj.202101987R.
  58. Bhaskaran, M., and Mohan, M. (2014) MicroRNAs: history, biogenesis, and their evolving role in animal development and disease, Vet. Pathol., 51, 759-774, doi: 10.1177/0300985813502820.
  59. Nguyen, H. M., Nguyen, T. D., Nguyen, T. L., and Nguyen, T. A. (2019) Orientation of human microprocessor on primary microRNAs, Biochemistry, 58, 189-198, doi: 10.1021/acs.biochem.8b00944.
  60. Lund, E., Güttinger, S., Calado, A., Dahlberg, J. E., and Kutay, U. (2004) Nuclear export of microRNA precursors, Science, 303, 95-98, doi: 10.1126/science.1090599.
  61. Bartel, D. P. (2018) Metazoan microRNAs, Cell, 173, 20-51, doi: 10.1016/j.cell.2018.03.006.
  62. Kalla, R., Ventham, N. T., Kennedy, N. A., Quintana, J. F., Nimmo, E. R., Buck, A. H., and Satsangi, J. (2015) MicroRNAs: new players in IBD, Gut, 64, 504-513, doi: 10.1136/gutjnl-2014-307891.
  63. Ambros, V., Bartel, B., Bartel, D. P., Burge, C. B., Carrington, J. C., Chen, X., Dreyfuss, G., Eddy, S. R., Griffiths-Jones, S., Marshall, M., Matzke, M., Ruvkun, G., and Tuschl, T. (2003) A uniform system for microRNA annotation, RNA, 9, 277-279, doi: 10.1261/RNA.2183803.
  64. Griffiths-Jones, S. (2004) The microRNA registry, Nucleic Acids Res., 32, D109-D111, doi: 10.1093/NAR/GKH023.
  65. Zaporozhchenko, I. A., Rykova, E. Y., and Laktionov, P. P. (2020) The fundamentals of miRNA biology: structure, biogenesis, and regulatory functions, Russ. J. Bioorg. Chem., 46, 1-13, doi: 10.1134/S106816202001015X.
  66. Brosnan, C. A., Palmer, A. J., and Zuryn, S. (2021) Cell-type-specific profiling of loaded miRNAs from Caenorhabditis elegans reveals spatial and temporal flexibility in Argonaute loading, Nat. Commun., 12, 2194, doi: 10.1038/s41467-021-22503-7.
  67. Selbach, M., Schwanhäusser, B., Thierfelder, N., Fang, Z., Khanin, R., and Rajewsky, N. (2008) Widespread changes in protein synthesis induced by microRNAs, Nature, 455, 58-63, doi: 10.1038/nature07228.
  68. Froehlich, J. J., Uyar, B., Herzog, M., Theil, K., Glažar, P., Akalin, A., and Rajewsky, N. (2021) Parallel genetics of regulatory sequences using scalable genome editing in vivo, Cell Rep., 35, 108988, doi: 10.1016/j.celrep.2021.108988.
  69. Peng, X., Gao, H., Xu, R., Wang, H., Mei, J., and Liu, C. (2020) The interplay between HIF-1α and noncoding RNAs in cancer, J. Exp. Clin. Cancer Res., 39, 27, doi: 10.1186/S13046-020-1535-Y.
  70. Camps, C., Saini, H. K., Mole, D. R., Choudhry, H., Reczko, M., Guerra-Assunção, J. A., Tian, Y. M., Buffa, F. M., Harris, A. L., Hatzigeorgiou, A. G., Enright, A. J., and Ragoussis, J. (2014) Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia, Mol. Cancer, 13, 28, doi: 10.1186/1476-4598-13-28.
  71. Xiong, G., Stewart, R. L., Chen, J., Gao, T., Scott, T. L., Samayoa, L. M., O'Connor, K., Lane, A. N., and Xu, R. (2018) Collagen prolyl 4-hydroxylase 1 is essential for HIF-1α stabilization and TNBC chemoresistance, Nat. Commun., 9, 4456, doi: 10.1038/S41467-018-06893-9.
  72. Dzhalilova, D. Sh., and Makarova, O. V. (2021) HIF-Dependent mechanisms of relationship between hypoxia tolerance and tumor development, Biochemistry (Moscow), 86, 1163-1180, doi: 10.1134/S0006297921100011.
  73. Martinez, S. R., Ma, Q., Dasgupta, C., Meng, X., and Zhang, L. (2017) MicroRNA-210 suppresses glucocorticoid receptor expression in response to hypoxia in fetal rat cardiomyocytes, Oncotarget, 8, 80249, doi: 10.18632/ONCOTARGET.17801.
  74. Fasanaro, P., D'Alessandra, Y., di Stefano, V., Melchionna, R., Romani, S., Pompilio, G., Capogrossi, M. C., and Martelli, F. (2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand ephrin-A3, J. Biol. Chem., 283, 15878-15883, doi: 10.1074/jbc.M800731200.
  75. Yang, Y., Gu, J., Li, X., Xue, C., Ba, L., Gao, Y., Zhou, J., Bai, C., Sun, Z., and Zhao, R. C. (2021) HIF-1α promotes the migration and invasion of cancer-associated fibroblasts by miR-210, Aging Dis., 12, 1794, doi: 10.14336/AD.2021.0315.
  76. Camps, C., Buffa, F. M., Colella, S., Moore, J., Sotiriou, C., Sheldon, H., Harris, A. L., Gleadle, J. M., and Ragoussis, J. (2008) hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer, Clin. Cancer Res., 14, 1340-1348, doi: 10.1158/1078-0432.CCR-07-1755.
  77. Ju, C., Wang, M., Tak, E., Kim, B., Emontzpohl, C., Yang, Y., Yuan, X., Kutay, H., Liang, Y., Hall, D. R., Dar, W. A., Bynon, J. S., Carmeliet, P., Ghoshal, K., and Eltzschig, H. K. (2021) Hypoxia-inducible factor-1α-dependent induction of miR122 enhances hepatic ischemia tolerance, J. Clin. Invest., 131, e140300, 140300-140300, doi: 10.1172/JCI140300.
  78. Coronel-Hernández, J., Delgado-Waldo, I., Cantú de León, D., López-Camarillo, C., Jacobo-Herrera, N., Ramos-Payán, R., and Pérez-Plasencia, C. (2022) HypoxaMIRs: key regulators of hallmarks of colorectal cancer, Cells, 11, 1895, doi: 10.3390/CELLS11121895.
  79. Ivanova, I. G., Park, C. V., and Kenneth, N. S. (2019) Translating the hypoxic response - the role of HIF protein translation in the cellular response to low oxygen, Cells, 8, 114, doi: 10.3390/CELLS8020114.
  80. Yamakuchi, M., Lotterman, C. D., Bao, C., Hruban, R. H., Karim, B., Mendell, J. T., Huso, D., and Lowenstein, C. J. (2010) P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis, Proc. Natl. Acad. Sci. USA, 107, 6334-6339, doi: 10.1073/pnas.0911082107.
  81. Cha, S. T., Chen, P. S., Johansson, G., Chu, C. Y., Wang, M. Y., Jeng, Y. M., Yu, S. L., Chen, J. S., Chang, K. J., Jee, S. H., Tan, C. T., Lin, M. T., and Kuo, M. L. (2010) MicroRNA-519c suppresses hypoxia-inducible factor-1alpha expression and tumor angiogenesis, Cancer Res., 70, 2675-2685, doi: 10.1158/0008-5472.CAN-09-2448.
  82. Ghosh, G., Subramanian, I. V., Adhikari, N., Zhang, X., Joshi, H. P., Basi, D., Chandrashekhar, Y. S., Hall, J. L., Roy, S., Zeng, Y., and Ramakrishnan, S. (2010) Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-α isoforms and promotes angiogenesis, J. Clin. Invest., 120, 4141-4154, doi: 10.1172/JCI42980.
  83. Chan, S. Y., Zhang, Y. Y., Hemann, C., Mahoney, C. E., Zweier, J. L., and Loscalzo, J. (2009) MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2, Cell Metab., 10, 273-284, doi: 10.1016/j.cmet.2009.08.015.
  84. Hui, X., Al-Ward, H., Shaher, F., Liu, C. Y., and Liu, N. (2020) The role of miR-210 in the biological system: a current overview, Hum. Hered., 84, 233-239, doi: 10.1159/000509280.
  85. Taguchi, A., Yanagisawa, K., Tanaka, M., Cao, K., Matsuyama, Y., Goto, H., and Takahashi, T. (2008) Identification of hypoxia-inducible factor-1A as a novel target for miR-17-92 microRNA cluster, Cancer Res., 68, 5540-5545, doi: 10.1158/0008-5472.CAN-07-6460.
  86. Yang, D., Wang, J., Xiao, M., Zhou, T., and Shi, X. (2016) Role of mir-155 in controlling HIF-1α level and promoting endothelial cell maturation, Sci. Rep., 6, 1-10, doi: 10.1038/srep35316.
  87. Li, Y., Su, J., Li, F., Chen, X., and Zhang, G. (2017) MiR-150 regulates human keratinocyte proliferation in hypoxic conditions through targeting HIF-1α and VEGFA: Implications for psoriasis treatment, PLoS One, 12, e0175459, doi: 10.1371/JOURNAL.PONE.0175459.
  88. Yang, B., Xu, Y., Hu, Y., Luo, Y., Lu, X., Tsui, C. K., Lu, L., and Liang, X. (2016) Madecassic acid protects against hypoxia-induced oxidative stress in retinal microvascular endothelial cells via ROS-mediated endoplasmic reticulum stress, Biomed. Pharmacother., 84, 845-852, doi: 10.1016/J.BIOPHA.2016.10.015.
  89. Liang, H., Xiao, J., Zhou, Z., Wu, J., Ge, F., Li, Z., Zhang, H., Sun, J., Li, F., Liu, R., and Chen, C. (2018) Hypoxia induces miR-153 through the IRE1α-XBP1 pathway to fine tune the HIF1α/VEGFA axis in breast cancer angiogenesis, Oncogene, 37, 1961-1975, doi: 10.1038/s41388-017-0089-8.
  90. Mathew, L. K., Lee, S. S., Skuli, N., Rao, S., Keith, B., Nathanson, K. L., Lal, P., and Simon, M. C. (2014) Restricted expression of miR-30c-2-3p and miR-30a-3p in clear cell renal cell carcinomas enhances HIF2α activity, Cancer Discov., 4, 53-60, doi: 10.1158/2159-8290.CD-13-0291.
  91. Zhang, H., Pu, J., Qi, T., Qi, M., Yang, C., Li, S., Huang, K., Zheng, L., and Tong, Q. (2012) MicroRNA-145 inhibits the growth, invasion, metastasis and angiogenesis of neuroblastoma cells through targeting hypoxia-inducible factor 2 alpha, Oncogene, 33, 387-397, doi: 10.1038/onc.2012.574.
  92. Bartoszewska, S., Kochan, K., Piotrowski, A., Kamysz, W., Ochocka, R. J., Collawn, J. F., and Bartoszewski, R. (2015) The hypoxia-inducible miR-429 regulates hypoxia-inducible factor-1α expression in human endothelial cells through a negative feedback loop, FASEB J., 29, 1467-1479, doi: 10.1096/fj.14-267054.
  93. Prives, C., and Hall, P. A. (1999) The p53 pathway, J. Pathol., 187, 112-126, doi: 10.1002/(SICI)1096-9896(199901)187:1<112::AID-PATH250>3.0.CO;2-3.
  94. Deng, B., Du, J., Hu, R., Wang, A. P., Wu, W. H., Hu, C. P., Li, Y. J., and Li, X. H. (2016) MicroRNA-103/107 is involved in hypoxia-induced proliferation of pulmonary arterial smooth muscle cells by targeting HIF-1β, Life Sci., 147, 117-124, doi: 10.1016/J.LFS.2016.01.043.
  95. Clifford, S. C., Astuti, D., Hooper, L., Maxwell, P. H., Ratcliffe, P. J., and Maher, E. R. (2001) The pVHL-associated SCF ubiquitin ligase complex: molecular genetic analysis of elongin B and C, Rbx1 and HIF-1α in renal cell carcinoma, Oncogene, 20, 5067-5074, doi: 10.1038/sj.onc.1204602.
  96. Mizuno, Y., Tokuzawa, Y., Ninomiya, Y., Yagi, K., Yatsuka-Kanesaki, Y., Suda, T., Fukuda, T., Katagiri, T., Kondoh, Y., Amemiya, T., Tashiro, H., and Okazaki, Y. (2009) miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b, FEBS Lett., 583, 2263-2268, doi: 10.1016/j.febslet.2009.06.006.
  97. Rouault, T. A., and Tong, W. H. (2008) Iron-sulfur cluster biogenesis and human disease, Trends Genet., 24, 398-407, doi: 10.1016/j.tig.2008.05.008.
  98. Virga, F., Cappellesso, F., Stijlemans, B., Henze, A. T., Trotta, R., Van Audenaerde, J., Mirchandani, A. S., Sanchez-Garcia, M. A., Vandewalle, J., Orso, F., Riera-Domingo, C., Griffa, A., Ivan, C., Smits, E., Laoui, D., Martelli, F., Langouche, L., Van den Berghe, G., Feron, O., Ghesquière, B., Prenen, H., Libert, C., Walmsley, S. R., Corbet, C., Van Ginderachter, J. A., Ivan, M., Taverna, D., and Mazzone, M. (2021) Macrophage miR-210 induction and metabolic reprogramming in response to pathogen interaction boost life-threatening inflammation, Sci. Adv., 7, eabf0466, doi: 10.1126/sciadv.abf0466.
  99. Del Mauro, J. S., Prince, P. D., Santander Plantamura, Y., Allo, M. A., Parola, L., Fernandez Machulsky, N., Morettón, M. A., Bin, E. P., González, G. E., Bertera, F. M., Carranza, A., Berg, G., Taira, C. A., Donato, M., Chiappetta, D. A., Polizio, A. H., and Höcht, C. (2021) Nebivolol is more effective than atenolol for blood pressure variability attenuation and target organ damage prevention in L-NAME hypertensive rats, Hypertens. Res., 44, 791-802, doi: 10.1038/s41440-021-00630-4.
  100. Powell, R. E., Tai, Y. Y., Kennedy, J. N., Seymour, C. W., and Chan, S. Y. (2022) Circulating hypoxia-dependent miR-210 is increased in clinical sepsis subtypes: A cohort study, J. Transl. Med., 20, 448, doi: 10.1186/s12967-022-03655-6.
  101. Alfaifi, J., Germain, A., Heba, A. C., Arnone, D., Gailly, L., Ndiaye, N. C., Viennois, E., Caron, B., Peyrin-Biroulet, L., and Dreumont, N. (2022) Deep dive into microRNAs in inflammatory bowel disease, Inflamm. Bowel Dis., doi: 10.1093/ibd/izac250.
  102. Paraskevi, A., Theodoropoulos, G., Papaconstantinou, I., Mantzaris, G., Nikiteas, N., and Gazouli, M. (2012) Circulating MicroRNA in inflammatory bowel disease, J. Crohns Colitis, 6, 900-904, doi: 10.1016/j.crohns.2012.02.006.
  103. Viennois, E., Zhao, Y., Han, M. K., Xiao, B., Zhang, M., Prasad, M., Wang, L., and Merlin, D. (2017) Serum miRNA signature diagnoses and discriminates murine colitis subtypes and predicts ulcerative colitis in humans, Sci. Rep., 7, 2520, doi: 10.1038/s41598-017-02782-1.
  104. Yan, Y., Kolachala, V., Dalmasso, G., Nguyen, H., Laroui, H., Sitaraman, S. V., and Merlin, D. (2009) Temporal and spatial analysis of clinical and molecular parameters in dextran sodium sulfate induced colitis, PLoS One, 4, e6073, doi: 10.1371/journal.pone.0006073.
  105. Vijay-Kumar, M., Sanders, C. J., Taylor, R. T., Kumar, A., Aitken, J. D., Sitaraman, S. V., Neish, A. S., Uematsu, S., Akira, S., Williams, I. R., and Gewirtz, A. T. (2007) Deletion of TLR5 results in spontaneous colitis in mice, J. Clin. Invest., 117, 3909-3921, doi: 10.1172/JCI33084.
  106. Kühn, R., Löhler, J., Rennick, D., Rajewsky, K., and Müller, W. (1993) Interleukin-10-deficient mice develop chronic enterocolitis, Cell, 75, 263-274, doi: 10.1016/0092-8674(93)80068-p.
  107. Schaefer, J. S., Attumi, T., Opekun, A. R., Abraham, B., Hou, J., Shelby, H., Graham, D. Y., Streckfus, C., and Klein, J. R. (2015) MicroRNA signatures differentiate Crohn's disease from ulcerative colitis, BMC Immunol., 16, 5, doi: 10.1186/s12865-015-0069-0.
  108. Takagi, T., Naito, Y., Mizushima, K., Hirata, I., Yagi, N., Tomatsuri, N., Ando, T., Oyamada, Y., Isozaki, Y., Hongo, H., Uchiyama, K., Handa, O., Kokura, S., Ichikawa, H., and Yoshikawa, T. (2010) Increased expression of microRNA in the inflamed colonic mucosa of patients with active ulcerative colitis, J. Gastroenterol. Hepatol., 25, S129-S133, doi: 10.1111/j.1440-1746.2009.06216.x.
  109. Bakirtzi, K., Hatziapostolou, M., Karagiannides, I., Polytarchou, C., Jaeger, S., Iliopoulos, D., and Pothoulakis, C. (2011) Neurotensin signaling activates microRNAs-21 and -155 and Akt, promotes tumor growth in mice, and is increased in human colon tumors, Gastroenterology, 141, 1749-1761, doi: 10.1053/j.gastro.2011.07.038.
  110. Temraz, S., Mukherji, D., Alameddine, R., and Shamseddine, A. (2014) Methods of overcoming treatment resistance in colorectal cancer, Crit. Rev. Oncol. Hematol., 89, 217-230, doi: 10.1016/j.critrevonc.2013.08.015.
  111. Nijhuis, A., Thompson, H., Adam, J., Parker, A., Gammon, L., Lewis, A., Bundy, J. G., Soga, T., Jalaly, A., Propper, D., Jeffery, R., Suraweera, N., McDonald, S., Thaha, M. A., Feakins, R., Lowe, R., Bishop, C. L., and Silver, A. (2017) Remodelling of microRNAs in colorectal cancer by hypoxia alters metabolism profiles and 5-fluorouracil resistance, Hum. Mol. Genet., 26, 1552-1564, doi: 10.1093/hmg/ddx059.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies