Expression of the synthetic CYP102A1-LG23 gene and functional analysis of recombinant P450 BM3-LG23 cytochrome in actinobacteria Mycolicibacterium smegmatis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cytochrome CYP102A1 (P450 BM3) from Priestia megaterium (bas. Bacillus megaterium) has a number of specific features making it an ideal target for directed evolution and other synthetic applications. Previously, the CYP102A1-LG23 mutant with 14 mutations in the heme was obtained providing 7β-hydroxylation of steroid substrates of the androstane series with the formation of products possessing anti-inflammatory and neuroprotective activity. In this study, the synthetic cyp102A1-LG23 gene encoding the P450 BM3 mutant variant was expressed in Mycolicibacterium smegmatis cells as part of mono- and bicistronic operons together with the synthetic gdh or zwf2 genes encoding glucose dehydrogenase (GDH) and glucose-6-phosphate dehydrogenase (G6PD), respectively. The functional activity of the recombinant enzymes was shown in vivo by the example of hydroxylation of androst-4-ene-3,17-dione (AD) to 7β-OH-AD in growing cultures of mycolicibacteria. Biocatalytic activity was doubled by increasing the CYP102A1-LG23 protein solubility in the cell and organizing the cofactor regeneration additional system by introducing GDH and G6PD. The maximum level of 7β-OH-AD amounting 37,68 mol % was achieved by co-expression the cyp102A1-LG23 and gdh genes in M. smegmatis. The results evidence to the perspective of using synthetic genes to obtain recombinant enzymes, expand the understanding of the hydroxylation of steroid compounds by bacterial cytochromes and can be demand for the methods of microbiological production of 7β-hydroxylated steroids by genetically modified mycolicibacteria.

About the authors

V. Y Poshekhontseva

G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”

Email: rikahameleon@mail.ru
142290 Pushchino, Moscow Region, Russia

N. I Strizhov

G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”

142290 Pushchino, Moscow Region, Russia

M. V Karpov

G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”

142290 Pushchino, Moscow Region, Russia

V. M Nikolaeva

G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”

142290 Pushchino, Moscow Region, Russia

A. V Kazantsev

Faculty of Chemistry, Lomonosov Moscow State University

119991 Moscow, Russia

O. I Sazonova

G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”

142290 Pushchino, Moscow Region, Russia

A. A Shutov

G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”

142290 Pushchino, Moscow Region, Russia

M. V Donova

G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”

142290 Pushchino, Moscow Region, Russia

References

  1. Donova, M. V. (2017) Steroid Bioconversions, Methods Mol. Biol., 1645, 1-13, doi: 10.1007/978-1-4939-7183-1_1.
  2. Wojtal, K., Trojnar, M. K., and Czuczwar, S. J. (2006) Endogenous neuroprotective factors: neurosteroids, Pharmacol. Rep., 58, 335-340.
  3. Fegan, K. S., Rae, M. T., Critchley, H. O. D., and Hillier, S. G. (2008) Anti-inflammatory steroid signalling in the human peritoneum, J. Endocrinol., 196, 369-376, doi: 10.1677/joe-07-0419.
  4. Ali Shah, S. A., Sultan, S., and Adnan, H. S. (2013) A whole-cell biocatalysis application of steroidal drugs, Orient. J. Chem., 29, 389-403, doi: 10.13005/ojc/290201.
  5. Szaleniec, M., Wojtkiewicz, A. M., Borowski, T., Bernhardt, R., and Donova, M. (2018) Bacterial steroid hydroxylases: enzyme classes, their functions and comparison of their catalytic mechanisms, Appl. Microbiol. Biotechnol., 102, 8153-8171, doi: 10.1007/s00253-018-9239-3.
  6. Julsing, M. K., Cornelissen, S., Bühler, B., and Schmid, A. (2008) Heme-iron oxygenases: powerful industrial biocatalysts? Curr. Opin. Chem. Biol., 12, 177-186, doi: 10.1016/j.cbpa.2008.01.029.
  7. Bureik, M., and Bernhardt, R. (2007) in Modern Biooxidation. Enzymes, Reactions and Applications (Schmid, R. D., and Urlacher, V. B., eds) Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 155-176.
  8. Fernández-Cabezón, L., Galán, B., and García, J. L. (2018) New insights on steroid biotechnology, Front. Microbiol., 9, 958, doi: 10.3389/fmicb.2018.00958.
  9. Munro, A. W., Leys, D. G., McLean, K. J., Marshall, K. R., Ost, T. W. B., Daff, S., Miles, C. S., Chapman, S. K., Lysek, D. A., Moser, C. C., Page, C. C., and Dutton, P. L. (2002) P450 BM3: the very model of a modern flavocytochrome, Trends Biochem. Sci., 27, 250-257, doi: 10.1016/s0968-0004(02)02086-8.
  10. Guengerich, F. P. (1991) Reactions and significance of cytochrome P-450 enzymes, J. Biol. Chem., 266, 10019-10022, doi: 10.1016/S0021-9258(18)99177-5.
  11. Munro, A. W., Daff, S., Coggins, J. R., Lindsay, J. G., and Chapman, S. K. (1996) Probing electron transfer in flavocytochrome P-450 BM3 and its component domains, Eur. J. Biochem., 239, 403-409, doi: 10.1111/j.1432-1033.1996.0403u.x.
  12. Finnigan, J. D., Young, C., Cook, D. J., Charnock, S. J., and Black, G. W. (2020) Cytochromes P450 (P450s): A review of the class system with a focus on prokaryotic P450s, Adv. Protein Chem. Struct. Biol., 122, 289-320, doi: 10.1016/bs.apcsb.2020.06.005.
  13. Li, A., Acevedo-Rocha, C. G., D'Amore, L., Chen, J., Peng, Y., Garcia-Borràs, M., Gao, C., Zhu, J., Rickerby, H., Osuna, S., Zhou, J., and Reetz, M. T. (2020) Regio- and stereoselective steroid hydroxylation at C7 by cytochrome P450 monooxygenase mutants, Angew. Chem. Int. Ed., 59, 12499-12505, doi: 10.1002/ange.202003139.
  14. Tang, R., Ren, X., Xia, M., Shen, Y., Tu, L., Luo, J., Zhang, Q., Wang, Y., Ji, P., and Wang, M. (2021) Efficient one-step biocatalytic multienzyme cascade strategy for direct conversion of phytosterol to C-17-hydroxylated steroids, Appl. Environ. Microbiol., 87, e0032121, doi: 10.1128/AEM.00321-21.
  15. Karpov, M. V., Nikolaeva, V. M., Fokina, V. V., Shutov, A. A., Kazantsev, A. V., Strizhov, N. I., and Donova, M. V. (2022) Creation and functional analysis of Mycolicibacterium smegmatis recombinant strains carrying the bacillary cytochromes CYP106A1 and CYP106A2 genes, Appl. Biochem. Microbiol., 58, 947-957, doi: 10.1134/S0003683822090058.
  16. Snapper, S. B., Melton, R. E., Mustafa, S., Kieser, T., and Jacobs, W. R. Jr. (1990) Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis, Mol. Microbiol., 4, 1911-1919, doi: 10.1111/j.1365-2958.1990.tb02040.x.
  17. Poulsen, C., Holton, S., Geerlof, A., Wilmanns, M., and Song, Y.-H. (2010) Stoichiometric protein complex formation and over expression using the prokaryotic native operon structure, FEBS Lett., 584, 669-674, doi: 10.1016/j.febslet.2009.12.057.
  18. Strizhov, N., Karpov, M., Sukhodolskaya, G., Nikolayeva, V., Fokina, V., Shutov, A. A., and Donova, M. V. (2016) Development of mycobacterial strains producing testosterone, Proc. Nat. Acad. Sci. Belarus, Chem. Series, 3, 57-58.
  19. Bertani, G. (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli, J. Bacteriol., 62, 293-300, doi: 10.1128/jb.62.3.293-300.1951.
  20. Sambrook, J., and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, N.Y.
  21. Daugelat, S., Kowall, J., Mattow, J., Bumann, D., Winter, R., Hurwitz, R., and Kaufmann, S. H. E. (2003) The RD1 proteins of Mycobacterium tuberculosis: expression in Mycobacterium smegmatis and biochemical characterization, Microbes Infect., 5, 1082-1095, doi: 10.1016/s1286-4579(03)00205-3.
  22. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-685, doi: 10.1038/227680a0.
  23. Zhao, Y.-Q., Liu, Y.-J., Ji, W.-T., Liu, K., Gao, B., Tao, X.-Y., Zhao, M., Wang, F.-Q., and Wei, D.-Z. (2022) One-pot biosynthesis of 7β-hydroxyandrost-4-ene-3,17-dione from phytosterols by cofactor regeneration system in engineered Mycolicibacterium neoaurum, Microb. Cell Fact., 21, 59, doi: 10.1186/s12934-022-01786-5.
  24. Booth, W. T., Schlachter, C. R., Pote, S., Ussin, N., Mank, N. J., Klapper, V., Offermann, L. R., Tang, C., Hurlburt, B. K., and Chruszcz, M. (2018) Impact of an N-terminal polyhistidine tag on protein thermal stability, ACS Omega, 3, 760-768, doi: 10.1021/acsomega.7b01598.
  25. Lee, W.-H., Park, J.-B., Park, K., Kim, M.-D., and Seo, J.-H. (2007) Enhanced production of ɛ-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone onooxygenase gene, Appl. Microbiol. Biotechnol., 76, 329-338, doi: 10.1007/s00253-007-1016-7.
  26. Wu, Y., Li, H., Zhang, X. M., Gong, J. S., Li, H., Rao, Z. M., Shi, J. S., and Xu, Z. H. (2015) Improvement of NADPH-dependent P450-mediated biotransformation of 7α, 15α-diOH-DHEA from DHEA by a dual cosubstrate-coupled system, Steroids, 101, 15-20, doi: 10.1016/j.steroids.2015.05.005.
  27. Dodson, R. M., Kraychy, S., Nicholson, R. T., and Mizuba, S. (1962) Microbiological transformations. IX. The 1β-hydroxylation of androstenedione, J. Org. Chem., 27, 3159-3164, doi: 10.1021/jo01056a043.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies