Expression of the synthetic CYP102A1-LG23 gene and functional analysis of recombinant P450 BM3-LG23 cytochrome in actinobacteria Mycolicibacterium smegmatis
- Authors: Poshekhontseva V.Y1, Strizhov N.I1, Karpov M.V1, Nikolaeva V.M1, Kazantsev A.V2, Sazonova O.I1, Shutov A.A1, Donova M.V1
-
Affiliations:
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”
- Faculty of Chemistry, Lomonosov Moscow State University
- Issue: Vol 88, No 9 (2023)
- Pages: 1631-1641
- Section: Articles
- URL: https://journals.rcsi.science/0320-9725/article/view/141493
- DOI: https://doi.org/10.31857/S0320972523090142
- EDN: https://elibrary.ru/WUZTVO
- ID: 141493
Cite item
Abstract
About the authors
V. Y Poshekhontseva
G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”
Email: rikahameleon@mail.ru
142290 Pushchino, Moscow Region, Russia
N. I Strizhov
G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”142290 Pushchino, Moscow Region, Russia
M. V Karpov
G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”142290 Pushchino, Moscow Region, Russia
V. M Nikolaeva
G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”142290 Pushchino, Moscow Region, Russia
A. V Kazantsev
Faculty of Chemistry, Lomonosov Moscow State University119991 Moscow, Russia
O. I Sazonova
G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”142290 Pushchino, Moscow Region, Russia
A. A Shutov
G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”142290 Pushchino, Moscow Region, Russia
M. V Donova
G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”142290 Pushchino, Moscow Region, Russia
References
- Donova, M. V. (2017) Steroid Bioconversions, Methods Mol. Biol., 1645, 1-13, doi: 10.1007/978-1-4939-7183-1_1.
- Wojtal, K., Trojnar, M. K., and Czuczwar, S. J. (2006) Endogenous neuroprotective factors: neurosteroids, Pharmacol. Rep., 58, 335-340.
- Fegan, K. S., Rae, M. T., Critchley, H. O. D., and Hillier, S. G. (2008) Anti-inflammatory steroid signalling in the human peritoneum, J. Endocrinol., 196, 369-376, doi: 10.1677/joe-07-0419.
- Ali Shah, S. A., Sultan, S., and Adnan, H. S. (2013) A whole-cell biocatalysis application of steroidal drugs, Orient. J. Chem., 29, 389-403, doi: 10.13005/ojc/290201.
- Szaleniec, M., Wojtkiewicz, A. M., Borowski, T., Bernhardt, R., and Donova, M. (2018) Bacterial steroid hydroxylases: enzyme classes, their functions and comparison of their catalytic mechanisms, Appl. Microbiol. Biotechnol., 102, 8153-8171, doi: 10.1007/s00253-018-9239-3.
- Julsing, M. K., Cornelissen, S., Bühler, B., and Schmid, A. (2008) Heme-iron oxygenases: powerful industrial biocatalysts? Curr. Opin. Chem. Biol., 12, 177-186, doi: 10.1016/j.cbpa.2008.01.029.
- Bureik, M., and Bernhardt, R. (2007) in Modern Biooxidation. Enzymes, Reactions and Applications (Schmid, R. D., and Urlacher, V. B., eds) Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 155-176.
- Fernández-Cabezón, L., Galán, B., and García, J. L. (2018) New insights on steroid biotechnology, Front. Microbiol., 9, 958, doi: 10.3389/fmicb.2018.00958.
- Munro, A. W., Leys, D. G., McLean, K. J., Marshall, K. R., Ost, T. W. B., Daff, S., Miles, C. S., Chapman, S. K., Lysek, D. A., Moser, C. C., Page, C. C., and Dutton, P. L. (2002) P450 BM3: the very model of a modern flavocytochrome, Trends Biochem. Sci., 27, 250-257, doi: 10.1016/s0968-0004(02)02086-8.
- Guengerich, F. P. (1991) Reactions and significance of cytochrome P-450 enzymes, J. Biol. Chem., 266, 10019-10022, doi: 10.1016/S0021-9258(18)99177-5.
- Munro, A. W., Daff, S., Coggins, J. R., Lindsay, J. G., and Chapman, S. K. (1996) Probing electron transfer in flavocytochrome P-450 BM3 and its component domains, Eur. J. Biochem., 239, 403-409, doi: 10.1111/j.1432-1033.1996.0403u.x.
- Finnigan, J. D., Young, C., Cook, D. J., Charnock, S. J., and Black, G. W. (2020) Cytochromes P450 (P450s): A review of the class system with a focus on prokaryotic P450s, Adv. Protein Chem. Struct. Biol., 122, 289-320, doi: 10.1016/bs.apcsb.2020.06.005.
- Li, A., Acevedo-Rocha, C. G., D'Amore, L., Chen, J., Peng, Y., Garcia-Borràs, M., Gao, C., Zhu, J., Rickerby, H., Osuna, S., Zhou, J., and Reetz, M. T. (2020) Regio- and stereoselective steroid hydroxylation at C7 by cytochrome P450 monooxygenase mutants, Angew. Chem. Int. Ed., 59, 12499-12505, doi: 10.1002/ange.202003139.
- Tang, R., Ren, X., Xia, M., Shen, Y., Tu, L., Luo, J., Zhang, Q., Wang, Y., Ji, P., and Wang, M. (2021) Efficient one-step biocatalytic multienzyme cascade strategy for direct conversion of phytosterol to C-17-hydroxylated steroids, Appl. Environ. Microbiol., 87, e0032121, doi: 10.1128/AEM.00321-21.
- Karpov, M. V., Nikolaeva, V. M., Fokina, V. V., Shutov, A. A., Kazantsev, A. V., Strizhov, N. I., and Donova, M. V. (2022) Creation and functional analysis of Mycolicibacterium smegmatis recombinant strains carrying the bacillary cytochromes CYP106A1 and CYP106A2 genes, Appl. Biochem. Microbiol., 58, 947-957, doi: 10.1134/S0003683822090058.
- Snapper, S. B., Melton, R. E., Mustafa, S., Kieser, T., and Jacobs, W. R. Jr. (1990) Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis, Mol. Microbiol., 4, 1911-1919, doi: 10.1111/j.1365-2958.1990.tb02040.x.
- Poulsen, C., Holton, S., Geerlof, A., Wilmanns, M., and Song, Y.-H. (2010) Stoichiometric protein complex formation and over expression using the prokaryotic native operon structure, FEBS Lett., 584, 669-674, doi: 10.1016/j.febslet.2009.12.057.
- Strizhov, N., Karpov, M., Sukhodolskaya, G., Nikolayeva, V., Fokina, V., Shutov, A. A., and Donova, M. V. (2016) Development of mycobacterial strains producing testosterone, Proc. Nat. Acad. Sci. Belarus, Chem. Series, 3, 57-58.
- Bertani, G. (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli, J. Bacteriol., 62, 293-300, doi: 10.1128/jb.62.3.293-300.1951.
- Sambrook, J., and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, N.Y.
- Daugelat, S., Kowall, J., Mattow, J., Bumann, D., Winter, R., Hurwitz, R., and Kaufmann, S. H. E. (2003) The RD1 proteins of Mycobacterium tuberculosis: expression in Mycobacterium smegmatis and biochemical characterization, Microbes Infect., 5, 1082-1095, doi: 10.1016/s1286-4579(03)00205-3.
- Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-685, doi: 10.1038/227680a0.
- Zhao, Y.-Q., Liu, Y.-J., Ji, W.-T., Liu, K., Gao, B., Tao, X.-Y., Zhao, M., Wang, F.-Q., and Wei, D.-Z. (2022) One-pot biosynthesis of 7β-hydroxyandrost-4-ene-3,17-dione from phytosterols by cofactor regeneration system in engineered Mycolicibacterium neoaurum, Microb. Cell Fact., 21, 59, doi: 10.1186/s12934-022-01786-5.
- Booth, W. T., Schlachter, C. R., Pote, S., Ussin, N., Mank, N. J., Klapper, V., Offermann, L. R., Tang, C., Hurlburt, B. K., and Chruszcz, M. (2018) Impact of an N-terminal polyhistidine tag on protein thermal stability, ACS Omega, 3, 760-768, doi: 10.1021/acsomega.7b01598.
- Lee, W.-H., Park, J.-B., Park, K., Kim, M.-D., and Seo, J.-H. (2007) Enhanced production of ɛ-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone onooxygenase gene, Appl. Microbiol. Biotechnol., 76, 329-338, doi: 10.1007/s00253-007-1016-7.
- Wu, Y., Li, H., Zhang, X. M., Gong, J. S., Li, H., Rao, Z. M., Shi, J. S., and Xu, Z. H. (2015) Improvement of NADPH-dependent P450-mediated biotransformation of 7α, 15α-diOH-DHEA from DHEA by a dual cosubstrate-coupled system, Steroids, 101, 15-20, doi: 10.1016/j.steroids.2015.05.005.
- Dodson, R. M., Kraychy, S., Nicholson, R. T., and Mizuba, S. (1962) Microbiological transformations. IX. The 1β-hydroxylation of androstenedione, J. Org. Chem., 27, 3159-3164, doi: 10.1021/jo01056a043.
Supplementary files
