Development of a heterologous expression system and optimization of the algorithm for cholera toxin β-subunit production in E. coli

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Cholera is a deadly infection disease, which is usually associated with low hygiene levels and restricted access to high-quality drinking water. An effective way to prevent cholera is the use of vaccines. Among active vaccine components there is the CtxB protein (cholera toxin β-subunit). In the current work, we have developed a genetic system for the production of recombinant CtxB in E. coli cells and studied the conditions for the synthesis and purification of the target product at the laboratory culture level. It has been found that the optimal algorithm for isolation of the recombinant protein is to grow an E. coli culture in a synthetic M9 medium with glycerol, followed by CtxB purification out of the spent culture medium through Ni2+-ions affinity chromatography techniques. Forty-eight hours following CtxB expression induction, the concentration of the target product can be up to 50 mg/liter in the culture medium. The CtxB protein retains its pentameric structure while expressing and through purification. The latter makes it possible to consider the developed system as a promising tool for the industrial-level synthesis of recombinant CtxB for medical and research purposes.

Авторлар туралы

H. Jamgochian

Bach Institute of Biochemistry, FRC Biotechnology, Russian Academy of Sciences

119071 Moscow, Russia

M. Zamakhaev

Bach Institute of Biochemistry, FRC Biotechnology, Russian Academy of Sciences

119071 Moscow, Russia

N. Sluchanko

Bach Institute of Biochemistry, FRC Biotechnology, Russian Academy of Sciences

119071 Moscow, Russia

A. Goncharenko

Bach Institute of Biochemistry, FRC Biotechnology, Russian Academy of Sciences

Email: pylaevanna@gmail.com
119071 Moscow, Russia

M. Shumkov

Bach Institute of Biochemistry, FRC Biotechnology, Russian Academy of Sciences

119071 Moscow, Russia

Әдебиет тізімі

  1. Almagro-Moreno, S., and Taylor, R. K. (2013) Cholera: environmental reservoirs and impact on disease transmission, Microbiol. Spectr., 1, doi: 10.1128/microbiolspec.OH-0003-2012.
  2. Hu, D., Liu, B., Feng, L., Ding, P., Guo, X., Wang, M., Cao, B., Reeves, P. R., and Wang, L. (2016) Origins of the current seventh cholera pandemic, Proc. Natl. Acad. Sci. USA, 113, E7730-E7739, doi: 10.1073/pnas.1608732113.
  3. WHO. TheWeekly Epidemiological Record (2021) URL: www.who.int/publications/journals/weeklyepidemiological-record (дата обращения: 18.08.2023).
  4. Всемирная организация здравоохранения (11 февраля 2023 г.). Новости о вспышках болезней. Холера - ситуация в мире, URL: www.who.int/ru/emergencies/disease-outbreak-news/item/2023-DON437 (дата обращения: 18.08.2023).
  5. Clemens, J., Shin, S., Sur, D., Nair, G. B., and Holmgren, J. (2011) New-generation vaccines against cholera, Nat. Rev. Gastroenterol. Hepatol., 8, 701-710. doi: 10.1038/nrgastro.2011.174.
  6. Hui Xian, T., Parasuraman, S., Ravichandran, M., and Prabhakaran, G. (2022) Dual-use vaccine for diarrhoeal diseases: cross-protective immunogenicity of a cold-chain-free, live-attenuated, oral cholera vaccine against enterotoxigenic Escherichia coli (ETEC) challenge in BALB/c mice, Vaccines, 10, 2161, doi: 10.3390/vaccines10122161.
  7. WHO. Cholera vaccine, URL: www.who.int/teams/immunization-vaccines-and-biologicals/diseases/cholera (дата обращения: 18.08.2023).
  8. Ravichandran, M., Tew, H. X., Prabhakaran, G., Parasuraman, S., and Norazmi, M. N. (2022) Live, genetically attenuated, cold-chain-free cholera vaccine - a research and development journey: light at the end of a long tunnel, Malays. J. Med. Sci., 29, 1-7, doi: 10.21315/mjms2022.29.2.1.
  9. Sumarokov, A. A., Ivanov, N. R., Dzhaparidze, M. N., Rystsova, E. A., Reznikov, Iu. B., et al. (1991) The characteristics of the reactogenicity and immunological activity of a new cholera bivalent chemical vaccine based on the results of controlled trials, Zhurn. Mikrobiol. Epidemiol. Immunobiol., 7, 55-58.
  10. Sumarokov, A. A., Dzhaparidze, M. N., Eliseev, Iu. Iu., Nikitina, G. P., Poliakov, K. A., et al. (1993) The determination of the optimal inoculation dose of an oral cholera bivalent chemical vaccine in a controlled trial of the vaccination of children and adolescents, Zhurn. Mikrobiol. Epidemiol. Immunobiol., 5, 55-60.
  11. Вакцина холерная бивалентная химическая, инструкция по применению, URL: www.vidal.ru/drugs/cholera_bivalent_chemical_vaccine__42897 (дата обращения: 18.08.2023).
  12. Zhang, R. G., Westbrook, M. L., Westbrook, E. M., Scott, D. L., and Otwinowski, Z. (1995) The 2.4 A crystal structure of cholera toxin B subunit pentamer: choleragenoid, J. Mol. Biol., 251, 550-562, doi: 10.1006/jmbi.1995.0455.
  13. Korotkov, K. V., Sandkvist, M., and Hol, W. G. (2012) The type II secretion system: biogenesis, molecular architecture and mechanism, Nat. Rev. Microbiol., 10, 336-351, doi: 10.1038/nrmicro2762.
  14. Overbye, L. J., Sandkvist, M., and Bagdasarian, M. (1993) Genes required for extracellular secretion of enterotoxin are clustered in Vibrio cholerae, Gene, 132, 101-106, doi: 10.1016/0378-1119(93)90520-D.
  15. Wernick, N. L., Chinnapen, D. J., Cho, J. A., and Lencer, W. I. (2010) Cholera toxin: an intracellular journey into the cytosol by way of the endoplasmic reticulum, Toxins (Basel), 2, 310-325, doi: 10.3390/toxins2030310.
  16. Baldauf, K. J., Royal, J. M., Hamorsky, K. T., and Matoba, N. (2015) Cholera toxin B: one subunit with many pharmaceutical applications., Toxins (Basel), 7, 974-996, doi: 10.3390/toxins7030974.
  17. Jelinek, T., and Kollaritsch, H. (2008) Vaccination with Dukoral against travelers' diarrhea (ETEC) and cholera, Expert Rev. Vaccines, 7, 561-567, doi: 10.1586/14760584.7.5.561.
  18. Lebens, M., Johansson, S., Osek, J., Lindblad, M., and Holmgren, J. (1993) Large-scale production of Vibrio cholerae toxin B subunit for use in oral vaccines, Biotechnology, 11, 1574-1578, doi: 10.1038/nbt1293-1574.
  19. Rhie, G. E., Jung, H. M., Park, J., Kim, B. S., and Mekalanos, J. J. (2008) Construction of cholera toxin B subunit-producing Vibrio cholerae strains using the Mariner-FRT transposon delivery system, FEMS Immunol. Med. Microbiol., 52, 23-28, doi: 10.1111/j.1574-695X.2007.00346.x.
  20. Slos, P., Dutot, P., Reymund, J., Kleinpeter, P., and Prozzi, D. (1998) Production of cholera toxin B subunit in Lactobacillus, FEMS Microbiol. Lett., 169, 29-36, doi: 10.1111/j.1574-6968.1998.tb13295.x.
  21. Goto, N., Maeyama, J., Yasuda, Y., Isaka, M., and Matano, K. (2000) Safety evaluation of recombinant cholera toxin B subunit produced by Bacillus brevis as a mucosal adjuvant, Vaccine, 18, 2164-2171, doi: 10.1016/s0264-410x(99)00337-0.
  22. Zeighami, H., Sattari, M., and Rezayat, M. (2010) Cloning and expression of a cholera toxin beta subunit in Escherichia coli, Ann. Microbiol., 60, 451-454, doi: 10.1007/s13213-010-0062-z.
  23. Dakterzada, F., Mobarez, A. M., Roudkenar, M. H., and Forouzandeh, M. (2012) Production of pentameric cholera toxin B subunit in Escherichia coli, Avicenna J. Med. Biotechnol., 4, 89-94.
  24. Slos, P., Speck, D., Accart, N., Kolbe, H. V., and Schubnel, D. (1994) Recombinant cholera toxin B subunit in Escherichia coli: high-level secretion, purification, and characterization, Protein Expr. Purif., 5, 518-526, doi: 10.1006/prep.1994.1071.
  25. Matoba, N. (2015) N-glycosylation of CHOLERA toxin B subunit: serendipity for novel plant-made vaccines? Front Plant Sci., 6, 1132, doi: 10.3389/fpls.2015.01132.
  26. Hamorsky, K. T., Kouokam, J. C., Bennett, L. J., Baldauf, K. J., and Kajiura, H. (2013) Rapid and scalable plant-based production of a cholera toxin B subunit variant to aid in mass vaccination against cholera outbreaks, PLoS Negl. Trop. Dis., 7, e2046, doi: 10.1371/journal.pntd.0002046.
  27. Mudrak, B., and Kuehn, M. J. (2010) Specificity of the type II secretion systems of enterotoxigenic Escherichia coli and Vibrio cholerae for heat-labile enterotoxin and cholera toxin, J. Bacteriol., 192, 1902-1911, doi: 10.1128/JB.01542-09.
  28. Strain - DH5α. The Coli Genetic Stock Center (CGSC). Yale University, URL: https://cgsc.biology.yale.edu/Strain.php?ID=150015 (дата обращения: 18.08.2023).
  29. Karpov, D. S., Goncharenko, A. V., Usachev, E. V., Vasina, D. V., Divisenko, E. V., Chalenko, Y. M., Pochtovyi, A. A., Ovchinnikov, R. S., Makarov, V. V., Yudin, S. M., Tkachuk, A. P., and Gushchin, V. A. (2021) A strategy for the rapid development of a safe Vibrio cholerae candidate vaccine strain, Int. J. Mol. Sci., 22, 11657, doi: 10.3390/ijms222111657.
  30. Quan, S., Hiniker, A., Collet, J. F., and Bardwell, J. C. (2013) Isolation of bacteria envelope proteins, Methods Mol. Biol., 966, 359-366, doi: 10.1007/978-1-62703-245-2_22.
  31. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-685, doi: 10.1038/227680a0.
  32. Brunelle, J. L., and Green, R. (2014) One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE), Methods Enzymol., 541, 151-159, doi: 10.1016/B978-0-12-420119-4.00012-4.
  33. GelAnalyzer 19.1, URL: www.gelanalyzer.com (дата обращения: 18.08.2023).
  34. Hamorsky, K., and Matoba, N. (2016) Facile method for the production of recombinant cholera toxin B subunit in E. coli, Methods Mol. Biol., 1404, 511-518, doi: 10.1007/978-1-4939-3389-1_33.
  35. Naha, A., Mandal, R. S., Samanta, P., Saha, R. N., and Shaw, S. (2020) Deciphering the possible role of ctxB7 allele on higher production of cholera toxin by Haitian variant Vibrio cholerae O1, PLoS Negl. Trop. Dis., 14, e0008128, doi: 10.1371/journal.pntd.0008128.
  36. Wang, Y. (2002) The function of OmpA in Escherichia coli, Biochem. Biophys. Res. Commun., 292, 396-401, doi: 10.1006/bbrc.2002.6657.
  37. Keen, N. T., and Tamaki, S. (1986) Structure of two pectate lyase genes from Erwinia chrysanthemi EC16 and their high-level expression in Escherichia coli, J. Bacteriol., 168, 595-606, doi: 10.1128/jb.168.2.595-606.1986.
  38. Lei, S. P., Lin, H. C., Wang, S. S., Callaway, J., and Wilcox, G. (1987) Characterization of the Erwinia carotovora pelB gene and its product pectate lyase, J. Bacteriol., 169, 4379-4383, doi: 10.1128/jb.169.9.4379-4383.1987.
  39. Ruppert, A., Arnold, N., and Hobom, G. (1994) OmpA-FMDV VP1 fusion proteins: production, cell surface exposure and immune responses to the major antigenic domain of foot-and-mouth disease virus, Vaccine, 12, 492-498, doi: 10.1016/0264-410x(94)90305-0.
  40. Low, K. O., Mahadi M. N., and Illias R. M. (2013) Optimisation of signal peptide for recombinant protein secretion in bacterial hosts, Appl. Microbiol. Biotechnol., 97, 3811-3826, doi: 10.1007/s00253-013-4831-z.
  41. Zhou, Y., Lu, Z., Wang, X., Selvaraj, J. N., and Zhang, G. (2018) Genetic engineering modification and fermentation optimization for extracellular production of recombinant proteins using Escherichia coli, Appl. Microbiol. Biotechnol., 102, 1545-1556, doi: 10.1007/s00253-017-8700-z.
  42. Lee, J. H., Choi, S. Y., Jeon, Y. S., Lee, H. R., and Kim, E. J. (2009) Classification of hybrid and altered Vibrio cholerae strains by CTX prophage and RS1 element structure, J. Microbiol., 47, 783-788, doi: 10.1007/s12275-009-0292-6.
  43. Dertzbaugh, M. T., and Cox, L. M. (1998) The affinity of cholera toxin for Ni2+ ion, Protein Eng., 11, 577-581, doi: 10.1093/protein/11.7.577.
  44. Zhu, P., Stanisheuski, S., Franklin, R., Vogel, A., Vesely, C. H., Reardon, P., Sluchanko, N. N., Beckman, J. S., Karplus, P. A., Mehl, R. A., and Cooley, R. B. (2023) Autonomous synthesis of functional, permanently phosphorylated proteins for defining the interactome of monomeric 14-3-3ζ, ACS Cent Sci., 9, 816-835, doi: 10.1021/acscentsci.3c00191.
  45. Shatov, V. M., Muranova, L. K., Zamotina, M. A., Sluchanko, N. N., and Gusev, N. B. (2023) α-Crystallin domains of five human small heat shock proteins (sHsps) differ in dimer stabilities and ability to incorporate themselves into oligomers of full-length sHsps, Int. J. Mol. Sci., 24, 1085, doi: 10.3390/ijms24021085.
  46. Slonimskiy, Y. B., Zupnik, A. O., Varfolomeeva, L. A., Boyko, K. M., Maksimov, E. G., and Sluchanko, N. N. (2022) A primordial orange carotenoid protein: structure, photoswitching activity and evolutionary aspects, Int. J. Biol. Macromol., 222, 167-180, doi: 10.1016/j.ijbiomac.2022.09.131.
  47. Янишевский Н. В., Гинцбург А. Л., Вертиев Ю. В., Демме Ю. М., Каратаев Г. И. (1987) Конструирование рекомбинантных плазмид, кодирующих биосинтез β-субъединицы холерного токсина, Мол. Генет., 4.
  48. Смирнова Н. И., Чеховская Г. В., Ливанова Л. Ф., Кобкова И. М. (2004) Штамм бактерий Escherichia coli КМ 147 - продуцент β-субъединицы холерного токсина, Патент на изобретение № 2238975.

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>