Constitutive androstane receptor agonist initiates metabolic activity required for hepatocite proliferation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Constitutive androstane receptor (CAR, NR1I3) activation by chemical compounds evokes liver hyperplasia in rodent. 1,4-Bis[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP), a mouse CAR agonist, is most commonly used to study chemically induced liver hyperplasia and hepatocyte proliferation in vivo. TCPOBOP is potent murine liver chemical mitogen, which induces rapid direct liver hyperplasia independent of liver injury. In recent years, a lot of data has been accumulated on the transcription program that characterizes TCPOBOP-induced hepatocyte proliferation. However, there are scarce data about metabolic requirements of hepatocytes dividing upon treatment with xenobiotics. In present study, we employed liquid chromatography - mass spectrometry technology combined with statistical analysis to develop a metabolite profile of small biomolecules, to identify key metabolic changes in male mouse liver tissue after TCPOBOP administration. Analysis of biochemical pathways of the differentially affected metabolites in mouse livers demonstrated significant TCPOBOP-mediated enrichment of several processes including those relevant to nucleotide metabolism, amino acid metabolism, and energy substrate metabolism. Our findings provide evidence to support the conclusion that CAR agonist, TCPOBOP, initiates an intracellular program that promotes the global coordinated metabolic activities required for hepatocyte proliferation. Our metabolic data may provide novel insight into the biological mechanisms that occur during TCPOBOP-induced hepatocyte proliferation in mice.

About the authors

M. E Mazin

Novosibirsk State University;Federal Research Center of Fundamental and Translational Medicine

630090 Novosibirsk, Russia;630117 Novosibirsk, Russia

A. M Perevalova

Novosibirsk State University

630090 Novosibirsk, Russia

A. A Yarushkin

Federal Research Center of Fundamental and Translational Medicine

630117 Novosibirsk, Russia

Y. A Pustylnyak

Novosibirsk State University

630090 Novosibirsk, Russia

A. D Rogachev

Novosibirsk State University

630090 Novosibirsk, Russia

E. A Prokopyeva

Novosibirsk State University;Federal Research Center of Fundamental and Translational Medicine

630090 Novosibirsk, Russia;630117 Novosibirsk, Russia

L. F Gulyaeva

Novosibirsk State University;Federal Research Center of Fundamental and Translational Medicine

630090 Novosibirsk, Russia;630117 Novosibirsk, Russia

V. O Pustylnyak

Novosibirsk State University;Federal Research Center of Fundamental and Translational Medicine

Email: pustylnyak@post.nsu.ru
630090 Novosibirsk, Russia;630117 Novosibirsk, Russia

References

  1. Yan, J., and Xie, W. (2016) A brief history of the discovery of PXR and CAR as xenobiotic receptors, Acta Pharm. Sin. B, 6, 450-452, doi: 10.1016/j.apsb.2016.06.011.
  2. Cai, X., Young, G. M., and Xie, W. (2021) The xenobiotic receptors PXR and CAR in liver physiology, an update, Biochim. Biophys. Acta Mol. Basis Dis., 1867, 166101, doi: 10.1016/j.bbadis.2021.166101.
  3. Blanco-Bose, W. E., Murphy, M. J., Ehninger, A., Offner, S., Dubey, C., Huang, W., Moore, D. D., and Trumpp, A. (2008) C-Myc and its target FoxM1 are critical downstream effectors of constitutive androstane receptor (CAR) mediated direct liver hyperplasia, Hepatology, 48, 1302-1311, doi: 10.1002/hep.22475.
  4. Tschuor, C., Kachaylo, E., Limani, P., Raptis, D. A., Linecker, M., Tian, Y., Herrmann, U., Grabliauskaite, K., Weber, A., Columbano, A., Graf, R., Humar, B., and Clavien, P. A. (2016) Constitutive androstane receptor (Car)-driven regeneration protects liver from failure following tissue loss, J. Hepatol., 65, 66-74, doi: 10.1016/j.jhep.2016.02.040.
  5. Lodato, N. J., Melia, T., Rampersaud, A., and Waxman, D. J. (2017) Sex-differential responses of tumor promotion-associated genes and dysregulation of novel long noncoding RNAs in constitutive androstane receptor-activated mouse liver, Toxicol. Sci., 159, 25-41, doi: 10.1093/toxsci/kfx114.
  6. Skoda, J., Dohnalova, K., Chalupsky, K., Stahl, A., Templin, M., Maixnerova, J., Micuda, S., Grøntved, L., Braeuning, A., and Pavek, P. (2022) Off-target lipid metabolism disruption by the mouse constitutive androstane receptor ligand TCPOBOP in humanized mice, Biochem. Pharmacol., 197, 114905, doi: 10.1016/j.bcp.2021.114905.
  7. Solhi, R., Lotfinia, M., Gramignoli, R., Najimi, M., and Vosough, M. (2021) Metabolic hallmarks of liver regeneration, Trends Endocrinol. Metab., 32, 731-745, doi: 10.1016/j.tem.2021.06.002.
  8. Cardiff, R. D., Miller, C. H., and Munn, R. J. (2014) Manual hematoxylin and eosin staining of mouse tissue sections, Cold Spring Harb. Protoc., 2014, 655-658, doi: 10.1101/pdb.prot073411.
  9. Graefe, C., Eichhorn, L., Wurst, P., Kleiner, J., Heine, A., Panetas, I., Abdulla, Z., Hoeft, A., Frede, S., Kurts, C., Endl, E., and Weisheit, C. K. (2019) Optimized Ki-67 staining in murine cells: a tool to determine cell proliferation, Mol. Biol. Rep., 46, 4631-4643, doi: 10.1007/s11033-019-04851-2.
  10. Mazin, M. E., Yarushkin, A. A., Pustylnyak, Y. A., Prokopyeva, E. A., and Pustylnyak, V. O. (2022) Promotion of NR1I3-mediated liver growth is accompanied by STAT3 activation, Mol. Biol. Rep., 49, 4089-4093, doi: 10.1007/s11033-022-07340-1.
  11. Yuan, M., Breitkopf, S. B., Yang, X., and Asara, J. M. (2012) A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue, Nat.Protoc., 7, 872-881, doi: 10.1038/nprot.2012.024.
  12. Rogachev, A. D., Alemasov, N. A., Ivanisenko, V. A., Ivanisenko, N. V., Gaisler, E. V., Oleshko, O. S., Cheresiz, S. V., Mishinov, S. V., Stupak, V. V., and Pokrovsky, A. G. (2021) Correlation of metabolic profiles of plasma and cerebrospinal fluid of high-grade glioma patients, Metabolites, 11, 133, doi: 10.3390/metabo11030133.
  13. Kazantseva, Y. A., Pustylnyak, Y. A., and Pustylnyak, V. O. (2016) Role of nuclear constitutive androstane receptor in regulation of hepatocyte proliferation and hepatocarcinogenesis, Biochemistry (Moscow), 81, 338-347, doi: 10.1134/S0006297916040040.
  14. Huber, K., Mestres-Arenas, A., Fajas, L., and Leal-Esteban, L. C. (2021) The multifaceted role of cell cycle regulators in the coordination of growth and metabolism, FEBS J., 288, 3813-3833, doi: 10.1111/febs.15586.
  15. Locasale, J. W., and Cantley, L. C. (2011) Metabolic flux and the regulation of mammalian cell growth, Cell Metab., 14, 443-451, doi: 10.1016/j.cmet.2011.07.014.
  16. Lunt, S. Y., and Vander Heiden, M. G. (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation, Annu. Rev. Cell Dev. Biol., 27, 441-464, doi: 10.1146/annurev-cellbio-092910-154237.
  17. Ge, T., Yang, J., Zhou, S., Wang, Y., Li, Y., and Tong, X. (2020) The role of the pentose phosphate pathway in diabetes and cancer, Front Endocrinol. (Lausanne), 11, 365, doi: 10.3389/fendo.2020.00365.
  18. Jin, L., and Zhou, Y. (2019) Crucial role of the pentose phosphate pathway in malignant tumors, Oncol. Lett., 17, 4213-4221, doi: 10.3892/ol.2019.10112.
  19. Liu, Z., Li, W., Geng, L., Sun, L., Wang, Q., Yu, Y., Yan, P., Liang, C., Ren, J., Song, M., Zhao, Q., Lei, J., Cai, Y., Li, J., Yan, K., Wu, Z., Chu, Q., Li, J., Wang, S., Li, C., Han, J. J., Hernandez-Benitez, R., Shyh-Chang, N., Belmonte, J. C. I., Zhang, W., Qu, J., and Liu, G. H. (2022) Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor, Cell Discov., 8, 6, doi: 10.1038/s41421-021-00361-3.
  20. Doi, J., Fujimoto, Y., Teratani, T., Kasahara, N., Maeda, M., Tsuruyama, T., Iida, T., Yagi, S., and Uemoto, S. (2019) Bolus administration of polyamines boosts effects on hepatic ischemia-reperfusion injury and regeneration in rats, Eur. Surg. Res., 60, 63-73, doi: 10.1159/000497434.
  21. Mandal, S., Mandal, A., Johansson, H. E., Orjalo, A. V., and Park, M. H. (2013) Depletion of cellular polyamines, spermidine and spermine, causes a total arrest in translation and growth in mammalian cells, Proc. Natl. Acad. Sci. USA, 110, 2169-2174, doi: 10.1073/pnas.1219002110.
  22. Alhonen, L., Räsänen, T.L., Sinervirta, R., Parkkinen, J. J., Korhonen, V. P., Pietilä, M., and Jänne, J. (2002) Polyamines are required for the initiation of rat liver regeneration, Biochem. J., 362, 149-153, doi: 10.1042/0264-6021:3620149.
  23. Chattopadhyay, M. K., Park, M. H., and Tabor, H. (2008) Hypusine modification for growth is the major function of spermidine in Saccharomyces cerevisiae polyamine auxotrophs grown in limiting spermidine, Proc. Natl. Acad. Sci. USA, 105, 6554-6559, doi: 10.1073/pnas.0710970105.
  24. Lempiäinen, H., Müller, A., Brasa, S., Teo, S. S., Roloff, T. C., Morawiec, L., Zamurovic, N., Vicart, A., Funhoff, E., Couttet, P., Schübeler, D., Grenet, O., Marlowe, J., Moggs, J., and Terranova, R. (2011) Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice, PLoS One, 6, e18216, doi: 10.1371/journal.pone.0018216.
  25. Rampersaud, A., Lodato, N.J., Shin, A., and Waxman, D. J. (2019) Widespread epigenetic changes to the enhancer landscape of mouse liver induced by a specific xenobiotic agonist ligand of the nuclear receptor CAR, Toxicol. Sci., 171, 315-338, doi: 10.1093/toxsci/kfz148.
  26. Cui, J. Y., and Klaassen, C. D. (2016) RNA-Seq reveals common and unique PXR- and CAR-target gene signatures in the mouse liver transcriptome, Biochim. Biophys. Acta, 1859, 1198-1217, doi: 10.1016/j.bbagrm.2016.04.010.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies