Characterization and Phylogenetic Significance of the Complete Mitochondrial Genome of Clupeonella cultriventris (Actinopterygii: Clupeiformes), a Nonindigenous Fish Species of the Rybinsk Reservoir (Volga River)
- Authors: Karabanov D.P.1, Kodukhova Y.V.1, Kotov A.A.2
-
Affiliations:
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences
- A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences
- Issue: Vol 18, No 1 (2025)
- Pages: 219–225
- Section: CТРУКТУРА И ФУНКЦИОНИРОВАНИЕ ВОДНЫХ ЭКОСИСТЕМ
- URL: https://journals.rcsi.science/0320-9652/article/view/287628
- DOI: https://doi.org/10.31857/S0320965225010191
- EDN: https://elibrary.ru/CDKUQK
- ID: 287628
Cite item
Abstract
The Black and Caspian Sea Sprat, or Tyulka (Kilka or Sardelka) Clupeonella cultriventris (Nordmann, 1840) (Actinopterygii: Clupeiformes) is a small pelagic species, the most abundant nonindigenous fish species of the Volga-Kama basin playing an important role as one of the key elements of food webs in freshwater ecosystems. In this paper, we characterize the complete mitochondrial genome of Tulka from an unambiguously adventive population of the Upper Volga (58.38861 N, 38.32694 E). Voucher identification was performed both by morphological characters and a DNA sequence blast against the GenBank international database. For sequencing of the complete mitochondrial genome, a classical Sanger sequencing was applied with the PCR product from a set of 48 primer pairs giving a complete overlapping and unambiguous reading of each nucleotide in at least two replications. Annotated full mitogenome of C. cultriventris with length of 16650 bp has a gene arrangement characteristic of (and conservative) Clupeiformes contains 22 transport RNAs, 13 protein-coding genes, two ribosomal RNAs, and a single noncoding region. This mitochondrial genome demonstrates a 98.7% similarity to the previously studied one from the Black Sea. Based on these data, there are no sufficient reasons to separate the freshwater Sprat of the Volga-Kama region into a separate taxon.
Full Text

About the authors
D. P. Karabanov
Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences
Author for correspondence.
Email: dk@ibiw.ru
Russian Federation, Borok, Nekouzsky raion, Yaroslavl oblast
Y. V. Kodukhova
Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences
Email: dk@ibiw.ru
Russian Federation, Borok, Nekouzsky raion, Yaroslavl oblast
A. A. Kotov
A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences
Email: dk@ibiw.ru
Russian Federation, Moscow
References
- Curole J.P., Kocher T.D. 1999. Mitogenomics: digging deeper with complete mitochondrial genomes // Trends in ecology and evolution. V. 14. № 10. P. 394. https://doi.org/10.1016/S0169-5347(99)01660-2
- FAO yearbook. 2023. Fishery and Aquaculture Statistics 2020. Food and Agriculture Organization of the United Nations, Rome, Italy. https://doi.org/10.4060/cc7493en
- Froese R., Pauly D., 2023. FishBase. World Wide Web electronic publication: www.fishbase.org, version 10/2023. www.fishbase.org (accessed 10 January 2024).
- Grant J.R., Enns E., Marinier E. et al. 2023. Proksee: in-depth characterization and visualization of bacterial genomes // Nucleic Acids Res. V. 51. № W1. P. W484. https://doi.org/10.1093/nar/gkad326
- Hebert P.D.N., Stoeckle M.Y., Zemlak T.S., Francis C.M. 2004. Identification of birds through DNA barcodes // PLoS Biol. V. 2. № 10. P. e312. https://doi.org/10.1371/journal.pbio.0020312
- Karabanov D.P., Bekker E.I., Pavlov D.D. et al. 2022. New sets of primers for DNA identification of non-indigenous fish species in the Volga-Kama basin (European Russia) // Water. V. 14. № 3. P. e437. https://doi.org/10.3390/w14030437
- Karabanov D.P., Kodukhova Y.V. 2018. Biochemical polymorphism and intraspecific structure in populations of Kilka Clupeonella cultriventris (Nordmann, 1840) from natural and invasive parts of its range // Inland Water Biol. V. 11. № 4. P. 496. https://doi.org/10.1134/S1995082918040107
- Karabanov D.P., Pavlov D.D., Dgebuadze Y.Y. et al. 2023. A dataset of non-indigenous and native fish of the Volga and Kama Rivers (European Russia) // Data. V. 8. № 10. P. 154. https://doi.org/10.3390/data8100154
- Kasyanov A.N. 2009. Study of some meristic features in the Black Sea Caspian kilka (Clupeonella cultriventris, Clupeidae) introduced in Volga River reservoirs // J. Ichthyol. V. 49. № 8. P. 642. https://doi.org/10.1134/S0032945209080086
- Kiyashko V.I., Karabanov D.P., Yakovlev V.N., Slyn’ko Y.V. 2012. Formation and development of the Black Sea-Caspian kilka Clupeonella cultriventris (Clupeidae) in the Rybinsk reservoir // J. Ichthyol. V. 52. № 8. P. 537. https://doi.org/10.1134/S0032945212040042
- Kottelat M., Freyhof J. 2007. Handbook of European freshwater fishes. Cornol: Publications Kottelat.
- Lavoue S., Miya M., Musikasinthorn P. et al. 2013. Mitogenomic evidence for an Indo-West Pacific origin of the Clupeoidei (Teleostei: Clupeiformes) // PLoS ONE. V. 8. № 2. P. e56485. https://doi.org/10.1371/journal.pone.0056485
- Lavoue S., Miya M., Saitoh K. et al. 2007. Phylogenetic relationships among anchovies, sardines, herrings and their relatives (Clupeiformes), inferred from whole mitogenome sequences // Molecular phylogenetics and evolution. V. 43. № 3. P. 1096. https://doi.org/10.1016/j.ympev.2006.09.018
- Okonechnikov K., Golosova O., Fursov M. 2012. Unipro UGENE: a unified bioinformatics toolkit // Bioinformatics. V. 28. № 8. P. 1166. https://doi.org/10.1093/bioinformatics/bts091
- Phillips J.D., Gillis D.J., Hanner R.H. 2022. Lack of statistical rigor in DNA barcoding likely invalidates the presence of a true species’ barcode gap // Frontiers in ecology and evolution. V. 10. P. 859099. https://doi.org/10.3389/fevo.2022.859099
- Reshetnikov Y.S., Bogutskaya N.G., Vasil’eva E.D. et al. 1997. An annotated check-list of the freshwater fishes of Russia // J. Ichthyol. V. 37. № 9. P. 687.
- Rheindt F.E., Bouchard P., Pyle R.L. et al. 2023. Tightening the requirements for species diagnoses would help integrate DNA-based descriptions in taxonomic practice // PLoS Biol. V. 21. № 8. P. e3002251. https://doi.org/10.1371/journal.pbio.3002251
- Sato K., Akiyama M., Sakakibara Y. 2021. RNA secondary structure prediction using deep learning with thermodynamic integration // Nature Commun. V. 12. № 1. P. 941. https://doi.org/10.1038/s41467-021-21194-4
- Satoh T.P., Miya M., Mabuchi K., Nishida M. 2016. Structure and variation of the mitochondrial genome of fishes // BMC Genomics. V. 17. № 1. P. 719. https://doi.org/10.1186/s12864-016-3054-y
- Svetovidov A.N. 1963. Clupeidae: Fauna of U.S.S.R. – Fishes. V. II. Number 1. Jerusalem, Israel: Israel Program for Scientific Translations.
- Tamura K., Stecher G., Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis version 11 // Mol. Biol. and Evol. V. 38. № 7. P. 3022. https://doi.org/10.1093/molbev/msab120
- Wang Q., Purrafee Dizaj L., Huang J. et al. 2022. Molecular phylogenetics of the Clupeiformes based on exon-capture data and a new classification of the order // Molecular Phyl. and Evol. V. 175. P. 107590. https://doi.org/10.1016/j.ympev.2022.107590
- Whitehead P.J.P. 1985. FAO species catalogue. Volume 7 – Clupeoid fishes of the World (suborder Clupeoidei). Part 1 – Chirocentridae, Clupeidae and Pristigasteridae. Rome, Italy: Food and Agriculture Organization of the United Nations.
- Yang C.-H., Chang H.-W., Ho C.-H. et al. 2011. Conserved PCR primer set designing for closely-related species to complete mitochondrial genome sequencing using a sliding window-based PSO algorithm // PLoS ONE. V. 6. № 3. P. e17729. https://doi.org/10.1371/journal.pone.0017729
- Zhu T., Sato Y., Sado T. et al. 2023. MitoFish, MitoAnnotator, and MiFish Pipeline: updates in 10 years // Mol. Biol. and Evol. V. 40. № 3. Р. 035. https://doi.org/10.1093/molbev/msad035
Supplementary files
