Problems and Prospects of Applications of Cyanobacteria (Review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This review focuses on cyanobacteria and their metabolites with beneficial properties for humans. Cyanobacteria metabolites are uniquely diverse. Many of them exhibit antibacterial, antifungal, anti-carcinogenic, immunosuppressive, antioxidant types of activity, etc. The problems and prospects of using biologically active products of cyanobacteria metabolism are discussed. The issues of obtaining pharmaceuticals and other valuable products (pigments, enzymes, amino acids, vitamins, biodegradable plastic) are considered, and the potential of cyanobacteria as a source of biofuels is evaluated.

About the authors

Yu. M. Polyak

Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences

Author for correspondence.
Email: yuliapolyak@mail.ru
Russia, Saint-Petersburg

V. I. Sukharevich

Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences

Email: yuliapolyak@mail.ru
Russia, Saint-Petersburg

References

  1. Андреева Н.А., Мельников В.В., Снарская Д.Д. 2020. Роль цианобактерий в морских экосистемах // Биология моря. Т. 46. № 3. С. 161.
  2. Белых О.И., Тихонова И.В., Кузьмин А.В. и др. 2020. Токсин-продуцирующие цианобактерии в озере Байкал и водоемах Байкальского региона // Теор. и прикл. экология. № 1. С. 21.
  3. Дидович С.В., Москаленко С.В., Темралеева А.Д. и др. 2017. Биотехнологический потенциал почвенных цианобактерий (обзор) // Вопросы соврем. альгологии. № 2(14). http://algology.ru/1170
  4. Кокшарова О.А. 2008. Цианобактерии: перспективные объекты научного исследования и биотехнологии // Успехи соврем. биологии. Т. 128. № 1. С. 3.
  5. Кучмий А.А., Ефимов Г.А., Недоспасов С.А. 2012. Методы молекулярной визуализации in vivo // Биохимия. Т. 77. № 12. С. 1603.
  6. Макеева Е.Г., Осипова Н.В. 2022. Водоросли соленого оз. Алтайское (Республика Хакасия): таксономический состав и экологические особенности // Биология внутр. вод. № 2. С. 118. https://doi.org/10.31857/S0320965222020073
  7. Немцева Н.В., Мамедова Э.И., Немцева Е.К. 2019. Противоопухолевая активность некоторых метаболитов цианобактерий и перспективы их практического использования // Бюллетень Оренбургского науч. центра УрО РАН. № 2. С. 1. https://doi.org/10.24411/2304-9081-2019-12002
  8. Поляк Ю.М. 2015. Азольные соединения как фактор воздействия на массовые виды цианобактерий // Вода: химия и экология. № 12. С. 10.
  9. Поляк Ю.М., Сухаревич В.И. 2017. Токсигенные цианобактерии: распространение, регуляция синтеза токсинов, способы их деструкции // Вода: химия и экология. № 11–12. С. 125.
  10. Поляк Ю.М., Cухаревич В.И. 2019. Бентосные цианобактерии: особенности роста, физиологии и токсинообразования // Регион. экология. № 2(56). С. 57.
  11. Cухаревич В.И., Поляк Ю.М. 2020. Глобальное распространение цианобактерий: причины и последствия (обзор). Биология внутр. вод. № 6. С. 562.https://doi.org/10.31857/S0320965220060170
  12. Abushelaibi A.A., Al Shamsi M.S., Afifi H.S. 2012. Use of antimicrobial agents in food processing systems // Recent Pat. Food. Nutr. Agric. V. 4. P. 2.
  13. Adiv S., Carmeli S. 2013. Protease inhibitors from Microcystis aeruginosa bloom material collected from the Dalton reservoir, Israel // J. Nat. Prod. V. 76. P. 2307.
  14. Almaliti J., Malloy K.L., Glukhov E. et al. 2017. Antiparasitic cyclic depsipeptides from the marine cyanobacterium Moorea producens // J. Nat. Prod. V. 80. P. 1827.
  15. Angermayr S.A., Hellingwerf K.J., Lindblad P. et al. 2009. Energy biotechnology with cyanobacteria // Curr. Opin. Biotech. V. 20. № 3. P. 257.
  16. Barka A., Blecker C. 2016. Microalgae as a potential source of single-cell proteins. A review // Biotechnol. Agron. Soc. Environ. V. 20. № 3. P. 427.
  17. Burford M.A., Carey C.C., Hamilton D.P. et al. 2020. Perspective: Advancing the research agenda for improving understanding of cyanobacteria in a future of global change // Harmful Algae. V. 910. 101601.
  18. Chorus I., Falconer I.R., Salas H.J., Bartram J. 2000. Health risks caused by freshwater cyanobacteria in recreational waters // J. Toxicol. Environ. Health B Crit. Rev. V. 3. P. 323.
  19. Conde T.A., Neves B.F., Couto D. et al. 2021. Microalgae as sustainable bio-factories of healthy lipids: Evaluating fatty acid content and antioxidant activity // Mar. Drugs. V. 19. № 7. 357.
  20. Costa M.S., Rego A., Ramos V. et al. 2016. The conifer biomarkers dehydroabietic and abietic acids are widespread in Cyanobacteria // Sci. Rep. V. 6. 23436.
  21. De Oliveira D.T., da Costa A.A.F., Costa F.F. et al. 2020. Advances in the biotechnological potential of Brazilian marine microalgae and cyanobacteria // Molecules. V. 25. 2908.
  22. Demay J., Bernard C., Reinhardt A., Marie B. 2019. Natural products from cyanobacteria: Focus on beneficial activities // Mar. Drugs. V. 17. № 6. 320.
  23. Dos Santos Alves Figueiredo Brasil B., de Siqueira F.G., Chan Salum T.F. et al. 2017. Microalgae and cyanobacteria as enzyme biofactories // Algal Res. V. 25. P. 76.
  24. El-Deeb N.M. 2016. Cyanobacterial toxin cylindrospermopsin: It’s possible pathway from poisoning to cancer curing // Austin Biomol Open Access. V. 1. № 2. 1009.
  25. Farrokh P., Sheikhpour M., Kasaeian A. et al. 2019. Cyanobacteria as an eco-friendly resource for biofuel production: A critical review // Biotechnol. Prog. V. 35. № 5. e2835.
  26. Gesner-Apter S., Carmeli S. 2008. Three novel metabolites from a bloom of the cyanobacterium Microcystis sp. // Tetrahedron V. 64. P. 6628.
  27. Gupta V., Natarajan C., Kumar K. et al. 2011. Identification and characterization of endoglucanases for fungicidal activity in Anabaena laxa (Cyanobacteria) // J. Appl. Phycol. V. 23. P. 73.
  28. Gupta V., Ratha S.K., Sood A. et al. 2013. New insights into the biodiversity and applications of cyanobacteria (blue-green algae) – prospects and challenges // Algal Res. V. 2. № 2. P. 79.
  29. Harada K., Fujii K., Shimada T. et al. 1995. Two cyclic peptides, anabaenopeptins, a third group of bioactive compounds from the cyanobacterium Anabaena flos-aquae NRC 525-17 // Tetrahedron Lett. V. 36. № 9. P. 1511.
  30. Hauer T., Komarek J. 2021. CyanoDB 2.0 – On-line database of cyanobacterial genera. World-wide electronic publication, Univ. of South Bohemia & Inst. of Botany AS CR, http://www.cyanodb.cz.
  31. Hicks M., Tran-Dao T.-K., Mulroney L., Bernick D.L. 2021. De-novo assembly of Limnospira fusiformis using ultra-long reads // Front. Microbiol. V. 12. https://doi.org/10.3389/fmicb.2021.657995
  32. Hillwig M.L., Zhu Q., Liu X. 2014. Biosynthesis of ambiguine indole alkaloids in cyanobacterium Fischerella ambigua // ACS Chem. Biol. V. 9. P. 372.
  33. Hong J., Luesch H. 2012. Largazole: from discovery to broad-spectrum therapy // Nat. Prod. Rep. V. 29. № 4. P. 449.
  34. Huang I.S., Zimba P.V. 2019. Cyanobacterial bioactive metabolites – A review of their chemistry and biology // Harmful Algae. V. 83. P. 42.
  35. Iwasaki A., Shiota I., Sumimoto S. et al. 2017. Kohamamides A, B, and C, Cyclic depsipeptides from an Okeania sp. marine cyanobacterium // J. Nat. Prod. V. 80. P. 1948.
  36. Jain S., Prajapat G., Abrar M. et al. 2017. Cyanobacteria as efficient producers of mycosporine-like amino acids. J // Basic Microbiol. V. 57(9). P. 715.
  37. Jodlbauer J., Rohr T., Spadiut O., Mihovilovic M.D., Rudroff F. 2021. Biocatalysis in green and blue: Cyanobacteria // Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2020.12.009
  38. Kim H., Lantvit D., Hwang C.H. et al. 2012. Indole alkaloids from two cultured cyanobacteria, Westiellopsis sp. and Fischerella muscicola // Bioorg. Med. Chem. V. 20. P. 5290.
  39. Koch M., Bruckmoser J., Scholl J. et al. 2020. Maximizing PHB content in Synechocystis sp. PCC 6803: a new metabolic engineering strategy based on the regulator PirC // Microb. Cell Fact. V. 19. P. 231.
  40. Komarek J., Kaštovský J., Mareš J., Johansen J.R. 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach // Preslia. V. 86. P. 295.
  41. Kosourov S., Seibert M. 2009. Hydrogen photoproduction by nutrient deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions // Biotech. Bioeng. V. 102. № 1. P. 50.
  42. Kulik M.M. 1995. The potential for using cyanobacteria (blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi // Eur. J. Plant Pathol. V. 101. № 6. P. 585.
  43. Li M., Han P., Mao Z.Y. et al. 2016. Studies toward asymmetric synthesis of hoiamides A and B // Tetrahedron Lett. V. 57. P. 5620.
  44. Matsunaga T., Sudo H., Takemasa H. et al. 1996. Sulfated extracellular polysaccharide production by the halophilic cyanobacterium Aphanocapsa halophytia immobilized on light-diffusing optical fibers // Appl. Microbiol. Biotech. V. 45. № 1–2. P. 24.
  45. Meickle T., Matthew S., Ross C., Luesch H., Paul V. 2009. Bioassay-guided isolation and identification of desacetylmicrocolin B from Lyngbya cf. polychroa // Planta Med. V. 75. P. 1427.
  46. Melis A., Zhang L., Forestier M. et al. 2000. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii // Plant Physiol. V. 122. № 1. P. 127.
  47. Mi Y., Zhang, J., He S., Yan X. 2017. New peptides isolated from marine cyanobacteria, an overview over the past decade // Mar. Drugs V. 15. P. 132.
  48. Mühlsteinová R., Hauer T., De Ley P., Pietrasiak N. 2018. Seeking the true Oscillatoria: a quest for a reliable phylogenetic and taxonomic reference point // Preslia. V. 90. P. 151.
  49. Nandagopal P., Steven A.N., Chan L.W. et al. 2021. Bioactive metabolites produced by cyanobacteria for growth adaptation and their pharmacological properties // Biology (Basel). V. 10. № 10. P. 1061.
  50. Oliver N.J., Rabinovitch-Deere C.A., Carroll A.L. et al. 2016. Cyanobacterial metabolic engineering for biofuel and chemical production // Curr. Opin. Chem. Biol. V. 35. P. 43.
  51. Pancrace C., Jokela J., Sassoon N. et al. 2017. Rearranged biosynthetic gene cluster and synthesis of hassallidin in Planktothrix serta PCC 8927 // ACS Chem. Biol. V. 12. P. 1796.
  52. Parmar A., Singh N.K., Pandey A. et al. 2011. Cyanobacteria and microalgae: a positive prospect for biofuels // Bioresour. Technol. V. 102. № 22. P. 10163.
  53. Pathak J., Pandey A., Maurya P.K. et al. 2020. Cyanobacterial secondary metabolite scytonemin: A potential photoprotective and pharmaceutical compound // Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. V. 90. P. 467.
  54. Pisciotta J.M., Zou Y., Baskakov I.V. 2010. Light-dependent electrogenic activity of cyanobacteria // PloS ONE. V. 5. № 5. e10821.
  55. Prasanna R., Sood A., Suresh A., Nayak S., Kaushik B. 2007. Potentials and applications of algal pigments in biology and industry // Acta Botanica Hungarica. V. 49(1–2). P. 131.
  56. Prasanna R., Sood A., Jaiswal P. et al. 2010. Rediscovering cyanobacteria as valuable sources of bioactive compounds (Review) // Appl. Biochem. Microbiol. V. 46. P. 119.
  57. Polyak Yu.M., Sukharevich V.I. 2020. Role of cyanobacteria in producing of the odor compounds and their impact on organoleptic properties of water // Hydrobiol. J. (Engl. Transl.). V. 56. № 5. P. 51.
  58. Rajneesh R., Singh S.P., Pathak J., Sinha R.P. 2017. Cyanobacterial factories for the production of green energy and value-added products: An integrated approach for economic viability // Renewable Sustainable Energy Rev. V. 69. P. 578.
  59. Sadvakasova A.K., Kossalbayev B.D., Zayadan B.K. et al. 2020. Bioprocesses of hydrogen production by cyanobacteria cells and possible ways to increase their productivity // Renewable Sustainable Energy Rev. V. 133. 110 054.
  60. Saini D.K., Pabbi S., Shukla P. 2018. Cyanobacterial pigments: Perspectives and biotechnological approaches // Food Chem. Toxicol. V. 120. P. 616.
  61. Sheng J., Vannela R., Rittmann B. 2012. Disruption of Synechocystis PCC 6803 for lipid extraction // Water Sci. Technol. V. 65. № 3. P. 567.
  62. Sung S.Y., Sin L.T., Tee T.T. et al. 2013. Antimicrobial agents for food packaging applications // Trends Food Sci. Technol. V. 33. P. 110.
  63. Tan L.T., Goh B.P.L., Tripathi A. et al. 2010. Natural antifoulants from the marine cyanobacterium Lyngbya majuscule // Biofouling. V. 26. P. 685.
  64. Thuan N.H., An T.T., Shrestha A. et al. 2019. Recent advances in exploration and biotechnological production of bioactive compounds in three cyanobacterial genera: Nostoc, Lyngbya and Microcystis // Front. Chem. V. 7. P. 604. https://doi.org/10.3389/fchem.2019.00604
  65. Vestola J., Shishido T.K., Jokela J. et al. 2014. Hassallidins, antifungal glycolipopeptides, are widespread among cyanobacteria and are the end-product of a nonribosomal pathway // Proc. Natl. Acad. Sci. USA. V. 111. E1909–E1917.
  66. Vijayakumar S., Menakha M. 2015. Pharmaceutical applications of cyanobacteria – A review // J. Acute Medicine. V. 5. № 1. P. 15.
  67. Zahra Z., Choo D.H., Lee H., Parveen A. 2020. Cyanobacteria: review of current potentials and applications // Environments. V. 7. P. 13.

Copyright (c) 2023 Ю.М. Поляк, В.И. Сухаревич

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies