Analytical Approximations of the Characteristics of Nighttime Hydroxyl on Mars and Intra-Annual Variations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Observations of vibrationally excited hydroxyl (OH*) emissions are widely used to obtain information about the dynamics and composition of the atmosphere. We present some analytical approximations for the characteristics of the hydroxyl layer in the Martian atmosphere such as OH* concentration at the maximum and height of the maximum, as well as relations for estimating the influence of various factors on the OH* layer in night conditions. These characteristics depend on the temperature of the environment, concentration of atomic oxygen, and their vertical gradients. The relations are applied to the results of numerical modeling using the global atmospheric circulation model for prediction of seasonal behavior of the hydroxyl layer on Mars. Annual and intra-annual variations in the concentration of excited hydroxyl and layer height from the modeling data have both some similarities with those of the Earth and significant differences. The concentration and height maximum in the equatorial, northern and southern midlatitudes vary depending on the season; the maximum concentration and the minimum height fall on the first half of the year. Model calculations confirmed the presence of the peak OH* concentration at polar latitudes in winter at an altitude of approximately 50 km with the volume emission densities of 2.1, 1.4, and 0.6 × 104 photons cm–3 s–1 for vibrational level transitions 1–0, 2–1, and 2–0, respectively. The relations obtained may be used for the analysis of measurements and interpretation of their variations.

About the authors

D. S. Shaposhnikov

Moscow Institute of Physics and Technology (National Research University), Moscow, Russia

Email: shaposhnikov@phystech.edu
Россия, Москва

M. Grigalashvili

Max Planck Institute for Solar System Research, Göttingen, Germany

Email: shaposhnikov@phystech.edu
Германия, Гёттинген

A. S. Medvedev

Max Planck Institute for Solar System Research, Göttingen, Germany

Email: shaposhnikov@phystech.edu
Германия, Гёттинген

G. R. Zonnemann

Max Planck Institute for Solar System Research, Göttingen, Germany

Email: shaposhnikov@phystech.edu
Германия, Гёттинген

P. Khartog

Max Planck Institute for Solar System Research, Göttingen, Germany

Author for correspondence.
Email: shaposhnikov@phystech.edu
Германия, Гёттинген

References

  1. Adler-Golden S. Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements // J. Geophys. Res. 1997. V. 102. P. 19 969–19 976. https://doi.org/10.1029/97JA01622
  2. Ammosov P., Gavrilyeva G., Ammosova A., Koltovskoi I. Response of the mesopause temperatures to solar activity over Yakutia in 1999–2013 // Adv. Space Res. 2014. V. 54. P. 2518–2524. https://doi.org/10.1016/j.asr.2014.06.007
  3. Barbier D. L’emission de la raie rouge du ciel nocturne en Afrique // Ann. Geophys. 1961. V. 17. P. 305–318.
  4. Bertaux J.L., Gondet B., Lefèvre F., Bibring J.P., Montmessin F. First detection of O2 1.27 μm nightglow emission at Mars with OMEGA/MEX and comparison with general circulation model predictions // J. Geophys. Res. 2012. V. 117. P. E00J04. https://doi.org/10.1029/2011JE003890
  5. Buriti R.A., Takahashi H., Lima L.M., Medeiros A.F. Equatorial planetary waves in the mesosphere observed by airglow periodic oscillations // Adv. Space. Res. 2005.V. 35. P. 2031–2036. https://doi.org/10.1016/j.asr.2005.07.012
  6. Burkholder J.B., Sander S.P., Abbatt J., Barker J.R., Cappa C., Crounse J.D., Dibble T.S., Huie R.E., Kolb C.E., Kurylo M.J., and 4 co-authors. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies // Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, 2020. http://jpldataeval.jpl.nasa.gov.
  7. Caridade P.J.S.B., Horta J.-Z.J., Varandas A.J.C. Implications of the O + OH reaction in hydroxyl nightglow modeling // Atmos. Chem. Phys. 2013.V. 13. P. 1–13. https://doi.org/10.5194/acp-13-1-2013
  8. Chalamala B.R., Copeland R.A. Collision dynamics of OH (X2Π, v = 9) // J. Chem. Phys. 1993. V. 99. P. 5807–5811. https://doi.org/10.1063/1.465932
  9. Clancy R.T., Sandor B.J., García-Muñoz A., Lefèvre F., Smith M.D., Wolff M.J., Montmessin F., Murchie S.L., Nair H. First detection of Mars atmospheric hydroxyl: CRISM Near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter atmosphere // Icarus. 2013. V. 226. P. 272–281. https://doi.org/10.1016/j.icarus.2013.05.035
  10. Dalin P., Perminov V., Pertsev N., Romejko V. Updated long-term trends in mesopause temperature, airglow emissions, and noctilucent clouds // J. Geophys. Res. 2020. V. 125. P. e2019JD030814. https://doi.org/10.1029/2019JD030814
  11. Dodd J.A., Lipson S.J., Blumberg W.A.M. Formation and vibrational relaxation of OH(X2Πi, v) by O2 and CO2 // J. Chem. Phys. 1991.V. 95. P. 5752–5762. https://doi.org/10.1063/1.461597
  12. Forget F., Hourdin F., Talagrand O. CO2 snowfall on Mars: Simulation with a general circulation model // Icarus. 1998. V. 131. P. 302–316. https://doi.org/10.1006/icar.1997.5874
  13. Forget F., Hourdin F., Fournier R., Hourdin C., Talagrand O., Collins M., Lewis S.R., Read P.L., Huot J.-P. Improved general circulation models of the Martian atmosphere from the surface to above 80 km // J. Geophys. Res. 1999. V. 104. P. 24 155–24 176. https://doi.org/10.1029/1999JE001025
  14. Forget F., Millour E., Montabone L., Lefevre F. Non condensable gas enrichment and depletion in the Martian polar regions // Mars Atmosphere: Modeling and Observations. 2008. V. 1447. P. 9106. Bibcode:2008LPICo1447.9106F
  15. Fukuyama K. Airglow variations and dynamics in the lower thermosphere and upper mesosphere – II. Seasonal and long-term variations // J. Atmos. Terr. Phys. 1977. V. 39. P. 1–14.
  16. Gao H., Xu J., Wu Q. Seasonal and QBO variations in the OH nightglow emission observed by TIMED/SABER // J. Geophys. Res. 2010. V. 115. P. A06313. https://doi.org/10.1029/2009JA014641
  17. García-Muñoz A., McConnell J.C., McDade I.C., Melo S.M.L. Airglow on Mars: Some model expectations for the OH Meinel bands and the O2 IR atmospheric band // Icarus. 2005. V. 176. P. 75–95. https://doi.org/10.1016/j.icarus.2005.01.006
  18. Gavrilov N.M., Shiokawa K., Ogawa T. Seasonal variations of medium-scale gravity wave parameters in the lower thermosphere obtained from SATI observations at Shigaraki, Japan // J. Geophys. Res. 2002. V. 107. № D24. P. 4755. https://doi.org/10.1029/2001JD001469
  19. Gavrilyeva G.A., Ammosov P.P., Koltovskoi I.I. Semidiurnal thermal tide in the mesopause region over Yakutia // Geomagn. and Aeron. 2009. V. 49. № 1. P. 110–114. https://doi.org/10.1134/S0016793209010150
  20. Gérard J.-C., Soret L., Saglam A., Piccioni G., Drossart P. The distributions of the OH Meinel and O2 (a1∆−X3Σ) nightglow emissions in the Venus mesosphere based on VIRTIS observations // Adv. Space. Res. 2010. V. 45. P. 1268–1275. https://doi.org/10.1016/j.asr.2010.01.022
  21. Gorinov D.A., Khatuntsev I.V., Zasova L.V., Turin A.V., Piccioni G. Circulation of Venusian atmosphere at 90–110 km based on apparent motions of the O2 1.27 μm nightglow from VIRTIS-M (Venus Express) data // Geophys. Res. Lett. 2018. V. 45. P. 2554–2562. https://doi.org/10.1002/2017GL076380
  22. Grygalashvyly M., Sonnemann G.R., Lübken F.-J., Hartogh P., Berger U. Hydroxyl layer: Mean state and trends at midlatitudes // J. Geophys. Res. 2014. V. 119. P. 12 391–12 419. https://doi.org/10.1002/2014JD022094
  23. Harrison A.W., Evans W.F.J., Llewellyn E.J. Study of the (4-1) and (5-2) hydroxyl bands in the night airglow // Can. J. Phys. 1971. V. 49. P. 2509–2517.
  24. Kaye J.A. On the possible role of the reaction O + HO2 → → OH + O2 in OH airglow // J. Geophys. Res. 1988. V. 93. P. 285–288. https://doi.org/10.1029/JA093iA01p00285
  25. Krasnopolsky V.A. Photochemistry of the Martian atmosphere: Seasonal, latitudinal, and diurnal variations // Icarus. 2006. V. 185. P. 153–170. https://doi.org/10.1016/j.icarus.2006.06.003
  26. Krasnopolsky V.A. Solar activity variations of thermospheric temperatures on Mars and a problem of CO in the lower atmosphere // Icarus. 2010. V. 207. P. 638–647. https://doi.org/10.1016/j.icarus.2009.12.036
  27. Krasnopolsky V.A. Nighttime photochemical model and night airglow on Venus // Planet. and Space Sci. 2013. V. 85. P. 78–88. https://doi.org/10.1016/j.pss.2013.05.022
  28. Krasnopolsky V.A., Lefèvre F. Chemistry of the atmospheres of Mars, Venus, and Titan // Comparative Climatology of Terrestrial Planets / Eds Mackwell S.J., et al. Tucson: Univ. Arizona, 2013. P. 231–275. https://doi.org/10.2458/azu_uapress_9780816530595-ch11
  29. Krassovsky V.I. Chemistry of the upper atmosphere // Space Res. 1963. V. 3. P. 96–116.
  30. Lefèvre F., Lebonnois S., Montmessin F., Forget F. Three-dimensional modeling of ozone on Mars // J. Geophys. Res. 2004. V. 109. P. E07004. https://doi.org/10.1029/2004JE002268
  31. Lefèvre F., Bertaux J.-L., Clancy R.T., Encrenaz T., Fast K., Forget F., Lebonnois S., Montmessin F., Perrier S. Heterogeneous chemistry in the atmosphere of Mars // Nature. 2008. V. 454. P. 971–975. https://doi.org/10.1038/nature07116
  32. Lindner B.L. Ozone on Mars: the effects of clouds and airborne dust // Planet. and Space Sci. 1988. V. 36. P. 125–144. https://doi.org/10.1016/0032-0633(88)90049-9
  33. Liu G., Shepherd G.G. An empirical model for the altitude of the OH nightglow emission // Geophys. Res. Lett. 2006. V. 33. P. L09805. https://doi.org/10.1029/2005GL025297
  34. Liu G., Shepherd G.G., Roble R.G. Seasonal variations of the nighttime O(1S) and OH airglow emission rates at mid-to-high latitudes in the context of the large-scale circulation // J. Geophys. Res. 2008. V. 113. P. A06302. https://doi.org/10.1029/2007JA012854
  35. Llewellyn E.J., Long B.H., Solheim B.H. The quenching of OH* in the atmosphere // Planet. and Space Sci. 1978. V. 26. P. 525–531. https://doi.org/10.1016/0032-0633(78)90043-0
  36. Lopez-Gonzalez M.J., Rodríguez E., Shepherd G.G., Sargoytchev S., Shepherd M.G., Aushev V.M., Brown S., García-Comas M., Wiens R.H. Tidal variations of O2 Atmospheric and OH(6-2) airglow and temperature at mid-latitudes from SATI observations // Ann. Geophys. 2005. V. 23. P. 3579–3590. https://doi.org/10.5194/angeo-23-3579-2005
  37. Lopez-Gonzalez M.J., Rodríguez E., García-Comas M., Costa V., Shepherd M.G., Shepherd G.G., Aushev V.M., Sargoytchev S. Climatology of planetary wave type oscillations with periods of 2–20 days derived from O2 atmospheric and OH(6-2) airglow observations at mid-latitude with SATI // Ann. Geophys. 2009. V. 27. P. 3645–3662. https://doi.org/10.5194/angeo-27-3645-2009
  38. Makhlouf U.B., Picard R.H., Winick J.R. Photochemical-dynamical modeling of the measured response of airglow to gravity waves. 1. Basic model for OH airglow // J. Geophys. Res. 1995. V. 100. P. 1128911311. https://doi.org/10.1029/94JD03327
  39. Marsh D.R., Smith A.K., Mlynczak M.G., Russell III J.M. SABER observations of the OH Meinel airglow variability near the mesopause // J. Geophys. Res. 2006. V. 111. P. A10S05. https://doi.org/10.1029/2005JA011451
  40. McDade I.C., Llewellyn E.J. Kinetic parameters related to sources and sinks of vibrationally excited OH in the nightglow // J. Geophys. Res. 1987. V. 92. P. 7643–7650. https://doi.org/10.1029/JA092iA07p07643
  41. Medvedeva I.V., Semenov A.I., Pogoreltsev A.I., Tatarnikova A.V. Influence of sudden stratospheric warming on the mesosphere/lower thermosphere from the hydroxyl emission observations and numerical simulations // J. Atmos. Sol. Terr. Phys. 2019. V. 187. P. 22–32. https://doi.org/10.1016/j.jastp.2019.02.005
  42. Medvedeva I.V., Ratovsky K.G. Manifestation of wave activity in the upper atmosphere during winter sudden stratospheric warmings // Современные проблемы дистанционного зондирования Земли из космоса. 2020. V. 17(6). P. 159–166. https://doi.org/10.21046/2070-7401-2020-17-6-159-166
  43. Meriwether J.W., Jr. A review of the photochemistry of selected nightglow emissions from the mesopause // J. Geophys. Res. 1989. V. 94. P. 14629–14646. https://doi.org/10.1029/JD094iD12p14629
  44. Millour E., Forget F., Spiga A., Vals M., Zakharov V., Montabone L., Lefèvre F., Montmessin F., Chaufray J.-Y., López‒Valverde M.A., and 5 co-authors. The Mars Climate Database (Version 5.3) // Scientific Workshop: “From Mars Express to ExoMars”, 2018. https://ui.adsabs.harvard.edu/link_gateway/2018fmee. confE.68M/PUB_PDF
  45. Mlynczak M.G., Hunt L.A., Mast J.C., Marshall B.T., Russell III J.M., Smith A.K., Siskind D.E., Yee J.-H., Mertens C.J., Martin-Torres F.J., and 3 co-authors. Atomic oxygen in the mesosphere and lower thermosphere derived from SABER: Algorithm theoretical basis and measurement uncertainty // J. Geophys. Res. 2013. V. 118. P. 5724–5735. https://doi.org/10.1002/jgrd.50401
  46. Mlynczak M.G., Hunt L.A., Marshall B.T., Mertens C.J., Marsh D.R., Smith A.K., Russell J.M., Siskind D.E., Gordley L.L. Atomic hydrogen in the mesopause region derived from SABER: Algorithm theoretical basis, measurement uncertainty, and results // J. Geophys. Res. 2014. V. 119. P. 3516–3526. https://doi.org/10.1002/2013JD021263
  47. Mulligan F.G., Dyrland M.E., Sigernes F., Deehr C.S. Inferring hydroxyl layer peak heights from ground-based measurements of OH (6–2) band integrated emission rate at Longyearbyen (78° N, 16° E) // Ann. Geophys. 2009. V. 27. P. 4197–4205. https://doi.org/10.5194/angeo-27-4197-2009
  48. Nagy A.F., Lui S.C., Baker D.J. Vibrationally-excited hydroxyl molecules in the lower atmosphere // Geophys. Res. Lett. 1976. V. 3. P. 731–734. https://doi.org/10.1029/GL003i012p00731
  49. Nair H., Allen M., Anbar A.D., Yung Y.L., Clancy R.T. A Photochemical model of the Martian atmosphere // Icarus. 1994. V. 111. P. 124–150. https://doi.org/10.1006/icar.1994.1137
  50. Navarro T., Madeleine J.-B., Forget F., Spiga A., Millour E., Montmessin F., Määttänen A. Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds // J. Geophys. Res. 2014.V. 119. P. 1479–1495. https://doi.org/10.1002/2013JE004550
  51. Perminov V.I., Semenov A.I., Medvedeva I.N., Pertsev N.N. Temperature variability in the mesopause region according to hydroxyl-emission observations at midlatitudes // Geomagn. Aeron. 2014. V. 54. № 2. P. 230–239. https://doi.org/10.1134/ S0016793214020157
  52. Perminov V.I., Pertsev N.N., Dalin P.A., Zheleznov Yu.A., Sukhodoev V.A., Orekhov M.D. Seasonal and long-term changes in the intensity of O2(b1Σ) and OH(X2Π) airglow in the mesopause region // Geomagn. and Aeron. 2021. V. 61. P. 589–599. https://doi.org/10.1134/S0016793221040113
  53. Pertsev N., Perminov V. Response of the mesopause airglow to solar activity inferred from measurements at Zvenigorod, Russia // Ann. Geophys. 2008. V. 26. P. 1049–1056. https://doi.org/10.5194/angeo-26-1049-2008
  54. Pertsev N.N., Andreyev A.B., Merzlyakov E.G., Perminov V.I. Mesosphere-thermosphere manifestations of stratospheric warmings: joint use of satellite and ground-based measurements // Current Problems in Remote Sensing of the Earth from Space. 2013. V. 10. № 1. P. 93–100. http://jr.rse.cosmos.ru/article.aspx?id=1154&lang=eng
  55. Piccioni G., Drossart P., Zasova L., Migliorini A., Gérard J.-C., Mills F.P., Shakun A., García Muñoz A., Ignatiev N., Grassi D., and 3 co-authors. The VIRTIS-Venus Express Technical Team. First detection of hydroxyl in the atmosphere of Venus // Astron. and Astrophys. 2008. V. 483. P. L29–L33. https://doi.org/10.1051/0004-6361:200809761
  56. Popov A.A., Gavrilov N.M., Andreev A.B., Pogoreltsev A.I. Interannual dynamics in intensity of mesoscale hydroxyl nightglow variations over Almaty // Solar-Terr. Phys. 2018. V. 4. № 2. P. 63–68. https://doi.org/10.12737/stp-42201810
  57. Popov A.A., Gavrilov N.M., Perminov V.I., Pertsev N.N., Medvedeva I.V. Multi-year observations of mesoscale variances of hydroxyl nightglow near the mesopause at Tory and Zvenigorod // J. Atmos. Solar-Terr. Phys. 2020. V. 205. P. 1–8. https://doi.org/10.1016/j.jastp.2020.105311
  58. Reisin E., Scheer J., Dyrland M.E., Sigernes F., Deehr C.S., Schmidt C., Höppner K., Bittner M., Ammosov P.P., Gavrilyeva G.A., and 17 co-authors. Traveling planetary wave activity from mesopause region airglow temperatures determined by the Network for the Detection of Mesospheric Change (NDMC) // J. Atmos. Solar-Terr. Phys. 2014. V. 119. P. 71–82. https://doi.org/10.1016/j.jastp.2014.07.002
  59. Russell J.P., Ward W.E., Lowe R.P., Roble R.G., Shepherd G.G., Solheim B. Atomic oxygen profiles (80 to 115 km) derived from Wind Imaging Interferometer/Upper Atmospheric Research Satellite measurements of the hydroxyl and greenline airglow: Local time–latitude dependence // J. Geophys. Res. 2005. V. 110. P. D15305. https://doi.org/10.1029/2004JD005570
  60. Shaposhnikov D.S., Medvedev A.S., Rodin A.V., Hartog P. Seasonal water “pump” in theatmosphere of Mars: Vertical transport to the thermosphere // Geophys. Res. Lett. 2019. V. 46. P. 4161–4169. https://doi.org/10.1029/2019GL082839
  61. Shefov N.N. Hydroxyl emission of the upper atmosphere. I // Planet. and Space Sci. 1969. V. 17. P. 797–813. https://doi.org/10.1016/0032-0633(69)90089-0
  62. Shepherd M.G., Meek C.E., Hocking W.K., Hall C.M., Partamies N., Sigernes F., Manson A.H., Ward W.E. Multi-instrument study of the mesosphere-lower thermosphere dynamics at 80° N during the major SSW in January 2019 // J. Atmos. Solar-Terr. Phys. 2020. V. 210. P. 105 427. https://doi.org/10.1016/j.jastp.2020.105427
  63. Sonnemann G.R., Hartogh P., Berger U., Grygalashvyly M. Hydroxyl layer: trend of number density and intra-annual variability // Ann. Geophys. 2015. V. 33. P. 749–767. https://doi.org/10.5194/angeo-33-749-2015
  64. Soret L., Gérard J.-C., Piccioni G., Drossart P. Venus OH nightglow distribution based on VIRTIS limb observations from Venus Express // Geophys. Res. Lett. 2010. V. 37. P. L06805. https://doi.org/10.1029/2010GL042377
  65. Soret L., Gérard J.-C., Piccioni G., Drossart P. The OH Venus nightglow spectrum: intensity and vibrational composition from VIRTIS Venus Express observations // Planet. and Space Sci. 2012. V. 73. P. 387–396. https://doi.org/10.1016/j.pss.2012.07.027
  66. Swenson G.R., Gardner C.S. Analytical models for the resposes of the mesospheric OH* and Na layers to atmospheric gravity waves // J. Geophys. Res. 1998. V. 103. P. 6271–6294. https://doi.org/10.1029/97JD02985
  67. Takahashi H., Batista P.P. Simultaneous measurements of OH (9.4), (8.3), (7.2), 6.2), and (5.1) bands in the airglow // J. Geophys. Res. 1981. V. 86. P. 5632–5642. https://doi.org/10.1029/JA086iA07p05632
  68. Turnbull D.N., Lowe R.P. Vibrational population distribution in the hydroxyl night airglow // Can. J. Phys. 1983. V. 61. P. 244–250. https://doi.org/10.1139/p83-033
  69. Wiens R.H., Weill G.M. Diurnal, annual and solar cycle variations of hydroxyl and sodium nightglow intensities in the Europe-Africa sector // Planet. and Space Sci. 1973. V. 21. P. 1011–1027.
  70. Xu J., Smith A.K., Jiang G., Gao H., Wei Y., Mlynczak M.G., Russell III J.M. Strong longitudinal variations in the OH nightglow // Geophys. Res. Lett. 2010. V. 37. P. L21801. https://doi.org/10.1029/2010GL043972
  71. Xu J., Gao H., Smith A.K., Zhu Y. Using TIMED/SABER nightglow observations to investigate hydroxyl emission mechanisms in the mesopause region // J. Geophys. Res. 2012. V. 117. P. D02301. https://doi.org/10.1029/2011JD016342

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (450KB)
3.

Download (661KB)
4.

Download (120KB)

Copyright (c) 2023 Д.С. Шапошников, М. Григалашвили, А.С. Медведев, Г.Р. Зоннеманн, П. Хартог

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies