Noise-reducing properties of nanoporous silica ceramic grits
- Authors: Zobov K.V.1,2, Bardakhanov S.P.1,2,3, Gaponenko V.R.1, Trufanov D.Y.1, Garmaev B.Z.3
-
Affiliations:
- S.A. Khristianovich Institute of Theoretical and Applied Mechanics
- Moscow Polytechnic University
- Institute of Physical Materials Science
- Issue: Vol 71, No 5 (2025)
- Pages: 648–658
- Section: ФИЗИЧЕСКАЯ АКУСТИКА
- URL: https://journals.rcsi.science/0320-7919/article/view/376004
- DOI: https://doi.org/10.7868/S3034500625050045
- ID: 376004
Cite item
Abstract
About the authors
K. V. Zobov
S.A. Khristianovich Institute of Theoretical and Applied Mechanics; Moscow Polytechnic UniversityNovosibirsk, Russia; Moscow, Russia
S. P. Bardakhanov
S.A. Khristianovich Institute of Theoretical and Applied Mechanics; Moscow Polytechnic University; Institute of Physical Materials Science
Email: bard@itam.nsc.ru
Novosibirsk, Russia; Moscow, Russia; Ulan-Ude, Russia
V. R. Gaponenko
S.A. Khristianovich Institute of Theoretical and Applied MechanicsNovosibirsk, Russia
D. Yu. Trufanov
S.A. Khristianovich Institute of Theoretical and Applied MechanicsNovosibirsk, Russia
B. Z. Garmaev
Institute of Physical Materials ScienceUlan-Ude, Russia
References
- Jacobsen F., Poulsen T., Rindel J.H., Gade A.C., Ohlrich M. Fundamentals of acoustics and noise control. Denmark: DTU 2008. 180 p.
- Huber P. Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media // J. Phys.: Condens. Matter. 2015. V. 27. 103102. https://doi.org/10.1088/0953-8984/27/10/103102
- Bardakhanov S.P. Flow of media with high nanoparticle’s concentration // Inter. Symp. Sedimentation and Sediment transport. Monte Verita, Switzerland, 2–6 June 2002. Proc. Kluwer Academic Publishers, 2003.
- Bardakhanov S.P., Kozlov S.A. Hot-wire measurements in nanopowder flow // Eighth Int. Conf. on Stability of Homogeneous and Inhomogeneous Liquids, ITAM, Novosibirsk, 2001. P. 16–17 (in Russ.).
- Bardakhanov S.P., Joo Sang W. Hot-wire anemometry for velocity measurements in nanopowder flows // J. Fluids Eng. 2009. V. 131. № 3. P. 034501. https://doi.org/10.1115/1.3077140
- Kudryashova O., Sokolov S., Zhukov I., Vorozhtsov A. Mathematical model of the pulse generation of decontaminating aerosols // Materials. 2022. 15. 8215. https://doi.org/10.3390/mal52282150
- Kozlov V.F., Fedorov A.V., Mahnuth N.D. Acoustic properties of rarefied gases inside pores of simple geometries // J. Acoust. Soc. Am. 2005. V. 117. № 6. P. 3402–3411. https://doi.org/10.1121/1.1893428
- Kuczmarski M.A., Johnston J.C. Acoustic Absorption in Porous Materials, Nasa/Tm—2011–216995 1, 2011.
- Venegas R., Unmova O. Influence of sorption on sound propagation in granular activated carbon // J. Acoust. Soc. Am. 2016. V. 140. P. 755–66. https://doi.org/10.1121/1.4959006
- Venegas R., Boutin C., Unmova O. Acoustics of multiscale sorptive porous materials // Phys. Fluids. 2017. V. 29. 082006. https://doi.org/10.1063/1.4999053
- Bardakhanov S.P., Lee C.M., Goverdowsky V.N., Zavjalov A.P., Zobov K.V., Chen M., Xu Z.H., Chakin I.K., Trufanov D.Yu. Hybrid sound-absorbing foam materials with nanostructured grit-impregnated pores // Applied Acoustics. 2018. V. 139. P. 69–74. https://doi.org/10.1016/j.apacoust.2018.04.024
- First Symposium on Acoustics of Nanoporous Materials, 2019. https://acoustics.ac.uk/app/uploads/2019/03/Summary_SAnPM_v01-1.pdf
- Kavokine N., Netz R.R., Bocquet L. Fluids at the Nanoscale: From Continuum to Subcontinuum Transport // Annual Review of Fluid Mechanics. 2021. V. 53. P. 377–410. https://doi.org/10.1146/annurev-fluid-071320-095958
- Didier L., Sam A., Venegas R., Coasne B. Acoustic response of molecular adsorption and sound propagation in nanoporous materials // Physical Review Materials. 2025. V. 9(5). 056001. 12 pp. https://doi.org/10.1103/PhysRevMaterials.9.056001
- Гладков С.О. О скорости звука в многофазных системах // Акуст. журн. 2024. Т. 70. № 1. С. 29–34.
- Руденко О.В., Собисевич А.Л., Собисевич Л.Е., Хедберг К.М., Шамаев Н.В. Нелинейная модель гранулированной среды, содержащей слои вязкой жидкости и газовые полости // Акуст. журн. 2012. Т. 58. № 1. С. 112–120.
- Begum H., Horoshenkov K.V., Conte M., Maljati W.J., Zhao S., Koebel M.M., Bonfiglio P., Venegas R. The acoustical properties of tetraethyl orthosilicate based granular silica aerogels // J. Acoust. Soc. Am. 2021. V. 149. P. 4149. https://doi.org/10.1121/10.0005200
- Bardakhanov S.P., Ivanov E.G. Sound propagation in nano- granular media // Nanotechnology in Mechanical Engineering, Ed. Bardakhanov S.P. School of Mechanical Engineering, Yeungnam University, 2002. P. 30–45.
- Bardakhanov S.P., Lysenko V.I., Obanin V.V., Trufanov D.Yu. Investigation of acoustic waves propagation and flow in nanodispersed medium // Thermophys. Aeromech. 2011. V. 18. № 1. P. 25–30. https://doi.org/10.1134/S086986431010033
- Bardakhanov S.P., Trufanov D.Yu., Zavjalov A.P. New type of medium – gases with high concentration of nanoparticles // Siberian J. Physics 2017. V. 12. № 2. P. 100–110. https://doi.org/10.54362/1818-7919-2017-12-2-100-110
- Zobov K.V., Garmeev B.Z., Bardakhanov S.P., Nomoev A.V., Trufanov D.Yu. Study of the sound diffusion in the nanopowder thick layer // Actual Problems of Continuum Mechanics: Experiment, Theory, and Applications. Novosibirsk, Russia, 2023. P. 030084. https://doi.org/10.1063/5.0134100
- Lee C.-M., Wang Y.S. A prediction method for the acoustical properties of multilayered noise control materials in standing wave-duct systems // J. Sound Vibr. 2006. V. 298. № 1–2. P. 350–365. https://doi.org/10.1016/j.jsv.2006.05.025
- Lee C.-M., Xu Y. A modified transfer matrix method for prediction of transmission loss of multilayer acoustic materials // J. Sound Vibr. 2009. V. 326. № 1–2. P. 290–301. https://doi.org/10.1016/j.jsv.2009.04.037
- Bardakhanov S., Korchagin A., Kuksanov N., Lavrukhin A., Salimov R., Fadeev S., Cherepkov V. Nanopowder production based on technology of solid raw substances evaporation by electron beam accelerator // Materials Science and Engineering B. 2006. V. 132. № 1–2. P. 204–208. https://doi.org/10.1016/j.mseb.2006.02.038
- Бардаханов С.П., Гиндулина В.З., Лиенко В.А. Использование нанодисперсных порошков в создании керамических материалов // Тр. Научно-практической конференции “Керамические материалы: производство и применение”, 2000, Москва. С. 83–84.
- Bae C.H., Bardakhanov S.P., Chong J.W., Kim A.V., Lee D.J., Lienko V.A., Rustamov Sh.L., Sah J.Y. Ceramic preparation of nano- and micropowder // Abs. 9th Intern. Symp. Metastable, Mechanically Alloyed and Nanocrystalline Materials, Seoul, 2002.
- Бардаханов С.П., Ким А.В., Лиенко В.А., Рустамов Ш.Л., Ташанев Ю.Ю., Шмаков А.Н. Экспериментальное исследование по созданию экологически чистой технологии получения керамики из нанодисперсных порошков // Конструкции из композиционных материалов. 2005. № 4. С. 71–79.
- Лысенко В.Н., Труфанов Д.Ю., Бардаханов С.П. Разделение газов нанопористой керамикой // Вестник НГУ. Сер. Физика. 2012. Т. 7. № 2. С. 39–42. https://doi.org/10.54362/1818-7919-2012-7-2-39-42
- Obanin V.V., Trufanov D.Yu., Nomoev A.V., Bardakhanov S.P. Application of a hot-wire anemometer for measurements in flows of nanosized powders // Vestnik NSU. Series: Physics. 2008. V. 3. No 1. P. 23–28 (in Russ.). https://doi.org/10.54362/1818-7919-2008-3-1-23-28
- Kadic M., Milton G.W., van Hecke M., Wegener M. 3D metamaterials // Nat. Rev. Phys. 2019. V. 1. 198–210. https://doi.org/10.1038/s42254-018-0018-y
- Taghizadeh K., Shrivastava R.K., Luding S. Stochastic Model for Energy Propagation in Disordered Granular Chains // Materials. 2021. V. 14(7). P. 1815. https://doi.org/10.3390/ma14071815
- Li Yang Zheng, Shilin Qu, Florian Allein, Théo Thréard, Vitalyi Gusev, Vincent Tournat, Georgios Theocharis. Direct observation of edge modes in zigzag granular chains // J. Sound Vibr. 2022. V. 526. 116761. https://doi.org/10.1016/j.jsv.2022.116761
Supplementary files


