Noise-reducing properties of nanoporous silica ceramic grits

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article is devoted to the study of the possibilities of using granules obtained from nanosized silicon dioxide powders as materials that absorb low-frequency acoustic vibrations. Granules with sizes from hundreds of microns to several millimeters were obtained from silicon dioxide by different methods and were classified by the sizes of the resulting granules. Some of the granules were solid, and some had open porosity with pores in the nanometer range, the volume of which was more than 50% of the granule volume. The granules were used as an independent layer of noise-absorbing material, as well as a modifier of traditional materials used in mechanical engineering. It was found that granulated nanoporous materials based on nanoparticles can significantly suppress acoustic vibrations at low frequencies.

About the authors

K. V. Zobov

S.A. Khristianovich Institute of Theoretical and Applied Mechanics; Moscow Polytechnic University

Novosibirsk, Russia; Moscow, Russia

S. P. Bardakhanov

S.A. Khristianovich Institute of Theoretical and Applied Mechanics; Moscow Polytechnic University; Institute of Physical Materials Science

Email: bard@itam.nsc.ru
Novosibirsk, Russia; Moscow, Russia; Ulan-Ude, Russia

V. R. Gaponenko

S.A. Khristianovich Institute of Theoretical and Applied Mechanics

Novosibirsk, Russia

D. Yu. Trufanov

S.A. Khristianovich Institute of Theoretical and Applied Mechanics

Novosibirsk, Russia

B. Z. Garmaev

Institute of Physical Materials Science

Ulan-Ude, Russia

References

  1. Jacobsen F., Poulsen T., Rindel J.H., Gade A.C., Ohlrich M. Fundamentals of acoustics and noise control. Denmark: DTU 2008. 180 p.
  2. Huber P. Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media // J. Phys.: Condens. Matter. 2015. V. 27. 103102. https://doi.org/10.1088/0953-8984/27/10/103102
  3. Bardakhanov S.P. Flow of media with high nanoparticle’s concentration // Inter. Symp. Sedimentation and Sediment transport. Monte Verita, Switzerland, 2–6 June 2002. Proc. Kluwer Academic Publishers, 2003.
  4. Bardakhanov S.P., Kozlov S.A. Hot-wire measurements in nanopowder flow // Eighth Int. Conf. on Stability of Homogeneous and Inhomogeneous Liquids, ITAM, Novosibirsk, 2001. P. 16–17 (in Russ.).
  5. Bardakhanov S.P., Joo Sang W. Hot-wire anemometry for velocity measurements in nanopowder flows // J. Fluids Eng. 2009. V. 131. № 3. P. 034501. https://doi.org/10.1115/1.3077140
  6. Kudryashova O., Sokolov S., Zhukov I., Vorozhtsov A. Mathematical model of the pulse generation of decontaminating aerosols // Materials. 2022. 15. 8215. https://doi.org/10.3390/mal52282150
  7. Kozlov V.F., Fedorov A.V., Mahnuth N.D. Acoustic properties of rarefied gases inside pores of simple geometries // J. Acoust. Soc. Am. 2005. V. 117. № 6. P. 3402–3411. https://doi.org/10.1121/1.1893428
  8. Kuczmarski M.A., Johnston J.C. Acoustic Absorption in Porous Materials, Nasa/Tm—2011–216995 1, 2011.
  9. Venegas R., Unmova O. Influence of sorption on sound propagation in granular activated carbon // J. Acoust. Soc. Am. 2016. V. 140. P. 755–66. https://doi.org/10.1121/1.4959006
  10. Venegas R., Boutin C., Unmova O. Acoustics of multiscale sorptive porous materials // Phys. Fluids. 2017. V. 29. 082006. https://doi.org/10.1063/1.4999053
  11. Bardakhanov S.P., Lee C.M., Goverdowsky V.N., Zavjalov A.P., Zobov K.V., Chen M., Xu Z.H., Chakin I.K., Trufanov D.Yu. Hybrid sound-absorbing foam materials with nanostructured grit-impregnated pores // Applied Acoustics. 2018. V. 139. P. 69–74. https://doi.org/10.1016/j.apacoust.2018.04.024
  12. First Symposium on Acoustics of Nanoporous Materials, 2019. https://acoustics.ac.uk/app/uploads/2019/03/Summary_SAnPM_v01-1.pdf
  13. Kavokine N., Netz R.R., Bocquet L. Fluids at the Nanoscale: From Continuum to Subcontinuum Transport // Annual Review of Fluid Mechanics. 2021. V. 53. P. 377–410. https://doi.org/10.1146/annurev-fluid-071320-095958
  14. Didier L., Sam A., Venegas R., Coasne B. Acoustic response of molecular adsorption and sound propagation in nanoporous materials // Physical Review Materials. 2025. V. 9(5). 056001. 12 pp. https://doi.org/10.1103/PhysRevMaterials.9.056001
  15. Гладков С.О. О скорости звука в многофазных системах // Акуст. журн. 2024. Т. 70. № 1. С. 29–34.
  16. Руденко О.В., Собисевич А.Л., Собисевич Л.Е., Хедберг К.М., Шамаев Н.В. Нелинейная модель гранулированной среды, содержащей слои вязкой жидкости и газовые полости // Акуст. журн. 2012. Т. 58. № 1. С. 112–120.
  17. Begum H., Horoshenkov K.V., Conte M., Maljati W.J., Zhao S., Koebel M.M., Bonfiglio P., Venegas R. The acoustical properties of tetraethyl orthosilicate based granular silica aerogels // J. Acoust. Soc. Am. 2021. V. 149. P. 4149. https://doi.org/10.1121/10.0005200
  18. Bardakhanov S.P., Ivanov E.G. Sound propagation in nano- granular media // Nanotechnology in Mechanical Engineering, Ed. Bardakhanov S.P. School of Mechanical Engineering, Yeungnam University, 2002. P. 30–45.
  19. Bardakhanov S.P., Lysenko V.I., Obanin V.V., Trufanov D.Yu. Investigation of acoustic waves propagation and flow in nanodispersed medium // Thermophys. Aeromech. 2011. V. 18. № 1. P. 25–30. https://doi.org/10.1134/S086986431010033
  20. Bardakhanov S.P., Trufanov D.Yu., Zavjalov A.P. New type of medium – gases with high concentration of nanoparticles // Siberian J. Physics 2017. V. 12. № 2. P. 100–110. https://doi.org/10.54362/1818-7919-2017-12-2-100-110
  21. Zobov K.V., Garmeev B.Z., Bardakhanov S.P., Nomoev A.V., Trufanov D.Yu. Study of the sound diffusion in the nanopowder thick layer // Actual Problems of Continuum Mechanics: Experiment, Theory, and Applications. Novosibirsk, Russia, 2023. P. 030084. https://doi.org/10.1063/5.0134100
  22. Lee C.-M., Wang Y.S. A prediction method for the acoustical properties of multilayered noise control materials in standing wave-duct systems // J. Sound Vibr. 2006. V. 298. № 1–2. P. 350–365. https://doi.org/10.1016/j.jsv.2006.05.025
  23. Lee C.-M., Xu Y. A modified transfer matrix method for prediction of transmission loss of multilayer acoustic materials // J. Sound Vibr. 2009. V. 326. № 1–2. P. 290–301. https://doi.org/10.1016/j.jsv.2009.04.037
  24. Bardakhanov S., Korchagin A., Kuksanov N., Lavrukhin A., Salimov R., Fadeev S., Cherepkov V. Nanopowder production based on technology of solid raw substances evaporation by electron beam accelerator // Materials Science and Engineering B. 2006. V. 132. № 1–2. P. 204–208. https://doi.org/10.1016/j.mseb.2006.02.038
  25. Бардаханов С.П., Гиндулина В.З., Лиенко В.А. Использование нанодисперсных порошков в создании керамических материалов // Тр. Научно-практической конференции “Керамические материалы: производство и применение”, 2000, Москва. С. 83–84.
  26. Bae C.H., Bardakhanov S.P., Chong J.W., Kim A.V., Lee D.J., Lienko V.A., Rustamov Sh.L., Sah J.Y. Ceramic preparation of nano- and micropowder // Abs. 9th Intern. Symp. Metastable, Mechanically Alloyed and Nanocrystalline Materials, Seoul, 2002.
  27. Бардаханов С.П., Ким А.В., Лиенко В.А., Рустамов Ш.Л., Ташанев Ю.Ю., Шмаков А.Н. Экспериментальное исследование по созданию экологически чистой технологии получения керамики из нанодисперсных порошков // Конструкции из композиционных материалов. 2005. № 4. С. 71–79.
  28. Лысенко В.Н., Труфанов Д.Ю., Бардаханов С.П. Разделение газов нанопористой керамикой // Вестник НГУ. Сер. Физика. 2012. Т. 7. № 2. С. 39–42. https://doi.org/10.54362/1818-7919-2012-7-2-39-42
  29. Obanin V.V., Trufanov D.Yu., Nomoev A.V., Bardakhanov S.P. Application of a hot-wire anemometer for measurements in flows of nanosized powders // Vestnik NSU. Series: Physics. 2008. V. 3. No 1. P. 23–28 (in Russ.). https://doi.org/10.54362/1818-7919-2008-3-1-23-28
  30. Kadic M., Milton G.W., van Hecke M., Wegener M. 3D metamaterials // Nat. Rev. Phys. 2019. V. 1. 198–210. https://doi.org/10.1038/s42254-018-0018-y
  31. Taghizadeh K., Shrivastava R.K., Luding S. Stochastic Model for Energy Propagation in Disordered Granular Chains // Materials. 2021. V. 14(7). P. 1815. https://doi.org/10.3390/ma14071815
  32. Li Yang Zheng, Shilin Qu, Florian Allein, Théo Thréard, Vitalyi Gusev, Vincent Tournat, Georgios Theocharis. Direct observation of edge modes in zigzag granular chains // J. Sound Vibr. 2022. V. 526. 116761. https://doi.org/10.1016/j.jsv.2022.116761

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).