Characteristics of low-frequency ambient noise in shallow water with heterogeneous bottom structure
- Authors: Bodjona S.D.1, Sidorov D.D.1, Petnikov V.G.1, Lunkov A.A.1,2
-
Affiliations:
- Prokhorov General Physics Institute, Russian Academy of Sciences
- Bauman Moscow State Technical University
- Issue: Vol 71, No 1 (2025)
- Pages: 79-87
- Section: АКУСТИКА ОКЕАНА. ГИДРОАКУСТИКА
- URL: https://journals.rcsi.science/0320-7919/article/view/293497
- DOI: https://doi.org/10.31857/S0320791925010091
- EDN: https://elibrary.ru/BQKDQZ
- ID: 293497
Cite item
Abstract
The characteristics of low-frequency noise fields in shallow-water acoustic waveguides with a heterogeneous bottom structure in the presence of water-like areas are analyzed through numerical experiments. Two models of the seabed are considered: an idealized one with a linear change in the sound speed in the bottom along one of the Cartesian coordinates and a realistic one where the sound speed in the bottom depends on all three coordinates. The second model is close to the real situation in one of the shallow water areas of the Kara Sea. Noise fields from distributed near-surface sources (surface waves) and a point source (ship noise) are studied. Calculations are performed using the wide-angle parabolic equation method. Averaged horizontal and vertical directivity characteristics of the surface wave noise field are obtained, as well as average intensity values depending on the sound frequency and the position of the receiving vertical array. Directional diagrams of the local source noise level are constructed for bottom areas with different properties. The possibility of detecting areas with a water-like bottom by recording the noise of a moving vessel on a stationary vertical acoustic array is demonstrated. In the case of distributed sources, it is shown that the averaged noise characteristics weakly depend on the sound speed in the bottom.
Full Text

About the authors
S. D. Bodjona
Prokhorov General Physics Institute, Russian Academy of Sciences
Author for correspondence.
Email: bodjona@kapella.gpi.ru
Russian Federation, Moscow, 119991
D. D. Sidorov
Prokhorov General Physics Institute, Russian Academy of Sciences
Email: sidorov@kapella.gpi.ru
Russian Federation, Moscow, 119991
V. G. Petnikov
Prokhorov General Physics Institute, Russian Academy of Sciences
Email: petniko@kapella.gpi.ru
Russian Federation, Moscow, 119991
A. A. Lunkov
Prokhorov General Physics Institute, Russian Academy of Sciences; Bauman Moscow State Technical University
Email: lunkov@kapella.gpi.ru
Russian Federation, Moscow, 119991; Moscow, 105005
References
- Малашенков Б.М., Акчурин Л.И. Проблемы и перспективы разработки нефтегазовых месторождений на арктическом шельфе Российской Федерации // Вестник Московского университета. Сер. 21. Управление (государство и общество). 2015. № 2. С. 49–64.
- Газарян Ю.Л. Об энергетическом спектре шума в плоскослоистых волноводах // Акуст. журн. 1975. Т. 21. № 3. С. 382–389.
- Аредов А.А., Дронов Г.М., Фурдуев А.В. Влияние ветра и внутренних волн на параметры шума океана // Акуст. журн. 1990. Т. 36. № 4. С. 581.
- Ingenito F., Wolf S.N. Site dependence of wind-dominated ambient noise in shallow water // J. Acoust. Soc. Am. 1989. V. 85. № 1. P. 141–145.
- Григорьев В.А., Петников В.Г., Росляков А.Г., Терёхина Я.Е. Распространение звука в мелком море с неоднородным газонасыщенным дном // Акуст. журн. 2018. Т. 64. № 3. С. 342–358.
- Grigor’ev V.A., Lunkov A.A., Petnikov V.G. Effect of sound-speed inhomogeneities in sea bottom on the acoustic wave propagation in shallow water // Physics of Wave Phenomena. 2020. V. 28. P. 255–266.
- Petnikov V.G. et al. Modeling underwater sound propagation in an arctic shelf region with an inhomogeneous bottom // J. Acoust. Soc. Am. 2022. V. 151. № 4. P. 2297–2309.
- Yang T.C., Yoo K. Modeling the environmental influence on the vertical directionality of ambient noise in shallow water // J. Acoust. Soc. Am. 1997. V. 101. № 5. P. 2541–2554.
- Katsnelson B., Petnikov V., Lynch J. Fundamentals of shallow water acoustics. New York: Springer, 2012. V. 1.
- Сидоров Д.Д., Петников В.Г., Луньков А.А. Широкополосное звуковое поле в мелководном волноводе с неоднородным дном // Акуст. журн. 2023. Т. 69. № 5. С. 608–619.
- Зверев В.А. Избранные труды. Н. Новгород: Институт прикладной физики РАН, 2004.
- Зверев В.А. Формирование изображений акустических источников в мелком море. Н. Новгород: ИПФ РАН, 2019. 112 с.
- Carey W.M., Evans R.B. Ocean ambient noise: measurement and theory. Springer Science & Business Media, 2011.
- Collins M.D. A split-step Padé solution for the parabolic equation method // J. Acoust. Soc. Am. 1993. V. 93. № 4. P. 1736–1742.
- Wilson J.H. Wind-generated noise modeling // J. Acoust. Soc. Am. 1983. V. 73. № 1. P. 211–216.
- Leigh C.V., Eller A.I. Dynamic ambient noise model comparison with Point Sur, California, in situ data // Contract. 2006. V. 24. № 02-D. P. 6602.
- Heaney K.D. Rapid geoacoustic characterization using a surface ship of opportunity // IEEE J. Oceanic Engineering. 2004. V. 29. № 1. P. 88–99.
- Завольский Н.А., Раевский М.А. Горизонтальная анизотропия динамических шумов в глубоком и мелком море // Акуст. журн. 2019. Т. 65. № 2. С. 197–202.
Supplementary files
