The Sound Field Intensity Distribution in the Deep Sea in the “Depth—Angle–Time” Phase Space

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The transition from the traditional representation of the wave field in the vertical section of an underwater sound channel as a function of depth and time to the distribution of this field in the 3D phase space “depth–angle–time” is considered. For this purpose, the method of coherent states developed in quantum theory is used. The meaning of the proposed transition is that the field intensity distribution in the specified phase space is less sensitive to sound velocity fluctuations than in the original 2D depth–time space. This fact can be used in solving inverse problems. As an example, we consider the reconstruction of the coordinates of a source in a waveguide from measurements of the field intensity distribution of this source in phase space.

About the authors

A. L. Virovlyansky

Institute of Applied Physics, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia

Email: viro@ipfran.ru
Россия, 603950, Нижний Новгород, ул. Ульянова, 46

A. Yu. Kazarova

Institute of Applied Physics, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia

Author for correspondence.
Email: viro@ipfran.ru
Россия, 603950, Нижний Новгород, ул. Ульянова, 46

References

  1. Бреховских Л.М., Лысанов Ю.П. Теоретические основы акустики океана. М.: Наука, 2007. 370 с.
  2. Etter P.C. Underwater acoustic modality and simulation. Boca Raton: CRC Press, 2018. 638 p.
  3. Munk W., Wunsch C. Ocean acoustic tomography: A scheme for large scale monitoring // Deep-Sea Res. 1979. V. 26. P. 123–161.
  4. ATOC Consortium. Ocean climate change: Comparison of acoustic tomography, satellite altimetry, and modeling // Science. 1998. V. 281. P. 1327–1332.
  5. Чупров С.Д. Интерференционная структура звукового поля в слоистом океане // Акустика океана. Современное состояние. М.: Наука, 1982. С. 71–82.
  6. Орлов Е.Ф., Шаронов Г.А. Интерференция звуковых волн в океане. Владивосток: Дальнаука, 1998. 196 с.
  7. Harrison C.H. The relation between the waveguide invariant, multipath impulse response, and ray cycles // J. Acoust. Soc. Am. 2011. V. 129. № 5. P. 2863–2877.
  8. Кузнецов Г.Н., Кузькин В.М., Пересёлков С.А. Спектрограмма и локализация источника звука в мелком море // Акуст. журн. 2017. Т. 63. № 4. С. 406–418.
  9. Virovlyansky A.L. Stable components of sound fields in the ocean // J. Acoust. Soc. Am. 2017. V. 141. № 2. P. 1180–1189.
  10. Virovlyansky A.L., Kazarova A.Yu., Lyubavin L.Ya. Matched field processing in phase space // J. Ocean Eng. 2020. V. 45. № 4. P. 1583–1593.
  11. Glauber R.J. Quantum Theory of Optical Coherence. Selected Papers and Lectures. Weinheim: Wiley-VCH, 2007. 639 p.
  12. Klauder J.R., Sudarshan E.C.G. Fundamentals of quantum optics. N.Y.: W.A. Benjamin, 1968. 304 p.
  13. Schleich W.P. Quantum Optics in Phase Space. Berlin: Wiley-VCH, 2001. 685 p.
  14. Артельный П.В., Вировлянский А.Л., Казарова А.Ю., Коротин П.И., Любавин Л.Я., Стуленков А.В. Наблюдение устойчивых компонент звуковых полей в Ладожском озере // Акуст. журн. 2018. Т. 64. № 2. С. 174–185.
  15. Вировлянский А.Л., Казарова А.Ю. Устойчивые компоненты звукового поля на апертуре антенны в условиях многолучевого распространения // Акуст. журн. 2022. Т. 68. № 2. С. 190–203.
  16. Flatte S.M., Dashen R., Munk W.M., Watson K.M., Zachariasen F. Sound transmission through a fluctuating ocean. London: Cambridge U.P., 1979.
  17. Colosi J.A. Sound propagation through the stochastic ocean. N.Y.: Cambridge University Press, 2016. 420 p.
  18. Virovlyansky A.L., Makarova Yu.M. On spatial structure of the wave field in a vertical section of a deep water acoustic waveguide // EPL. 2018. V. 123:54004. P. 54404-p1–54404-p6.
  19. Jensen F.B., Kuperman W.A., Porter M.B., Schmidt H. Computational Ocean Acoustics. N.Y.: Springer, 2011.
  20. Makarov D., Prants S., Virovlyansky A., Zaslavsky G. Ray and wave chaos in ocean acoustics. New Jersey: Word Scientific, 2010. 389 p.
  21. Alonso M.A. Rays and waves. In Phase-space optics. Eds. Testorf M., Hennely B., and Ojeda-Castaneda J. N.Y.: McGraw-Hill, 2010. Chapter 8. P. 237–277.
  22. Goldstein H., Poole C.P., Safko J.L. Classical mechanics. San Francisco: Addison-Wesley, 2000. 647 p.
  23. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. Нерелятивистская теория. М.: Наука, 752 с.
  24. Сударшан Э., Клаудер Дж. Основы квантовой оптики. М.: Мир, 1970. 430 с.
  25. Ландау Л.Д., Лифшиц Е.М. Механика. М.: Наука, 1973. 208 с.
  26. Virovlyansky A.L. On general properties of ray arrival sequences in oceanic acoustic waveguides // J. Acoust. Soc. Am. 1995. V. 97. P. 3180–3183.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (798KB)
3.

Download (235KB)
4.

Download (370KB)
5.

Download (145KB)
6.

Download (397KB)
7.

Download (589KB)
8.

Download (680KB)
9.

Download (101KB)
10.

Download (179KB)
11.

Download (280KB)
12.

Download (256KB)
13.

Download (528KB)
14.

Download (481KB)

Copyright (c) 2023 А.Л. Вировлянский, А.Ю. Казарова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies