Comparison of ray-tracing and diffraction methods for correcting aberrations in transcranial focusing of ultrasound field

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study theoretically evaluated the possibilities of using ray-tracing and diffraction-based methods to aberration correction, which are used in noninvasive neurosurgery for focusing high-intensity ultrasound through the skull bones at various depths in the human brain. The analysis is based on using head computed tomography (CT) data of skulls with various geometric characteristics from an anonymized set of eight patients. A mosaic 1 MHz phased array shaped as a spherical bowl with radius of curvature and diameter of 200 mm, and absolutely dense filling of the surface with 256 elements, was considered as the transducer. In the ray-tracing method, aberration correction was carried out by calculating the phase shift along the rays emanating from the target point to the centers of the elements. In the diffraction-based method, a combination of the Rayleigh integral and a pseudospectral numerical method for solving the wave equation in an inhomogeneous medium, implemented in the k-Wave software package, was used for aberration correction and ultrasound focusing simulations. It is shown that the strongest field distortions are observed for skulls with more pronounced variations of bone thickness. The diffraction-based method allows for increasing the focusing efficiency, as well as performing correction at shallower depths in the brain compared to the ray-based method.

About the authors

O. V. Solontsov

Lomonosov Moscow State University; Medical Research and Educational Institute, Lomonosov Moscow State University

Email: solontsov.ov@gmail.com
Leninskie Gory 1, Moscow, 119991 Russia; Lomonosovsky prospect 27, Moscow 119192, Russia

P. B. Rosnitskiy

Division of Gastroenterology, Department of Medicine, University of Washington School of Medicine

Email: solontsov.ov@gmail.com
Seattle, WA, USA

D. D. Chupova

Lomonosov Moscow State University

Email: solontsov.ov@gmail.com
Leninskie Gory 1, Moscow, 119991 Russia

L. R. Gavrilov

Division of Gastroenterology, Department of Medicine, University of Washington School of Medicine

Email: solontsov.ov@gmail.com
Seattle, WA, USA

V. E. Sinitsyn

Medical Research and Educational Institute, Lomonosov Moscow State University

Email: solontsov.ov@gmail.com
Lomonosovsky prospect 27, Moscow 119192, Russia

E. A. Mershina

Medical Research and Educational Institute, Lomonosov Moscow State University

Email: solontsov.ov@gmail.com
Lomonosovsky prospect 27, Moscow 119192, Russia

O. A. Sapozhnikov

Lomonosov Moscow State University

Email: solontsov.ov@gmail.com
Leninskie Gory 1, Moscow, 119991 Russia

V. A. Khokhlova

Lomonosov Moscow State University

Author for correspondence.
Email: solontsov.ov@gmail.com
Leninskie Gory 1, Moscow, 119991 Russia

References

  1. Qiu W., Bouakaz A., Konofagou E., Zheng H. Ultrasound for the brain: A review of physical and engineering principles, and clinical applications // IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 2020. V. 68. N 1. P. 6–20.
  2. Mehkri Y., Pierre K., Woodford S.J., Davidson C.G., Urhie O., Sriram S., Hernandez J., Hanna C., Lucke-Wold B. Surgical Management of Brain Tumors with Focused Ultrasound // Curr. Oncol. 2023. V. 30. N 5. P. 4990–5002.
  3. Ahmed A.K., Zhuo J., Gullapalli R.P., Jiang L., Keaser M.L., Greenspan J.D., Chen C., Miller T.R., Melhem E.R., Sansur C.A., Eisenberg H.M., Gandhi D. Focused Ultrasound Central Lateral Thalamotomy for the Treatment of Refractory Neuropathic Pain: Phase I Trial // Neurosurgery. 2024. V. 94. N 4. P. 690–699.
  4. Набиуллина Д.И., Галимова Р.М., Иллариошкин С.Н., Бузаев И.В., Сафин Ш.М., Ахмадеева Г.Н., Мухамадеева Н.Р., Крекотин Д.К. Опыт поэтапной и одномоментной двусторонней таламотомии методом фокусированного ультразвука под контролем магнитно-резонансной томографии в лечении эссенциального тремора // Журн. неврол. психиатр. им. С.С. Корсакова. 2023. Т. 123. № 7. С. 65–73.
  5. Elias W.J. A randomized trial of focused ultrasound thalamotomy for essential tremor // N. Engl. J. Med. 2016. V. 375. N 8. P. 730–739.
  6. Галимова Р.М., Иллариошкин С.Н., Ахмадеева Г.Н., Набиуллина Д.И., Кашапов Ф.Ф., Сафин Ш.М., Бузаев И.В., Терегулова Д.Р., Сидорова Ю.А., Качемаева О.В. Одновременное воздействие на две мишени методом фокусированного ультразвука под контролем МРТ при лечении пациентов с дрожательными фенотипами болезни Паркинсона // Анналы клинической и экспериментальной неврологии. 2024. Т. 18. № 2. C. 5–12.
  7. Sinai A., Nassar M., Sprecher E., Constantinescu M., Zaaroor M., Schlesinger I. Focused Ultrasound Thalamotomy in Tremor Dominant Parkinson's Disease: Long-Term Results // J. Parkinsons Dis. 2022. V. 12. N 1. P. 199–206.
  8. Horisawa S., Yamaguchi T., Abe K., Hori H., Fukui A., Iijima M., Sumi M., Hodotsuka K., Konishi Y., Kawamata T., Taira T. Magnetic resonance-guided focused ultrasound thalamotomy for focal hand dystonia: A Pilot Study // Mov. Disord. 2021. V. 36. N 8. P. 1955–1959.
  9. Гаврилов Л.Р. Фокусированный ультразвук высокой интенсивности в медицине. М.: Фазис, 2013.
  10. Hynynen K., Jones R.M. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy // Phys. Med. Biol. 2016. V. 61. P. 206–248.
  11. Drainville R.A., Chatillon S., Moore D., Snell J., Padilla F., Lafon C. A simulation study on the sensitivity of transcranial ray-tracing ultrasound modeling to skull properties // J. Acoust. Soc. Am. 2023. V. 154. N 2. P. 1211–1225.
  12. Rosnitskiy P.B., Yuldashev P.V., Sapozhnikov O.A., Gavrilov L.R., Khokhlova V.A. Simulation of nonlinear trans-skull focusing and formation of shocks in brain using a fully populated ultrasound array with aberration correction // J. Acoust. Soc. Am. 2019. V. 146. N 3. P. 1786–1798.
  13. Ильин С.А., Юлдашев П.В., Хохлова В.А., Гаврилов Л.Р., Росницкий П.Б., Сапожников О.А. Применение аналитического метода для оценки качества акустических полей при электронном перемещении фокуса многоэлементных терапевтических решеток // Акуст. журн. 2015. Т. 61. № 1. С. 57–64.
  14. Bancel T., Houdouin A., Annic P., Rachmilevitch I., Shapira Y., Tanter M., Aubry J.-F. Comparison between ray-tracing and full-wave simulation for transcranial ultrasound focusing on a clinical system using the transfer matrix formalism // IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 2021. V. 68. N 7. P. 2554–2565.
  15. Meng Y., Jones R.M., Davidson B., Huang Y., Pople C.B., Surendrakumar S., Hamani C., Hynynen K., Lipsman N. Technical principles and clinical workflow of transcranial MR-guided focused ultrasound // Stereotact. Funct. Neurosurg. 2021. V. 99. N 4. P. 329–342.
  16. Росницкий П.Б., Гаврилов Л.Р., Юлдашев П.В., Сапожников О.А., Хохлова В.А. О возможности применения многоэлементных фазированных решеток для ударно волнового воздействия на глубокие структуры мозга // Акуст. журн. 2017. Т. 63. № 5. С. 489–500.
  17. Rosnitskiy P.B., Vysokanov B.A., Gavrilov L.R., Sapozhnikov O.A., Khokhlova V.A. Method for designing multielement fully populated random phased arrays for ultrasound surgery applications // IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 2018. V. 65. N 4. P. 630–637.
  18. Raju B.I., Hall C.S., Seip R. Ultrasound therapy transducers with space-filling non-periodic arrays // IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 2011. V. 58. N 5. P. 944–954.
  19. Ramaekers P., Ries M., Moonen C.T.W., de Greef M. Improved intercostal HIFU ablation using a phased array transducer based on Fermat’s spiral and Voronoi tessellation: A numerical evaluation // Med. Phys. 2017. V. 44. N 3. P. 1071–1088.
  20. Maxwell A.D., Khokhlova T.D., Schade G.R., Wang Y.-N., Kreider W., Yuldashev P.V., Simon J.C., Sapozhnikov O.A., Farr N., Partanen A., Bailey M.R., Hwang J.H., Crum L.A., Khokhlova V.A. Boiling histotripsy: A noninvasive method for mechanical tissue disintegration // J. Acoust. Soc. Am. 2014. V. 136. N 4. P. 2249.
  21. Aubry J.-F., Bates O., Bohm C., Pauly K.B., Christensen D., Cueto C., Gelat P.N., Guasch L., Jaros J., Jing Y., Jones R.M., Li N., Marty P., Montanaro H., Neufeld E., Pichardo S., Pinton G.F., Pulkkinen A., Stanziola A., Thielscher A., Treeby B.E., Wout E.V. Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave models // J. Acoust. Soc. Am. 2022. V. 152. P. 1003.
  22. Jones R.M., Hynynen K. Comparison of analytical and numerical approaches for CT-based aberration correction in transcranial passive acoustic imaging // Phys Med Biol. 2015. V. 61. P. 23.
  23. Adams C., Jones R.M., Yang S.D., Kan W.M., Leung K., Zhou Y., Lee K.U., Huang Y., Hynynen K. Implementation of a skull-conformal phased array for transcranial focused ultrasound therapy // IEEE. 2021. V. 68. P. 3457.
  24. Чупова Д.Д., Росницкий П.Б., Солонцов О.В., Гаврилов Л.Р., Синицын В.Е., Мершина Е.А., Сапожников О.А., Хохлова В.А. Компенсация аберраций при фокусировке через череп на основе данных КТ и МРТ // Акуст. журн. 2024. Т. 70. № 2. С. 193–205.
  25. Schneider U., Pedroni E., Lomax A. The calibration of CT Hounsfield Units for radiotherapy treatment planning // Phys. Med. Biol. 1996. V. 41. P. 111–124.
  26. Mast T.D. Empirical relationships between acoustic parameters in human soft tissues // ARLO. 2000. V. 1. N 2. P. 37–42.
  27. Duck F.A. Physical Properties of Tissue: A Comprehensive Reference Book // Academic Press, London, 1990.
  28. Treeby B.E., Cox B.T. Modeling power law absorption and dispersion in viscoelastic solids using a split-field and the fractional Laplacian // J. Acoust. Soc. Am. 2014. V. 136. N 4. P. 1499–1510.
  29. Treeby B.E., Jaros J., Rohrbach D., Cox B.T. Modelling elastic wave propagation using the k-Wave Matlab toolbox // IEEE Int. Ultrasonics Symposium. 2014. P. 146–149.
  30. Бобина А.С., Росницкий П.Б., Хохлова Т.Д., Юлдашев П.В., Хохлова В.А. Влияние неоднородностей брюшной стенки на фокусировку ультразвукового пучка при различных положениях излучателя // Изв. РАН. Сер. физ. 2021. Т. 85. № 6. С. 875–882.
  31. Чупова Д.Д., Росницкий П.Б., Гаврилов Л.Р., Хохлова В.А. Компенсация искажений фокусированных ультразвуковых пучков при транскраниальном облучении головного мозга на различной глубине // Акуст. журн. 2022. Т. 68. № 1. С. 3–13.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».