Correlation Iteration Method of Acoustic Tomography with Incoherent Field Sources
- Authors: Dmitriev K.V.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 70, No 2 (2024)
- Pages: 143-155
- Section: КЛАССИЧЕСКИЕ ПРОБЛЕМЫ ЛИНЕЙНОЙ АКУСТИКИ И ТЕОРИИ ВОЛН
- URL: https://journals.rcsi.science/0320-7919/article/view/261544
- DOI: https://doi.org/10.31857/S0320791924020013
- EDN: https://elibrary.ru/YNXAGE
- ID: 261544
Cite item
Abstract
A method is proposed for reconstructing the acoustic parameters of a medium by iterative processing of the coherence matrices of the acoustic field of random sources, for some of which their power density is known. The possibilities of increasing the stability and accelerating the convergence of the method are discussed. The reconstruction results are compared with the functional-analytical approach based on the processing of the scattering amplitude.
Full Text

About the authors
K. V. Dmitriev
Lomonosov Moscow State University
Author for correspondence.
Email: presentatio@mail.ru
Russian Federation, Moscow
References
- Weaver R.L., Lobkis O.I. Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies // Phys. Rev. Lett. 2001. V. 87. № 13. P. 134301–1–4.
- Буров В.А., Румянцева О.Д. Обратные волновые задачи акустической томографии. Ч. I: Обратные задачи излучения в акустике. М.: ЛЕНАНД, 2020. 384 с.
- Буров В.А., Дмитриев К.В., Румянцева О.Д. Создание управляемой анизотропной подсветки в корреляционных схемах акустической томографии // Акуст. журн. 2018. Т. 64. № 5. С. 591–597.
- Snieder R., Miyazawa M., Slob E., Vasconcelos I., Wapenaar K. A comparison of strategies for seismic interferometry // Surv. Geophys. 2009. V. 30. № 4. P. 503–523.
- Жостков Р.А., Преснов Д.А., Шуруп А.С., Собисевич А.Л. Cравнение микросейсмического зондирования и томографического подхода при изучении глубинного строения Земли // Изв. РАН. Серия Физическая. 2017. Т. 81. № 1. С. 72–75.
- Буров В.А., Сергеев С.Н., Шуруп А.С. Использование в пассивной томографии океана низкочастотных шумов // Акуст. журн. 2008. Т. 54. № 1. С. 51–61.
- Тихоцкий С.А., Преснов Д.А., Собисевич А.Л., Шуруп А.С. Использование низкочастотных шумов в пассивной сейсмоакустической томографии дна океана // Акуст. журн. 2021. Т. 67. № 1. С. 107–116.
- Gizon L., Barucq H., Durufle M., Hanson C., Leguèbe M., Birch A., Chabassier J., Fournier D., Hohage T., Papini E. Computational helioseismology in the frequency domain: acoustic waves in axisymmetric solar models with flows // Astronomy & Astrophysics. 2017. V. 600. P. A35–1–23.
- Agaltsov A.D., Hohage T., Novikov R.G. Global uniqueness in a passive inverse problem of helioseismology // Inverse Problems. 2020. V. 36. № 5. P. 055004–1–21.
- Godin O.A. Recovering the acoustic Green’s function from ambient noise cross correlation in an inhomogeneous medium // Phys. Rev. Lett. 2006. V. 97. № 5. P. 054301–1–4.
- Wapenaar K. Nonreciprocal Green’s function retrieval by cross correlation // J. Acoust. Soc. Am. 2006. V. 120. № 1. P. EL7–EL13.
- Snieder R. Extracting the Green’s function of attenuating heterogeneous acoustic media from uncorrelated waves // J. Acoust. Soc. Am. 2007. V. 121. № 5. P. 2637–2643.
- Дмитриев К.В. Применение скалярных и комбинированных приемников в задаче шумовой интерферометрии при наличии локализованных источников поля // Изв. РАН. Серия Физическая. 2022. Т. 11. № 86. С. 1604–1609.
- Малышкин Г.С. Сравнительная эффективность классических и быстрых проекционных алгоритмов при разрешении слабых гидроакустических сигналов // Акуст. журн. 2017. Т 63. № 2. С. 196–208.
- Малышкин Г.С. Экспериментальная проверка эффективности быстрых проекционных адаптивных алгоритмов // Акуст. журн. 2019. Т. 65. № 6. С. 828–846.
- Lippmann B.A., Schwinger J. Variational principles for scattering processes. I // Phys. Rev. 1950. V. 79. № 3. P. 469–480.
- Горюнов А.А., Сасковец А.В. Обратные задачи рассеяния в акустике. М.: Изд-во МГУ, 1989. 152 с.
- Буров В.А., Румянцева О.Д. Обратные волновые задачи акустической томографии. Ч. II: Обратные задачи акустического рассеяния. М.: ЛЕНАНД, 2020. 768 с.
- Владимиров В.C. Уравнения математической физики. М.: Наука, 1981. 512 с.
- Born M. Quantenmechanik der Stossvorgänge // Zeitschrift für Physik. 1926. V. 38. P. 803–827. [in German].
- Devaney A.J. Mathematical foundations of imaging, tomography and wavefield inversion. Cambridge, New York et al: Cambridge University Press, 2012. 518 p.
- Shurup A.S. Numerical comparison of iterative and functional-analytical algorithms for inverse acoustic scattering // Eurasian J. Math. Comput. Appl. 2022. V. 10. № 1. P. 79–99.
- Зорин С.С., Шуруп А.С. Численное сравнение итерационного и функционально-аналитического алгоритма при восстановлении рефракционно-поглощающих рассеивателей // Учен. зап. физ. факультета Моск. ун-та. 2023. № 4. С. 2340102–1–6.
- Дмитриев К.В. Рассеяние акустического поля на рефракционно-плотностных неоднородностях малого волнового размера и решение прямой задачи рассеяния в неоднородной среде // Акуст. журн. 2018. Т. 64. № 2. С. 1–14.
- Novikov R.G. Rapidly converging approximation in inverse quantum scattering in dimension 2 // Physics Letters A. 1998. V. 238. № 2–3. P. 73–78.
- Novikov R.G. Approximate inverse quantum scattering at fixed energy in dimension 2 // Proc. V.A. Steklov Inst. Math. 1999. V. 225. P. 301–318.
- Novikov R.G. The inverse scattering problem on a fixed energy level for the two-dimensional Schrodinger operator // J. of Funct. Anal. 1992. V. 103. № 2. P. 409–463.
- Бадалян Н.П., Буров В.А., Морозов С.А., Румянцева О.Д. Рассеяние на акустических граничных рассеивателях с малыми волновыми размерами и их восстановление // Акуст. журн. 2009. Т. 55. № 1. С. 3–10.
- Agaltsov A.D., Novikov R.G. Examples of solution of the inverse scattering problem and the equations of the Novikov-Veselov hierarchy from the scattering data of point potentials // Russian Math. Surveys. 2019. V. 74. № 3. P. 373–386.
- Dmitriev K.V., Rumyantseva O.D. Features of solving the direct and inverse scattering problems for two sets of monopole scatterers // J. Inverse Ill-Posed Probl. 2021. V. 29. № 5. P. 775–789.
Supplementary files
