Changes in the Spectral Characteristics of Vowels in Russian Speech on a Noise Background

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article studies the acoustic characteristics of Russian speech under conditions of multitalker babble noise and manifestation of the Lombard effect in the context of auditory analysis of a complex scene. We have compared the spectral characteristics of stressed vowels [a], [u], [i] in words uttered by six women in completely quiet conditions and against a background of diotically presented multitalker babble noise at a level of 60 dB, imitating polyphony. In noise conditions, versus quiet, we obtained an increase in voice fundamental frequency (F0) and the first formant (F1) for all identified vowels. No overall pattern in changes in the second formant (F2) was found. When the vowel [i] was spoken in noise conditions, F2 decreased in all speakers; when vowels [u] and [a] were pronounced, it could have both decreased and increased. Thus, in general, the nature of the revealed changes in the spectral characteristics of the vowels of Russian speech in noise conditions corresponded to the features of Lombard speech for a number of European and Asian languages. For the first time, an inversely proportional relationship between F0 of a speaker in quiet conditions and its changes in noise conditions: the higher F0 in quiet conditions, the less its increase on a noise background . The revealed spectral changes reflect the processes of adaptive articulation correction aimed at highlighting the speaker’s voice and increasing the intelligibility of his speech against the background of multitalker babble noise.

About the authors

A. M. Lunichkin

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223, St. Petersburg, Russia

Email: BolverkDC@mail.ru
Россия, 194223, Санкт-Петербург, пр. Тореза 44

I. G. Andreeva

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223, St. Petersburg, Russia

Email: BolverkDC@mail.ru
Россия, 194223, Санкт-Петербург, пр. Тореза 44

L. G. Zaitseva

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223, St. Petersburg, Russia

Email: BolverkDC@mail.ru
Россия, 194223, Санкт-Петербург, пр. Тореза 44

A. P. Gvozdeva

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223, St. Petersburg, Russia

Email: BolverkDC@mail.ru
Россия, 194223, Санкт-Петербург, пр. Тореза 44

E. A. Ogorodnikova

Pavlov Institute of Physiology, Russian Academy of Sciences, 199034, St. Petersburg, Russia

Author for correspondence.
Email: BolverkDC@mail.ru
Россия, 199034, Санкт-Петербург, наб. Макарова 6

References

  1. Bronkhorst A.W. The cocktail-party problem revisited: early processing and selection of multi-talker speech // Atten. Percept. Psychophys. 2015. V. 77. № 5. P. 1465–1487. https://doi.org/10.3758/s13414-015-0882-9
  2. Brumm H., Zollinger S.A. The evolution of the Lombard effect: 100 years of psychoacoustic research // Behaviour. 2011. V. 148. № 11–13. P. 1173–1198. https://doi.org/10.1163/000579511X605759
  3. Garnier M., Henrich N. Speaking in noise: How does the Lombard effect improve acoustic contrasts between speech and ambient noise? // Comput. Speech Lang. 2014. V. 28. № 2. P. 580–597. https://doi.org/10.1016/j.csl.2013.07.005
  4. Ludlow C.L., Cikoja D.B. Is there a self-monitoring speech perception system? // J. Commun. Disord. 1998. V. 31. № 6. P. 505–510.
  5. Möttönen R., Watkins K.E. Using TMS to study the role of the articulatory motor system in speech perception // Aphasiology. 2012. V. 26. № 9. P. 1103–1118. https://doi.org/10.1080/02687038.2011.619515
  6. Summers W.V., Pisoni D.B., Bernacki R.H., Pedlow R.I., Stokes M.A. Effects of noise on speech production: Acoustic and perceptual analyses // J. Acoust. Soc. Am. 1988. V. 84. № 3. P. 917–928. https://doi.org/10.1121/1.396660
  7. Van Ngo T., Kubo R., Morikawa D., Akagi M. Acoustical analyses of tendencies of intelligibility in lombard speech with different background noise levels // J. Signal Process. 2017. V. 21. № 4. P. 171–174. https://doi.org/10.2299/jsp.21.171
  8. Luo J., Hage S.R., Moss C.F. The Lombard effect: from acoustics to neural mechanisms // Trends Neurosci. 2018. V. 41. № 12. P. 938–949. https://doi.org/10.1016/j.tins.2018.07.011
  9. Nonaka S., Takahashi R., Enomoto K., Katada A., Unno T. Lombard reflex during PAG-induced vocalization in decerebrate cats // Neurosci. Res. 1997. V. 29. № 4. P. 283–289. https://doi.org/10.1016/S0168-0102(97)00097-7
  10. Hage S.R., Jürgens U., Ehret G. Audio–vocal interaction in the pontine brainstem during self-initiated vocalization in the squirrel monkey // Eur. J. Neurosci. 2006. V. 23. № 12. P. 3297–3308. https://doi.org/10.1111/j.1460-9568.2006.04835.x
  11. Bottalico P., Passione I.I., Graetzer S., Hunter E.J. Evaluation of the starting point of the Lombard effect // Acta Acust. United Acust. 2017. V. 103. № 1. P. 169–172. https://doi.org/10.3813/AAA.919043
  12. Garnier M., Dohen M., Lœvenbruck H., Welby P., Bailly L. The Lombard Effect: a physiological reflex or a controlled intelligibility enhancement? // Yehia H.C., Demolin D., Laboissiere R. (Eds.) Proceedings of ISSP 06. Ubatuba, Brazil. 2006. P. 255–262. HAL Id: hal-00214307
  13. Garnier M., Ménard L., Alexandre B. Hyper-articulation in Lombard speech: An active communicative strategy to enhance visible speech cues? // J. Acoust. Soc. Am. 2018. V. 144. № 2. P. 1059–1074. https://doi.org/10.1121/1.5051321
  14. Bořil H., Hansen J.H.L. Unsupervised equalization of Lombard effect for speech recognition in noisy adverse environments // IEEE ACM Trans. Audio Speech Lang. Process. 2010. V. 18. № 6. P. 1379–1393. https://doi.org/10.1109/TASL.2009.2034770
  15. Bollepalli B., Juvela L., Airaksinen M., Valentini-Botinhao C., Alku P. Normal-to-Lombard adaptation of speech synthesis using long short-term memory recurrent neural networks // Speech Commun. 2019. V. 110. P. 64–75. https://doi.org/10.1109/ICASSP.2017.7953209
  16. Lee J., Ali H., Ziaei A., Tobey E.A., Hansen J.H. The Lombard effect observed in speech produced by cochlear implant users in noisy environments: A naturalistic study // J. Acoust. Soc. Am. 2017. V. 141. № 4. P. 2788–2799. https://doi.org/10.1121/1.4979927
  17. McColl D., McCaffrey P. Perception of spasmodic dysphonia speech in background noise // Percept. Mot. Ski. 2006. V. 103. № 2. P. 629–635. https://doi.org/10.2466/pms.103.2.629-635
  18. Amazi D.K., Garber S.R. The Lombard sign as a function of age and task // J. Speech Lang. Hear. Res. 1982. V. 25. № 4. P. 581–585. https://doi.org/10.1044/jshr.2504.581
  19. Tang P., Xu Rattanasone N., Yuen I., Demuth K. Acoustic realization of Mandarin neutral tone and tone sandhi in infant-directed speech and Lombard speech // J. Acoust. Soc. Am. 2017. V. 142. № 5. P. 2823–2835. https://doi.org/10.1121/1.5008372
  20. Junqua J.C., Anglade Y. Acoustic and perceptual studies of Lombard speech: Application to isolated-words automatic speech recognition // Proc. ICASSP. Albuquerque, NM. 1990. P. 841–844. https://doi.org/10.1109/ICASSP.1990.115969
  21. Tang P., Xu Rattanasone N., Yuen I., Demuth K. Phonetic enhancement of Mandarin vowels and tones: Infant-directed speech and Lombard speech // J. Acoust. Soc. Am. 2017. V. 142. № 2. P. 493–503. https://doi.org/10.1121/1.4995998
  22. Якушев Д.И., Скляров О.П. Моделирование гласных звуков // Акуст. журн. 2003. Т. 49 № 4. С. 567–569. https://doi.org/10.1134/1.1591305
  23. Кузнецов В.Б. Спектральная динамика и классификация русских гласных // Акуст. журн. 2002. Т. 48. № 6. С. 849–853. https://doi.org/10.1134/1.1522046
  24. Фант Г. Акустическая теория речеобразования. М.: Наука, 1964. 284 с.
  25. Чистович Л.А., Венцов А.В., Гранстрем М.П. Физиология речи. Восприятие речи человеком. Л.: Наука, 1976. 388 с.
  26. Бондарко Л.В. Фонетика современного русского языка. СПб: Изд-во С.-Петербург.ун-та, 1998. 276 с.
  27. Ляксо Е.Е., Григорьев А.С. Динамика длительности и частотных характеристик гласных на протяжении первых семи лет жизни детей // Рос. физиол. журн. 2013. Т. 99. № 9. С. 1097–1110. eLIBRARY ID: 20260989
  28. Морозов В.П. Биофизические основы вокальной речи. Л.: Наука, 1977. 232 с.
  29. Egan J.J. Psychoacoustics of the Lombard voice response // J. Audit. Res. 1972. V. 12. P. 318–324.
  30. Matsumoto S., Akagi M. Variation of formant amplitude and frequencies in vowel spectrum uttered under various noisy environments // Proc. NCSP2019, Honolulu. 2019. P. 4–7.
  31. Marcoux K., Ernestus M. Pitch in native and non-native Lombard speech // Proc. ICPhS. Melbourne. 2019. P. 2605–2609.
  32. Ляксо Е.Е. Некоторые характеристики материнской речи, адресованной младенцам первого полугодия жизни // Психол. журн. 2002. Т. 3. № 2. С. 55–64. eLIBRARY ID: 17315992
  33. Keith R.W. Development and standardization of SCAN-C Test for Auditory Processing Disorders in Children // J. Am. Acad. Audiol. 2000. V. 11. № 8. P. 438–445.
  34. Andreeva I.G., Dymnikowa M., Gvozdeva A.P., Ogorodnikova E.A., Pak S.P. Spatial separation benefit for speech detection in multi-talker babble-noise with different egocentric distances // Acta Acust. United Acust. 2019. V. 105. № 3. P. 484–491. https://doi.org/10.3813/AAA.919330
  35. Marks L.E. Binaural summation of loudness: Noise and two-tone complexes // Percept. Psychophys. 1980. V. 27. № 6. P. 489–498. https://doi.org/10.3758/BF03198676
  36. Koterov A.N., Ushenkova L.N., Zubenkova E.S., Kalininna M.V., Biryukov A.P., Lastochkina E.M., Molodtsova D.V., Wainson A.A. Strength of association. Report 2. Graduation of correlation size // Med. Radiol. Radiat. Saf. 2019. V. 64. № 6. P. 12–24. https://doi.org/10.12737/1024-6177-2019-64-6-12-24
  37. Sapir S., Ramig L.O., Spielman J.L., Fox C. Formant centralization ratio: a proposal for a new acoustic measure of dysarthric speech // J. Speech. Lang. Hear. Res. 2010. V. 53. P. 114–125. https://doi.org/10.1044/1092-4388(2009/08-0184)
  38. Stowe L.M., Golob E.J. Evidence that the Lombard effect is frequency-specific in humans // J. Acoust. Soc. Am. 2013. V. 134. № 1. P. 640–647. https://doi.org/10.1121/1.4807645
  39. Letowski T., Frank T., Caravella J. Acoustical properties of speech produced in noise presented through supra-aural earphones // Ear Hear. 1993. V. 14. № 5. V. 332–338. https://doi.org/10.1097/00003446-199310000-00004
  40. Patel R., Schell K.W. The influence of linguistic content on the Lombard effect // J. Speech Lang. Hear. 2008. V. 51. P. 209–221. https://doi.org/10.1044/1092-4388(2008/016)
  41. Alghamdi N., Maddock S., Marxer R., Barker J., Brown G.J. A corpus of audio-visual Lombard speech with frontal and profile views // J. Acoust. Soc. Am. 2018. V. 143. № 6. P. 523–529. https://doi.org/10.1121/1.5042758
  42. Kleczkowski P., Żak A., Król-Nowak A. Lombard effect in Polish speech and its comparison in English speech // Arch. Acoust. 2017. V. 42. № 4. P. 561–569. https://doi.org/10.1515/aoa-2017-0060
  43. Zhao Y., Ando A., Takaki S., Yamagishi J., Kobashikawa S. Does the Lombard Effect Improve Emotional Communication in Noise? Analysis of Emotional Speech Acted in Noise // Proc. Interspeech. 2019. P. 3292–3296. DOI: arXiv:1903.12316.
  44. Russell A., Penny L., Pemberton C. Speaking fundamental frequency changes over time in women: a longitudinal study // J. Speech Lang. Hear. Res. 1995. V. 38. № 1. P. 101–109. https://doi.org/10.1044/jshr.3801.101
  45. Titze I.R., Luschei E.S., Hirano M. Role of the thyroarytenoid muscle in regulation of fundamental frequency // J. Voice. 1989. V. 3. № 3. P. 213–224. https://doi.org/10.1016/S0892-1997(89)80003-7
  46. Nishio M., Niimi S. Changes in speaking fundamental frequency characteristics with aging // Folia Phoniatr. Logop. 2008. V. 60. № 3. V. 120–127. https://doi.org/10.1159/000118510
  47. Шиленкова В.В., Бестолкова О.С. Пресбифония. Возрастные изменения акустических параметров голоса // Вестник оториноларингологии. 2013. Т. 78. № 6. С. 24–27. eLIBRARY ID: 21074035
  48. Коваленко А.Н., Кастыро И.В., Решетов И.В., Попадюк В.И. Исследование роли слухопротезирования в формировании площади акустического поля гласных // Докл. Акад. наук. Науки о жизни. 2021. Т. 497. № 1. С. 204–208. https://doi.org/10.31857/S2686738921020141

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (205KB)
3.

Download (241KB)
4.

Download (90KB)
5.

Download (119KB)
6.

Download (59KB)

Copyright (c) 2023 А.М. Луничкин, И.Г. Андреева, Л.Г. Зайцева, А.П. Гвоздева, Е.А. Огородникова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies