Evaluation of the Impedance Variability Effect of Acoustic Liner on Aircraft Engine Fan Noise in Calculation of Far Field Sound Modes Propagation
- Autores: Palchikovskiy V.V.1, Kuznetsov A.A.1, Pavlogradskiy V.V.1
-
Afiliações:
- Perm National Research Polytechnic University, 614990, Perm, Russia
- Edição: Volume 69, Nº 2 (2023)
- Páginas: 230-241
- Seção: АТМОСФЕРНАЯ И АЭРОАКУСТИКА
- URL: https://journals.rcsi.science/0320-7919/article/view/134430
- DOI: https://doi.org/10.31857/S0320791923600087
- EDN: https://elibrary.ru/IUJLXT
- ID: 134430
Citar
Resumo
The influence of the impedance variability of the acoustic liner of an air intake on aircraft engine fan noise in the far field has been studied. The calculations were carried out in an axisymmetric statement for single modes based on the finite element solution to the Blokhintsev equation for the acoustic potential. The acoustic liner impedance was determined from a well-developed semiempirical model that takes into account the influence of a high sound pressure level (SPL) and grazing flow. A procedure has been developed for calculating the propagation of single sound modes through the air intake of an aircraft engine with a variable liner impedance depending on the flow velocity and SPL at a local point. The calculation procedure has been validated. Calculations were made for single mode propagation into the forward hemisphere for an air intake on the wall of which the following conditions were set: rigid wall, constant impedance (the impedance does not change along the liner) and variable impedance (the impedance changes along the liner depending on the changes in the velocity of the grazing flow and SPL). According to the calculation results, it was found that constant and variable impedances yield different SPL values in the far field; as well, taking into account the impedance variability changes not only the SPL values in the far field, but also the direction of the maximum mode radiation.
Sobre autores
V. Palchikovskiy
Perm National Research Polytechnic University, 614990, Perm, Russia
Email: vvpal@pstu.ru
Россия, 614990, Пермь, Комсомольский просп. 29
A. Kuznetsov
Perm National Research Polytechnic University, 614990, Perm, Russia
Email: vvpal@pstu.ru
Россия, 614990, Пермь, Комсомольский просп. 29
V. Pavlogradskiy
Perm National Research Polytechnic University, 614990, Perm, Russia
Autor responsável pela correspondência
Email: vvpal@pstu.ru
Россия, 614990, Пермь, Комсомольский просп. 29
Bibliografia
- Reboul G., Polacsek C., Desquesnes G. Towards numerical simulation of fan broadband noise propagation and radiation from aero-engines // AIAA Paper 2009–3337.
- Martin Doherty, Howoong Namgoong. Impact of turbofan intake distortion on fan noise propagation and generation // AIAA Paper 2016–2018.
- Winkler J., Reimann C.A., Gumke Ch.D., Ali A.A., Reba R.A. Inlet and aft tonal noise predictions of a full-scale turbofan engine with bifurcation and inlet distortion // AIAA Paper 2017–3034.
- Шуваев Н.В., Синер А.А., Большагин Н.Н., Колегов Р.Н. Численное моделирование отражения акустической волны от вращающегося лопаточного венца // Вестник ПНИПУ. Аэрокосмическая техника, 2018. № 52. С. 5–15.
- Shi Zheng, Mei Zhuang, Frank Thiele. Noise prediction and optimization system for turbofan engine inlet duct design // AIAA Paper 2004–3031.
- Astley R.J., Sugimoto R., Mustafi P. Computational aero-acoustics for fan duct propagation and radiation. Current status and application to turbofan liner optimization // J. Sound and Vibration, 2011. V. 330. P. 3832–3845.
- Xiong L., Sugimoto R., Quaranta E. Effects of turbofan engine intake droop and length on fan tone noise // AIAA Paper 2019–2581.
- Sugimoto R., Murray P., McAlpine A., Astley R.J. Prediction of in-duct and near-field noise for a fan rig intake // AIAA Paper 2013–2022.
- Justin H. Lan, Yueping Guo, Cyrille Breard. Validation of acoustic propagation code with JT15D static and flight test data // AIAA Paper 2004–2986.
- Venditti D.A., Ait-Ali-Yahia D., Robichaud M., Girard G. Spectral-element/Kirchhoff method for fan-tone directivity calculations // AIAA Paper 2005–2926.
- Соболев А.Ф. Полуэмпирическая теория однослойных сотовых звукопоглощающих конструкций с лицевой перфорированной панелью // Акуст. журн. 2007. Т. 53. № 6. С. 861–872.
- Jia Yu, Marta Ruiz, Hwa Wan Kwan. Validation of Goodrich perforate liner impedance model using NASA Langley test data // AIAA Paper 2008–2930.
- Spillere A., Reis D., Cordioli J.A. A systematic review of semi-empirical acoustic liner models under grazing flow and high SPL // Proc. the 22-nd Int. Congress on Acoustics, Buenos Aires, 5–9 September 2016.
- Rienstra S.W., Singh D.K. Nonlinear asymptotic impedance model for a Helmholtz resonator of finite depth // AIAA J. 2018. V. 56. № 5. P. 1792–1802.
- Herv´e Denayer, Wim De Roeck, Wim Desmet, Thomas Toulorge. Acoustic characterization of a Helmholtz resonator under grazing flow conditions using a hybridmethodology // AIAA Paper. 2013–2076.
- Na W., Boij S., Efraimsson G. Simulations of acoustic wave propagation in an impedance tube using a frequency-domain linearized Navier-Stokes methodology // AIAA Paper 2014–2960.
- Jensen M.H., Shaposhnikov K., Svensson E. Using the linearized Navier–Stokes equations to model acoustic liners // AIAA Paper 2018–3783.
- Khramtsov I.V., Kustov O.Yu., Palchikovskiy V.V., Bulbovich R.V. Comparison of acoustic characteristics of resonant liner samples at normal incidence of waves based on semiempirical model, natural experiment and numerical simulation // AIP Conf. Proc. 2021. V. 2351. No. 030036.
- Jones M.G., Watson W.R., Parrott T.L. Benchmark data for evaluation of aeroacoustic propagation codes with grazing flow // AIAA Paper 2005–2853.
- Tatsuya Ishii, Kenichiro Nagai, Hideshi Oinuma, Shunji Enomoto. Experimental study of acoustic liner panels shared in IFAR program // AIAA Paper 2019–2602.
- Остриков Н.Н., Яковец М.А., Ипатов М.С. Экспериментальное подтверждение аналитической модели распространения звука в прямоугольном канале при наличии скачков импеданса и разработка на ее основе метода извлечения импеданса // Акуст. журн. 2020. Т. 66. С. 128–147.
- Башкатов В.В., Остриков Н.Н., Яковец М.А. Исследование влияния неоднородности скорости потока вблизи среза канала воздухозаборника на коэффициенты отражения звуковых мод // Материалы VII-ой Всероссийской конференции молодых ученых и специалистов “Акустика среды обитания”, Россия, Москва, 26–27 мая 2022. С. 21–34.
- Копьев В.Ф., Остриков Н.Н., Яковец М.А., Ипатов М.С., Кругляева А.Е., Сидоров С.Ю. Излучение звука из открытого конца канала, моделирующего воздухозаборник авиадвигателя в статических условиях и в потоке // Акуст. журн. 2019. Т. 65. С. 59–73.
Arquivos suplementares
