The influence of social and non-social factors on destabilization and reconsolidation of negative memory

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The current paper reviews the literature on the influence of social and non-social factors on the destabilization and reconsolidation of negative memory. The non-social influences: neuropharmacological (beta-adrenergic receptor antagonists, glutamatergic NMDA receptor antagonists and GABAergic receptor agonists) and behavioral interventions are described. The latter are associated with the inclusion in the process of reactivation of aversive memory, extinction, a new environment, stress, positive information, etc. The molecular-cellular mechanisms associated with the processes of destabilization and reconsolidation of memory, describing a behavioral tagging and the role of reinforcement prediction errors in these processes is also considered. The influence of social factors on memory reactivation/reconsolidation is shown. The mechanisms of transmission of the conditioned fear reaction, mitigation (fear buffering) and generalization of negative memory under the influence of a social partner are described. And finally, depending on the different nature of social interaction between learned animals, the degree of their freezing (fear) in the phase of reactivation and generalization of memory is given, with consideration of possible structural and functional mechanisms (using methods of optogenetics and early gene expression) of the observed behavioral changes.

作者简介

G. Grigoryan

Institute of Higher Nervous Activity and Neurophysiology of RAS

编辑信件的主要联系方式.
Email: grigorygrigoryan@hotmail.com
俄罗斯联邦, Moscow, 117458

参考

  1. Винарская А.Х., Зюзина А.Б., Балабан П.М. Оксид азота необходим для лабилизации (дестабилизации) обстановочной памяти у улиток // Журн. высш. нерв. деят. 2021. Т. 71. С. 286–292. doi: 10.31857/S004446772102012X
  2. Зайченко М.И., Маркевич В.А., Григорьян Г.А. Реактивация и реконсолидация памяти в оборонительном и пищевом инструментальном поведении // Успехи физиол. наук. 2020. Т. 51. № 1. С. 87–102. doi: 10.31857/S0301179820010099
  3. Зайченко М.И., Маркевич В.А., Григорьян Г.А. Пропранолол ухудшает память при однократно и многократно сочетанных с тоном болевых воздействиях // Журн. высш. нервн. деят. 2016. Т. 66. № 2. С. 220–228. doi: 10.7868/S0044467716020088
  4. Зюзина А.Б., Балабан П.М. Угашение и реконсолидация памяти // Журн. высш. нервн. деят. 2015. Т. 65. № 5. С. 564–576. doi: 10.7868/S0044467715050172.
  5. Ben Mamou C., Gamache K., Nader K. NMDA receptors are critical for unleashing consolidated auditory fear memories // Nature Neurosci. 2006. V. 9. P. 1237–1239. doi: 10.1038/nn1778.
  6. Brown T.E., Lee B.R., Sorg B.A. The NMDA antagonist MK-801 disrupts reconsolidation of a cocaine-associated memory for conditioned place preference but not for self-administration in rats // Learn. Mem. 2008. V. 15. № 12. P. 857–865. doi: 10.1101/lm.1152808.
  7. Bustos S.G., Maldonado H., Molina V.A. Disruptive effect of midazolam on fear memory reconsolidation: decisive influence of reactivation time span and memory age // Neuropsychopharmacology. 2009. V. 34. № 2. P. 446–457. doi: 10.1038/npp.2008.75.
  8. Cox W.R., Faliagkas L., Besseling A. et al. Interfering with contextual fear memories by post-reactivation administration of propranolol in mice: A series of null findings // Front. Behav. Neurosci. 2022. V. 16.893572. doi: 10.3389/fnbeh.2022.893572.
  9. Debiec J., Ledoux J.E. Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdale // Neuroscience. 2004. V. 129. № 2. P. 267–272.
  10. Debiec J., LeDoux J.E. Noradrenergic signaling in the amygdala contributes to the reconsolidation of fear memory: treatment implications for PTSD // Ann. N. Y. Acad. Sci. 2006. V. 1071. P. 521–524.
  11. Debiec J., Doyère V., Nader K., Ledoux J.E. Directly reactivated, but not indirectly reactivated, memories undergo reconsolidation in the amygdale // Proc. Natl. Acad. Sci. U S A. 2006. V. 103. № 9. P. 3428–3433.
  12. Debiec J., Bush D.E., LeDoux J.E. Noradrenergic enhancement of reconsolidation in the amygdala impairs extinction of conditioned fear in rats- – a possible mechanism for the persistence of traumatic memories in PTSD // Depress. Anxiety. 2011. V. 28. № 3. P. 186–193.
  13. Deng Y., Song D., Ni J., Qing H., Quan Z. Reward prediction error in learning-related behaviors // Front. Neurosci. 2023. V. 17. 1171612. doi: 10.3389/fnins.2023.1171612
  14. Dudai Y. The neurobiology of consolidations, or how stable is the engram? // Annu. Rev. Psychol. 2004. V. 55. P. 51–86.
  15. Exton-McGuinness M.T., Patton R.C., Sacco L.B., Lee J.L. Reconsolidation of a well-learned instrumental memory // Learn Mem. 2014. V. 21. № 9. P. 468–477. doi: 10.1101/lm.035543.114
  16. Fernández R.S., Boccia M.M., Pedreira M.E. The fate of memory: reconsolidation and the case of prediction error // Neurosci. Biobehav Rev. 2016. V. 68. P. 423–441. doi: 10.1016/j.neubiorev. 2016.06.004
  17. Ferrara N.C., Jarome T.J., Cullen P.K. et al. GluR2 endocytosis-dependent protein degradation in the amygdala mediates memory updating // Sci. Rep. 2019. V. 9. P. 5180. doi: 10.1038/s41598-019-41526-1.
  18. Ferrer Monti R.I., Giachero M., Alfei J.M. et al. An appetitive experience after fear memory destabilization attenuates fear retention: involvement GluN2B-NMDA receptors in the basolateral amygdala complex // Learn. Mem. 2016. V. 23. № 9. P. 465–478.
  19. Finkelstein A.B., Leblanc H., Cole R.H. et al. Social reactivation of fear engrams enhances memory recall // Proc. Natl. Acad. Sci. U S A. 2022. V. 119. N. 12:e2114230119. doi: 10.1073/pnas.2114230119.
  20. Ghaziri J., Tucholka A., Girard G. et al. Subcortical structural connectivity of insular subregions // Sci. Rep. 2018. V. 8. P. 1–12. 10.1038/s41598-018-26995-0
  21. Gisquet-Verrier P., Smith C. Avoidance performance in rat enhanced by postlearning paradoxical sleep deprivation // Behav. Neural. Biol. 1989. V. 52. № 2. P. 152–169.
  22. Grella S.L., Fortin A.H., Ruesch E. et al.Reactivating hippocampal-mediated memories during reconsolidation to disrupt fear // Nat. Commun. 2022. V. 13. № 1. P. 4733. doi: 10.1038/s41467-022-32246-8.
  23. Grigoryan G.A., Markevich V.A. Consolidation, reactivation, and reconsolidation of memory // Neurosci. Behav. Physiol. 2015. V. 45. N. 9. P. 1019–1028. doi: 10.1007/s11055-015-0181-x
  24. Gossen M., Freundlieb S., Bender G. et al. Transcriptional activation by tetracyclines in mammalian cells // Science 1995. V. 268. P. 1766–1769. doi: 10.1126/science.7792603.
  25. Hamann C.S., Bankmann J., Mora Maza H. et al. Social fear affects limbic system neuronal activity and gene expression // Int. J. Mol. Sci. 2022. V. 23. № 15. P. 8228. doi: 10.3390/ijms23158228.
  26. Haubrich J., Nader K. Network-level changes in the brain underlie fear memory strength // Elife. 2023. V. 12: RP88172. doi: 10.7554/eLife.88172.
  27. Haubrich J., Bernabo M., Nader K. Noradrenergic projections from the locus coeruleus to the amygdala constrain fear memory reconsolidation // Elife. 2020. V. 9. e57010. doi: 10.7554/eLife.57010.
  28. Haubrich J., Crestani A.P., Cassini L.F. et al. Reconsolidation allows fear memory to be updated to a less aversive level through the incorporation of appetitive information // Neuropsychopharmacology. 2015. V. 40. № 2. P. 315–326. doi: 10.1038/npp.2014.174.
  29. Ishii A., Kiyokawa Y., Takeuchi Y., Mori Y. Social buffering ameliorates conditioned fear responses in female rats // Horm. Behav. 2016. V. 81. P. 53–58. doi: 10.1016/j.yhbeh.2016.03.003
  30. Ito W., Morozov A. Prefrontal-amygdala plasticity enabled by observational fear // Neuropsychopharmacology. 2019. V. 44. P. 1778–1787. 10.1038/s41386-019-0342-7
  31. Kaplan K., Hunsberger H.C. Benzodiazepine-induced anterograde amnesia: detrimental side effect to novel study tool // Front. Pharmacol. 2023. V. 14. P. 1257030. doi: 10.3389/fphar.2023.1257030.
  32. Kim E.J., Kim E.S., Covey E., Kim J.J. Social transmission of fear in rats: the role of 22-kHz ultrasonic distress vocalization // PLoS One. 2010. 5:e15077 10.1371/journal.pone.0015077.
  33. Kiyokawa Y., Li Y., Takeuchi Y. A dyad shows mutual changes during social buffering of conditioned fear responses in male rats // Behav. Brain Res. 2019. V. 366. P. 45–55. doi: 10.1016/j.bbr.2019.03.024.
  34. Kiyokawa Y., Takeuchi Y. Social buffering ameliorates conditioned fear responses in the presence of an auditory conditioned stimulus // Physiol. Behav. 2017. V. 168. P. 34–40. 10.1016/j.physbeh.2016.10.020.
  35. Kiyokawa Y., Takeuchi Y., Mori Y. Two types of social buffering differentially mitigate conditioned fear responses // Eur. J. Neurosci. 2007. V. 26. P. 3606–3613. 10.1111/j.1460-9568.2007.05969.x
  36. Kiyokawa Y., Kikusui T., Takeuchi Y., Mori Y. Partner’s stress status influences social buffering effects in rats // Behav. Neurosci. 2004. V. 118. P. 798–804. 10.1037/0735-7044.118.4.798
  37. Kiyokawa Y., Kawai K., Takeuchi Y. The benefits of social buffering are maintained regardless of the stress level of the subject rat and enhanced by more conspecifics // Physiol. Behav. 2018. V. 194. P. 177–183. 10.1016/j.physbeh.2018.05.027
  38. Krawczyk M.C., Fernández R.S., Pedreira M.E., Boccia M.M. Toward a better understanding on the role of prediction error on memory processes: from bench to clinic // Neurobiol. Learn. Mem. 2017. V. 142. P. 13–20. doi: 10.1016/j.nlm.2016.12.011.
  39. Leblanc H., Ramirez S. Linking social cognition to learning and memory // J. Neurosci. 2020. V. 40. № 46. P. 8782–8798. doi: 10.1523/JNEUROSCI.1280-20.2020.
  40. LeDoux J. The amygdale // Curr. Biol. 2007. V. 17. N. 20. P. 868–874.
  41. Lee J.L., Milton A.L., Everitt B.J. Reconsolidation and extinction of conditioned fear: inhibition and potentiation // J. Neurosci. 2006. V. 26. № 39. P. 10051–10056. doi: 10.1523/JNEUROSCI.2466-06.2006.
  42. Lewis D.J. Psychobiology of active and inactive memory // Psychol. Bull. 1979. V. 86. P. 1054–108.
  43. Lewis D.J., Bregman N.J., Mahan J.J. Cue-dependent amnesia in rats // J. Comp. Physiol. Psychol. 1972. V. 81. № 2. P. 243–247. doi: 10.1037/h0033524
  44. Lonergan M.H., Olivera-Figuera L.A., Pitman R.K., Brunet A. Propranolol’s effects on the consolidation and reconsolidation of long-term emotional memory in healthy participants: a meta-analysis // J. Psychiatry Neurosci. 2013. V. 38. № 4. P. 222–231. doi: 10.1503/jpn.120111
  45. Luyten L., Schnell A.E., Schroyens N., Beckers T. Lack of drug-induced post-retrieval amnesia for auditory fear memories in rats // BMC Biol. 2021. V. 19. № 1. P. 17. doi: 10.1186/s12915-021-00957-x.
  46. Maren S. Synaptic mechanisms of associative memory in the amygdale // Neuron. 2005. V. 47. № 6. P. 783–786. doi: 10.1016/j.neuron.2005.08.009
  47. McGaugh J.L. The amygdala modulates the consolidation of memories of emotionally arousing experiences // Annu. Rev. Neurosci. 2004. V. 27. P. 1–28. doi: 10.1146/annurev.neuro.27.070203.144157
  48. McGaugh J.L. Memory – a century of consolidation // Science. 2000. V. 287. № 5451. P. 248–251. doi: 10.1126/science.287.5451.248.
  49. Migues P.V., Hardt O., Finnie P., Wang Y.W., Nader K. The maintenance of long-term memory in the hippocampus depends on the interaction between N-ethylmaleimide-sensitive factor and GluA2 // Hippocampus. 2014. V. 24. P. 1112–1119. doi: 10.1002/hipo.22295.
  50. Mikami K., Kiyokawa Y., Takeuchi Y., Mori Y. Social buffering enhances extinction of conditioned fear responses in male rats // Physiol. Behav. 2016. V. 163. P. 123–128. 10.1016/j.physbeh.2016.05.001.
  51. Moncada D., Viola H. Induction of long-term memory by exposure to novelty requires protein synthesis: Evidence for a behavioral tagging // J. Neurosci. 2007. V. 2. P. 7476–7481. doi: 10.1523/JNEUROSCI.1083-07.2007.
  52. Moncada D., Ballarini F., Viola H. Behavioral tagging: A translation of the synaptic tagging and capture hypothesis // Neural Plast. 2015. 650780. doi: 10.1155/2015/650780.
  53. Monfils M.H., Cowansage K.K., Klann E., LeDoux J.E. Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories // Science. 2009. V. 324. P. 951–955. doi: 10.1126/science.1167975.
  54. Muravieva E.V., Alberini C.M. Limited efficacy of propranolol on the reconsolidation of fear memories // Learn Mem. 2010. V. 17. № 6. P. 306–313. doi: 10.1101/lm.1794710.
  55. Nader K., Schafe G.E., Le Doux J.E. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval // Nature. 2000. V. 406. P. 722–726. doi: 10.1038/35021052.
  56. Nader K., Schafe G.E., LeDoux J.E. The labile nature of consolidation theory // Nat. Rev. Neurosci. 2000. V. 1. № 3. P. 216–219. doi: 10.1038/35044580.
  57. Nakamura K., Ishii A., Kiyokawa Y., Takeuchi Y., Mori Y. The strain of an accompanying conspecific affects the efficacy of social buffering in male rats // Horm. Behav. 2016. V. 82. P. 72–77. 10.1016/j.yhbeh.2016.05.003
  58. Nikitin V.P., Solntseva S.V., Kozyrev S.A., Nikitin P.V., Shevelkin A.V. NMDA or 5-HT receptor antagonists impair memory reconsolidation and induce various types of amnesia // Behav Brain Res. 2018. V. 345. P. 72–82. doi: 10.1016/j.bbr.2018.02.036.
  59. O’Donnell T., Hegadoren K.M., Coupland N.C. Noradrenergic mechanisms in the pathophysiology of post-traumatic stress disorder // Neuropsychobiology. 2004. V. 50. № 4. P. 273–283. doi: 10.1159/000080952.
  60. Orlandi R.I., Fullio C.L., Schroeder M.N., et al. Behavioral tagging underlies memory reconsolidation // Proc. Natl. Acad. Sci. U S A. 2020. V. 117. № 30. P. 18029–18036. doi: 10.1073/pnas.2009517117.
  61. Pavlova I.V., Broshevitskaya N.D., Grigoryan G.A. The Effects of the еarly pro-inflammatory stress on reconsolidation and extinction of fear memory // Behav. Brain Res. 2024.
  62. Pedreira M.E., Maldonado H. Protein synthesis subserves reconsolidation or extinction depending on reminder duration // Neuron. 2003. V. 38. № 6. P. 863–869. doi: 10.1016/s0896-6273(03)00352-0.
  63. Pitman R.K., Sanders K.M., Zusman R.M. et al. Pilot study of secondary prevention of posttraumatic stress disorder with propranolol // Biol. Psychiatry. 2002. V. 51. № 2. P. 189–192. doi: 10.1016/s0006-3223(01)01279-3.
  64. Pitman R.K. Post-traumatic stress disorder, hormones, and memory // Biol Psychiatry. 1989. V. 26. № 3. P. 221–223. doi: 10.1016/0006-3223(89)90033-4.
  65. Power A.E., Berlau D.J., McGaugh J.L., Steward O. Anisomycin infused into the hippocampus fails to block “reconsolidation” but impairs extinction: the role of re-exposure duration // Learn Mem. 2006. V. 13. № 1. P. 27–34. doi: 10.1101/lm.91206.
  66. Redondo R.L., Morris R.G.M. Making memories last: The synaptic tagging and capture hypothesis // Nat. Rev. Neurosci. 2011. V. 12. P. 17–30. doi: 10.1038/nrn2963.
  67. Rogers-Carter M.M., Varela J.A., Gribbons K.B. et al. Insular cortex mediates approach and avoidance responses to social affective stimuli // Nat. Neurosci. 2018. V. 21. P. 404–414. 10.1038/s41593-018-0071-y
  68. Rotondo F., Biddle K., Chen J. et al. Lack of effect of propranolol on the reconsolidation of conditioned fear memory due to a failure to engage memory destabilisation // Neuroscience. 2022. V. 480. P. 9–18. doi: 10.1016/j.neuroscience.2021.11.008.
  69. Sadler R., Herzig V., Schmidt W.J. Repeated treatment with the NMDA antagonist MK-801 disrupts reconsolidation of memory for amphetamine-conditioned place preference // Behav. Pharmacol. 2007. V. 18. № 7. P. 699–703. doi: 10.1097/FBP.0b013e3282effb81.
  70. Schafe G.E., Doyere V., LeDoux J.E. Tracking the fear engram: the lateral amygdala is an essential locus of fear memory storage // J. Neurosci. 2005. V. 25. № 43. P. 10010–10014. doi: 10.1523/JNEUROSCI.3307-05.2005.
  71. Schultz W. Reward prediction error // Curr. Biol. 2017. V. 27. P. 369–371. doi: 10.1016/j.cub.2017.02.064
  72. Schultz W. Dopamine reward prediction error coding // Dialogues Clin. Neurosci. 2016. V. 18. P. 23–32. doi: 10.31887/DCNS.2016.18.1/wschultz.
  73. Schroyens N., Beckers T., Kindt M. In search for boundary conditions of reconsolidation: A failure of fear memory interference // Front. Behav. Neurosci. 2017. V. 11. P. 65. doi: 10.3389/fnbeh.2017.00065.
  74. Southwick S.M., Davis M., Horner B. et al.Relationship of enhanced norepinephrine activity during memory consolidation to enhanced long-term memory in humans // Am. J. Psychiatry. 2002. V. 159. № 8. P. 1420–1422. doi: 10.1176/appi.ajp.159.8.1420.
  75. Southwick S.M., Bremner J.D., Rasmusson A., et al. Role of norepinephrine in the pathophysiology and treatment of posttraumatic stress disorder // Biol. Psychiatry. 1999. V. 46. № 9. P. 1192–1204. doi: 10.1016/s0006-3223(99)00219-x.
  76. Strawn J.R., Geracioti T.D. Jr. Noradrenergic dysfunction and the psychopharmacology of posttraumatic stress disorder // Depress. Anxiety. 2008. V. 25. № 3. P. 260–271. doi: 10.1002/da.20292.
  77. Suzuki A., Josselyn S.A., Frankland P.W. et al. Memory reconsolidation and extinction have distinct temporal and biochemical signatures // J. Neurosci. 2004. V. 20. P. 4787–4795. doi: 10.1523/JNEUROSCI.5491-03.2004.
  78. Uwaya A., Lee H., Park J. et al. Acute immobilization stress following contextual fear conditioning reduces fear memory: timing is essential // Behav. Brain Funct. 2016. V. 12. № 1. P. 8. doi: 10.1186/s12993-016-0092-1.
  79. Wang S.H., de Oliveira Alvares L., Nader K. Cellular and systems mechanisms of memory strength as a constraint on auditory fear reconsolidation // Nat. Neurosci. 2009. V. 12. P. 905–912. doi: 10.1038/nn.2350.
  80. Zaichenko M.I., Zakirov F.Kh., Markevich V.A., Grigoryan G.A. MK-801 impairs reconsolidation of a new memory and affects the old memory in operant feeding-related behavior in the eight-arm radial maze in rats // Neurosci. Behav. Physiol. 2021. V. 51. № 6. P. 739–747. doi: 10.1007/s11055-021-01130-1.
  81. Zaichenko M.I., Markevich V.A., Grigoryan G.A. Propranolol degrades memory reconsolidation in conditions of single and multiple combinations of tones with pain // Neurosci. Behav. Physiol. 2017. V. 47. № 6. P. 722–777.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».