Contribution of the peripheral system to auditory signal processing in modeling the precedence effect
- Authors: Agaeva M.Y.1
-
Affiliations:
- Pavlov Institute of Physiology, Russian Academy of Sciences
- Issue: Vol 56, No 1 (2025)
- Pages: 37-54
- Section: Articles
- URL: https://journals.rcsi.science/0301-1798/article/view/287437
- DOI: https://doi.org/10.31857/S0301179825010031
- EDN: https://elibrary.ru/VFTIRM
- ID: 287437
Cite item
Abstract
The precedence effect, or the law of the first wave, is important for localization of sound sources in a reverberant environment. Sound propagates in multiple directions and is subsequently reflected from different surfaces. As a result, the listener is faced with sound waves from the sound source and also with its reflections. However, despite this “acoustic chaos”, the listener can localize the sound source fairly accurately. This review is regarded to “peripheral” models of the precedence effect. The effect is explained by peripheral auditory processing without the central inhibition. This article reviews the precedence effect and its properties; describes the localization of the sound source and the structure of the peripheral part of the human auditory system; describes the general points of all peripheral models; discusses similarities and differences between models; and proposes further development paths.
About the authors
M. Yu. Agaeva
Pavlov Institute of Physiology, Russian Academy of Sciences
Author for correspondence.
Email: AgaevaMY@infran.ru
Russian Federation, St. Petersburg, 199034
References
- Альтман Я.А. Пространственный слух. Санкт-Петербург. Институт физиологии им. И.П. Павлова РАН. 2011311 с.
- Бибиков Н.Г. Некоторые принципы обработки сигналов слуховой системы // УЗФФ. 2014. C. 145349–1.
- Шупляков В.С. Физиология периферического отдела слуховой системы // Слуховая система, Ленинград, Наука, 1990. С. 156–166.
- Ashmore J.F. A fast motile response in guinea – pig outer hair cells: the cellular basis of the cochlear amplifier // J. Physiol. 1987. V. 388. P. 323–347. https://doi.org/10.1113/jphysiol.1987.sp016617.
- Von Békésy G. The variations of phase along the basilar membrane with sinusoidal vibrations // Acoust. Soc. Am., 1947. V. 19. P. 452–460. https://doi.org/10.1121/1.1916502
- Blauert J. Spatial hearing: The psychophysics of human sound localization // Harvard MA. The MIT Press. 1997. p. 343. https://doi.org/10.7551/mitpress/6391.001.0001
- Blauert J., Cobben W. Some considerations of binaural cross correlation analysis // Acoustica. 1978. V. 39. P. 96–104.
- Braasch J., Blauert J. The precedence effect for noise bursts of different bandwidths. II. Comparison of model algorithms //Acoust. Sci. Technol. 2003. V. 24. № 5. P. 293–303. https://doi.org/10.1250/ast.24.293
- Brown A.D., Stecker G.C., Tollin D.J. The Precedence effect in sound localization // JARO. 2015. № 16. P. 1–28 https://doi.org/ 10.1007/s10162-014-0496-2
- Carney L.H. A model for the responses of low-frequency auditory nerve fibers in cat // J. Acoust. Soc. Am. 1993. V. 93. № 1. P. 401–417. https://doi.org/10.1121/1.405620
- Clifton R.K., Morrongiello B.A., Dowd J.M. A developmental look at an auditory illusion: The precedence effect // Dev. Psychobiol. 1984. V. 17. № 5. P. 519–536. https://doi.org/10.1002/dev.420170509
- Colburn H.S. Theory of binaural interaction based on auditory-nerve data. II. Detection of tones in noise // J. Acoust. Soc. Am. 1977. V. 61. P. 525–533. https://doi.org/10.1121/1.381294
- Cremer L Die Wissenschaftlichen Grundlagen der Raumakustik. Bd.1 Hertzel S. Hertzel Verlag, Stuttgart 1948. цитировано по Blauert J. Spatial hearing: The psychophysics of human sound localization. Harvard MA. The MIT Press. 1997. p 343. https://doi.org/10.7551/mitpress/6391.001.0001
- Dizon R.M., Colburn H.S. The influence of spectral, temporal, and interaural stimulus variations on the precedence effect // J Acoust Soc Am. 2006. V. 119. P. 2947–2964. https://doi.org/10.1121/1.2189451
- Fletcher H. Auditory patterns. // Rev. Mod. Phys. 1940. V. 12. P. 47–65. https://doi.org/10.1103/RevModPhys.12.47
- Freyman R.L., Morse-Fortier C., Griffin A.M., Zurek P.M. Can monaural temporal masking explain the ongoing precedence effect? // J. Acoust. Soc. Am. 2018. V. 143. P. EL133–EL139. https://doi.org/10.1121/1.5024687
- Gaskell H. The precedence effect // Hearing Res. 1983. V. 12. № 3. P. 277–303. https://doi.org/10.1016/0378-5955(83)90002-3
- Goldberg J.M., Brown P.B. Response of binaural neurons of dog superior olivary complex to dichotic tone stimuli: Some physiological mechanism of sound localization // J. Neurophysiol. 1969. V. 32. P. 613–636. https://doi.org/10.1152/jn.1969.32.4.613
- Haas H. The influence of a single echo on the audibility of speech. // J Audiol Eng Soc. 1949. V. 20. P. 146–159. https://doi.org/10.1103/RevModPhys.12.47
- Haas H. On the influence of a single echo on the intelligibility of speech. Acustica. 1951. V. 1. P. 48.
- Hafter E.R. Quantitative evaluation of a lateralization model of masking-level differences // J. Acoust. Soc. Am. 1971. V. 50. P. 1116–1122. https://doi.org/10.1121/1.1912743
- Hancock K.E., Delgutte B. A physiologically based model of interaural time difference discrimination // J. Neurosci. 2004. V. 24. P. 7110–7117. https://doi.org/10.1523/JNEUROSCI.0762-04.2004
- Harris D.M., Dallas P. Forward masking of auditory nerve fiber responses // J. Neurophystol. 1979. V. 42. P. 1083. https://doi.org/10.1152/jn.1979.42.4.1083-1107
- Harris G.G., Flanagan J.L., Watson B.J. Binaural interaction of click with a click pair // J. Acoust. Soc. Am. 1963. V. 35. P. 672–678. https://doi.org/10.1121/1.1918583
- Hartung K., Trahiotis C. Peripheral auditory processing and investigations of the ‘precedence effect’ which utilize successive transient stimuli // J Acoust Soc Am. 2001. V. 110. P. 1505–1513 https://doi.org/10.1121/1.1390339
- Henning G.B. Lateralization of low-frequency transients // Hear. Res. 1983. V. 9. P. 153–172. https://doi.org/10.1016/0378-5955(83)90025-4
- Jeffress L.A. A place theory of sound localization // J. Comp. Physiol. Psychol. 1948. V. 41. № 1. P. 35–39. https://doi.org/10.1037/h0061495
- Jeffress L.A., McFadden D. MLD’s and the phase angle, alpha // J. Acoust. Soc. Am. 1968. V. 43. P. 164. https://doi.org/10.1121/1.1910748
- Kiang N.Y.S., Watanabe T., Thomas E.C., Clark L.F. Discharge patterns of Single Fibers in the Cat’s Auditory Nerve. Massachusetts: MIT Press Cambridge, 1965. p. 165.
- Kujawa S.G., Liberman M.C. Effects of olivocochlear feedback on distortion product otoacoustic emissions in guinea pig // Assoc. Res. 0tolaryngol. 2001. V. 2. P. 268–278 https://doi.org/ 10.1007/s101620010047
- Kuwada S., Stanford T.R., Batra R. Interaural Phase-Sensitive Units in the Inferior Colliculus of the Unanesthetized Rabbit: Effects of Changing Frequency // J. Neurophysiol. 1987. V. 57. № 5. P. 1338–1360 https://doi.org/10.1152/jn.1987.57.5.1338
- Kuwada S., Yin T.C.T. Binaural interaction in low-frequency neurons in the IC of the cat. I. Effects of long interaural delays, intensity, and repetition rate on interaural delay function // J. Neurophysiol. 1983. V. 50. P. 981–999. https://doi.org/10.1152/jn.1983.50.4.981
- Liberman M.C., Guinan Jr. J.J., Feedback control or the auditory periphery: anti-masking effects of middle ear muscles vs. olivocochlear efferents. //J. Commun. Dison. 1998. V. 31. № 6. P. 471–483. https://doi.org/10.1016/S0021-9924(98)00019-7
- Lindemann W. Extension of a binaural cross-correlation model by contralateral inhibition. II. The law of the first wavefront // J. Acoust. Soc. Am. 1986. V. 80. № 6. P. 1623–1630. https://doi.org/10.1121/1.394326
- Litovsky R. Spatial release from masking //Acoustics Today. 2012. P. 18–25.
- Litovsky R. Development of the auditory system // Handbook of clinical neurology. 2015. V. 129. P. 55–72.
- https://doi.org/10.1016/B978-0-444-62630-1.00003-2
- Litovsky R.Y. Developmental changes in the precedence effect: Estimates of minimum audible angle // J. Acoust. Soc. Am. 1997. V. 102. № 3. P. 1739–1745. https://doi.org/10.1121/1.420106
- Litovsky R.Y., Colburn H.S., Yost W.A., Guzman S.J. The precedence effect // J. Acoust. Soc. Am. 1999. V. 106. № 4. P. 1633–1654. https://doi.org/10.1121/1.427914
- Litovsky R.Y., Shinn-Cunningham B.G. Investigation of the relationship among three common measures of precedence: fusion, localization dominance, and discrimination suppression // J. Acoust. Soc. Am. 2001. V. 109. P. 346–358. https://doi.org/10.1121/1.1328792
- Litovsky R.Y., Yin T.C.T. Physiological studies of the precedence effect in the inferior colliculus of the cat: I. Correlates of psychophysics // J. Neurophysiol. 1998. V. 80. P. 1285–1301. https://doi.org/10.1152/jn.1998.80.3.1285
- Meddis R. Simulation of mechanical to neural transduction in the auditory receptor // J Acoust Soc Am. 1986. V. 79. P. 702–711. https://doi.org/10.1121/1.393460
- Meddis R., Lopez-Proveda E.A. Auditory Periphery: From Pinna to Auditory Nerve. In R. Meddis, E. A. Lopez-Proveda, A.N. Popper, R.R. Fay (Eds). Computational Models of the Auditory System. Handbook of Auditory Research. book series (SHAR. V. 35). Boston: Springer, 2010. p. 7 https://doi.org/10.1007/978-1-4419-5934-8_2
- Meddis R., Hewitt M.J., Shackleton T.M. Implementation details of a computational model of the inner hair-cell auditory-nerve synapse // J. Acoust. Soc. Am. 1990. V. 87. P. 1813–1816. https://doi.org/10.1121/1.399379
- Middlebrooks J.C. Sound Localization In G.G. Celesia and G. Hickok (Eds). Handbook of Clinical Neurology, Vol. 129 (3rd series) The Human Auditory System, Elsevier B.V., 2015. p. 99–112. https://doi.org/10.1016/B978-0-444-62630-1.00006-8
- Middlebrooks J.C., Green D.M. Sound localization by human listeners // Annu. Rev. Psychol. 1991. V. 42. P. 135–159. https://doi.org/10.1146/annurev.ps.42.020191.001031
- Moore B.J. An Introduction to the Psychology of Hearing. Emerald Group Publishing Limited, Bingley, UK, 2013. p. 441.
- Moore B.C. J, Sek A. Auditory filtering and the critical bandwidth at low frequencies. In G. A. Manley, G. M. Klump, C. Koppl, H. Fastl., H. Oeckinghaus (Eds.). Advances in Hearing Research. World Scientific: Singapore, 1995. p. 425.
- Moser T., and Beutner D. Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse //Proc. Natl. Acad. Sci. U.S.A. 2000. V. 97. № 2. P. 883. https://doi.org/10.1073/pnas.97.2.883-888
- Pastore M.T., Braasch J. The impact of peripheral mechanisms on precedence effect // J. Acoust. Soc. Am. 2019. V. 146. № 1. P. 425–444. https://doi.org/10.1121/1.5116680
- Pastore M. T., Braasch J. The precedence effect with increased lag level // J. Acoust. Soc. Am. 2015. V. 138. № 4. P. 2079–2089. https://doi.org/10.1121/1.4929940
- Patterson R.D., Allerhand M.H., Giguere C. Time-domain modeling of peripheral auditory processing: A modular architecture and a software platform // J. Acoust. Soc. Am. 1995. V. 98. P. 1890–1894. https://doi.org/10.1121/1.414456
- Patuzzi R., Robertson D. Tuning in the mammalian cochlea // Physiol Rev. 1988. V. 68. № 4. P. 1009–1092 https://doi.org/10.1152/physrev.1988.68.4.1009.
- Pickles J.O. Auditory pathways: anatomy and physiology. G. Celesia, G. Hickok (Eds). The Human Auditory System. Handbook of Clinical Neurology Vol 129 (3rd series). Elsevier BV. 2015. p. 3–25. https://doi.org/10.1016/B978-0-444-62630-1.00001-9
- Raman I.M., Zhang S., Trussell L.O. Pathway-specific variants of AMPA receptors and their contribution to neuronal signaling // J. Neurosci. 1994. V. 14. № 8. P. 4998–5010. https://doi.org/10.1523/JNEUROSCI.14-08-04998.1994
- Risoud M., Hanson J.N., Gauvrit F. et al. Sound source localization // European Annals of Otorhinolaryngol Head Neck Dis. 2018. V. 135. № 4. P. 259–264. https://doi.org/10.1016/j.anorl.2018.04.009
- Rhode W.S., Smith P.H. Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers // Hear. Res. 1985. V. 18. № 2. P. 159–168. https://doi.org/10.1016/0378-5955(85)90008-5
- Sellick P.M., Patuzzi R., Johnstone B.M. Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique // Acoust. Soc. Am. 1982. V. 72. № 1. P. 131–141. https://doi.org/10.1121/1.387996
- Shinn-Cunningham B.G., Zurek P.M., Durlach N.I., Clifton R.K. Cross-frequency interactions in the precedence effect // J. Acoust. Soc. Am. 1995. V. 98. № 1. P. 164–171. https://doi.org/10.1121/1.413752
- Slaney M. An efficient implementation of the Patterson- Holdsworth auditory filter bank // Apple Computer Technical Report 1993. P. 1–42.
- Stecker G.C., Brown A. Temporal weighting of binaural cues revealed by detection of dynamic interaural differences in high-rate Gabor click trains // J. Acoust. Soc. Am. 2010. V. 127. № 5. P. 3092–3102. https://doi.org/10.1121/1.3377088
- Stecker G.C., Bernstein L.R., Brown A.D. Binaural hearing with temporally complex signals. In R.Y. Litovsky, M. J. Goupell, R.R. Fay, A.N. Popper (Eds) Binaural Hearing. New York: Springer, 2021. V. 73, p. 145–180. https://doi.org/10.1007/978-3-030-57100-9_6
- Stecker G.C., Moore T.M. Reverberation enhances onset dominance in sound localization // J. Acoust. Soc. Am. 2018. V. 143. № 2. P. 786–793. doi: 10.1121/1.5023221
- Stern R.M., Trahiotis C. Models of binaural interaction. In B.C.J. Moore (Eds). Handbook of perception and cognition, Ed 2, Hearing. San Diego: Academic, 1995. p 347.
- Stern R.M., Zeiberg A.S., Trahiotis C. Lateralization of complex binaural stimuli: A weighted-image model // J. Acoust. Soc. Am. 1988. V. 84. № 1. P. 156–165. https://doi.org/10.1121/1.396982
- Tollin D.J. Computational model of the lateralization of clicks and their echoes In S. Greenberg, M. Slaney, M. Berkeley (Eds). Proceedings of the NATO Advanced Study Institute on Computational Hearing. 1998, p. 77–82.
- Tollin D.J, Henning G.B. Some aspects of the lateralization of echoed sound in man. I. The role of the stimulus spectrum // J. Acoust. Soc. Am. 1999. V. 105. № 2. P. 838–849. https://doi.org/10.1121/1.426273
- Tollin D.J., Henning G.B. Some aspects of the lateralization of echoed sound in man. I. The classical interaural-delay based precedence effect // J. Acoust. Soc. Am. 1998. V. 104. № 5. P. 3030–3038. https://doi.org/10.1121/1.423884
- Tollin D.J., Henning G.B. Anomalous lateralization in the precedence effect with novel two-echo stimuli // J. Acoust. Soc. Am. 1996. V. 100. P. 2593. https://doi.org/10.1121/1.417579
- Trahiotis C., Hartung K. Peripheral auditory processing, the precedence effect and responses of single units in the inferior colliculus // Hearing Research. 2002. V. 168. P. 55–59. https://doi.org/10.1016/S0378-5955(02)00357-X
- Wallach H., Newman E.B., Rosenzweig R. The precedence effect in sound localization // Am J Psychiatr. 1949. V. 62. № 3. P. 315–336. https://doi.org/10.2307/1418275
- Westerman L.A., Smith R.L. A diffusion model of the transient response of the cochlear inner hair cell synapse// J. Acoust. Soc. Am. 1988. V. 83. P. 2266–2276. https://doi.org/10.1121/1.396357
- Westerman L.A., Smith R.L. Rapid and Short Term Adaptation in Auditory-Nerve Responses // Hear. Res. 1984. V. 15. № 3. P. 249–260. https://doi.org/10.1016/0378-5955(84)90032-7
- Xia J., Brughera A., Colburn H.S. Physiological and psychophysical modeling of the precedence effect // J. Assoc. Res. Otolaryngol. 2010. V. 11. P. 495–513. https://doi.org/ 10.1007/s10162-010-0212-9
- Xia J., Shinn-Cunningham B. Isolating mechanisms that influence measures of the precedence effect: Theoretical predictions and behavioral tests // J Acoust Soc Am. 2011. V. 130. № 2. P. 866–882. https://doi.org/10.1121/1.3605549
- Yin T.C.T. Physiological correlates of the precedence effect and summing localization in the inferior colliculus of the cat // J. Neurosci. 1994. V. 14. P. 5170–5186. https://doi.org/ 10.1523/JNEUROSCI.14-09-05170.1994
- Yin T.C.T., Chan J.C.K. Interaural time sensitivity in medial superior olive of cat // J. Neurophysiol. 1990. V. 64. № 2. P. 465. https://doi.org/10.1152/jn.1990.64.2.465
- Yin T.C.T., Chan J.C.K., Carney L.H. Effects of interaural time delays of noise stimuli on low-frequency cells in the cat’s inferior colliculus. III. Evidence for cross-correlation // J. Neurophysiol. 1987. V. 58. P. 562–583. https://doi.org/10.1152/jn.1987.58.3.562
- Yost W.A. Auditory Perception In V.S. Ramachandran (Eds). Encyclopedia of the Human Brain. V. 1. Academic Press, 2002. p. 303. https://doi.org/10.1016/B0-12-227210-2/00047-9
- Yost W.A., Soderquist D.R. The precedence effect: Revisited /// J. Acoust. Soc. Am. 1984. V. 76. № 5. P. 1377–1383. https://doi.org/10.1121/1.391454
- Zhang X., Carney L.H. Analysis of models for the synapse between the inner hair cell and the auditory nerve // J. Acoust. Soc. Am. 2005. V. 118. P. 1540–1553. https://doi.org/10.1121/1.1993148
- Zilany M.S.A., Bruce I.C., Carney L.H. Updated parameters and expanded simulation options for a model of the auditory periphery // J. Acoust. Soc. Am. 2014. V. 135. № 1. P. 283–286. https://doi.org/10.1121/1.4837815
- Zilany M.S., Bruce I.C. Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery J. Acoust. Soc. Am. 2006. V. 120. № 3. P. 1446–1466. https://doi.org/10.1121/1.2225512
- Zilany M.S., Bruce I.C., Nelson P.C., Carney L.H. A phenomenological model of the synapse between the inner hair cell and auditory nerve: Long-term adaptation with power-law dynamics //J. Acoust. Soc. Am. 2009. V. 126. № 5. P. 2390–2412. https://doi.org/10.1121/1.3238250
- Zurek P.M. The precedence effect. In W.A. Yost, G. Gourevitch (Eds) Directional hearing. Springer-Verlag: New York, 1987. p. 85–105. https://doi.org/10.1007/978-1-4612-4738-8_4
- Zurek P.M. The precedence effect and its possible role in the avoidance of interaural ambiguities // J. Acoust. Soc. Am. 1980. V. 67. P. 953–964. https://doi.org/10.1121/1.383974
- Zwicker E. Subdivision of the audible frequency range into critical bands (Frequenzgruppen) // Acoust. Soc. Am., 1961. V. 33. P. 248. https://doi.org/10.1121/1.1908630
Supplementary files
