Contribution of oxytocin and dopamine to the formation of neural clusters in the neocortex representing multimodal sensory stimuli

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We have previously proposed a unified mechanism for the formation of contrasted representations of multimodal sensory stimuli in the activity of neocortical neurons. Contrasting is based on the opposite sign of modification of the efficacy of strong and weak excitatory inputs to the spiny cells of the striatum (the input structure of the basal ganglia) and the subsequent dopamine-dependent activity reorganizations in parallel cortico – basal ganglia – thalamocortical loops. Oxytocin and dopamine (through D1 receptors) can improve the contrast of these representations, contributing to the induction of LTP of the efficacy of excitation of cortical, thalamic, and hippocampal neurons innervating spiny cells. In addition, oxytocin and dopamine can improve contrasting enhancement by increasing the signal-to-noise ratio in the neocortex, hippocampus, and striatum. A proposed mechanism for increasing the signal-to-noise ratio is based on the opposite sign of a long-term modification of the efficacy of monosynaptic excitatory and disynaptic inhibitory inputs, simultaneously affecting the postsynaptic neuron. The proposed mechanisms may underlie the contribution of oxytocin and dopamine to improving the formation and long-term maintenance of activity in neuronal groups with similar receptive fields that form columns in the primary visual cortex, a tonotopic map in the primary auditory cortex, a somatotopic map in the sensorimotor cortex, and distributed clusters in the olfactory piriform cortex. These mechanisms differ from the commonly accepted mechanisms of the formation of neuronal clusters in the neocortex with similar RPs, that are based on afferent and lateral excitation and inhibition, which does not allow providing the specificity and duration of effects. Understanding the mechanisms of involvement of oxytocin and dopamine in the processing of multimodal sensory information may be useful for developing treatments for some disorders of social behavior.

Full Text

Restricted Access

About the authors

I. G. Silkis

Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences

Author for correspondence.
Email: isa-silkis@mail.ru
Russian Federation, 117485, Moscow

References

  1. Силькис И.Г. Унифицированный постсинаптический механизм влияния различных нейромодуляторов на модификацию возбудительных и тормозных входов к нейронам гиппокампа (Гипотеза) // Успехи физиол. наук. 2002а. T. 33. № 1. C. 40.
  2. Силькис И.Г. Возможный механизм влияния нейромодуляторов и модифицируемого торможения на длительную потенциацию и депрессию возбудительных входов к основным нейронам гиппокампа // Журн. высш. нерв. деят. им. И.П. Павлова. 2002b. T. 52. № 4. C. 392.
  3. Силькис И.Г. Возможные механизмы участия субталамического ядра и связанных с ним структур в двигательных нарушениях, вызванных дефицитом дофамина // Успехи физиол. наук. 2005. Т. 36. № 2. С. 66.
  4. Силькис И.Г. Роль дофамин-зависимых перестроек активности в цепях кора – базальные ганглии – таламус – кора в зрительном внимании (гипотетический механизм) // Успехи физиол. наук. 2007. Т. 38. № 4. С. 21.
  5. Силькис И.Г. Механизмы влияния дофамина на функционирование базальных ганглиев и выбор движения (сопоставление моделей) // Нейрохимия. 2013. T. 30. № 4. C. 305. https://doi.org/10.7868/S1027813313030138
  6. Силькис И.Г. Механизмы взаимозависимого влияния префронтальной коры, гиппокампа и миндалины на функционирование базальных ганглиев и выбор поведения // Журн. высш. нерв. деят. им. И.П. Павлова. 2014. T. 64. № 1. C. 82. https://doi.org/10.7868/S0044467714010110
  7. Силькис И.Г. О роли базальных ганглиев в формировании рецептивных полей нейронов первичной слуховой коры и механизмы их пластичности // Успехи физиол. наук. 2015a. Т. 46. № 3. С. 60.
  8. Силькис И.Г. О роли базальных ганглиев в обработке сложных звуковых стимулов и слуховом внимании // Успехи физиол. наук. 2015b. T. 46. № 3. P. 76.
  9. Силькис И.Г. Роль базальных ганглиев, внимания и эмоций в перестройках рецептивных полей нейронов первичной слуховой коры и выборе движения при обучении (гипотетический механизм) // Журн. высш. нерв. деят. 2019. Т. 69. № 6. С. 657. https://doi.org/10.1134/S004446771906011X
  10. Силькис И.Г. О сходстве механизмов обработки обонятельной, слуховой и зрительной информации в ЦНС (гипотеза) // Нейрохимия. 2023. Т. 40. № 1, C. 35. https://doi.org/10.31857/S1027813323010193
  11. Albus K., Chao H.H., Hicks T.P. Tachykinins preferentially excite certain complex cells in the infragranular layers of feline striate cortex // Brain Res. 1992. V. 587. № 2. P. 353. https://doi.org/10.1016/0006-8993(92)91019-b.
  12. Angelucci A., Bressloff P.C. Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons // Prog. Brain Res. 2006. V. 154. P. 93. https://doi.org/10.1016/S0079-6123(06)54005-1.
  13. Atencio C.A., Schreiner C.E. Columnar connectivity and laminar processing in cat primary auditory cortex // PLoS One. 2010. V. 5. № 3. P. e9521. https://doi.org/10.1371/journal.pone.0009521
  14. Atencio C.A., Schreiner C.E. Functional congruity in local auditory cortical microcircuits // Neuroscience. 2016. V. 316. P. 402. https://doi.org/10.1016/j.neuroscience.2015.12.057
  15. Bao S., Chan V.T., Merzenich M.M. Cortical remodeling induced by activity of ventral tegmental dopamine neurons // Nature. 2001. V. 412. № 6842. P. 79. https://doi.org/10.1038/35083586
  16. Beets I., Temmerman L., Janssen T., Schoofs L. Ancient neuromodulation by vasopressin/oxytocin-related peptides // Worm. 2013. V. 2. № 2. P. e24246. https://doi.org/10.4161/worm.24246
  17. Bracci E., Centonze D., Bernardi G., Calabresi P. Dopamine excites fast-spiking interneurons in the striatum // J. Neurophysiol. 2002. V. 87. № 4. P. 2190. https://doi.org/10.1152/jn.00754.2001
  18. Chalk M., Masset P., Deneve S., Gutkin B. Sensory noise predicts divisive reshaping of receptive fields // PLoS Comput. Biol. 2017. V. 13. № 6. P. e1005582. https://doi.org/10.1371/journal.pcbi.1005582
  19. Chang Y.S., Owen J.P., Desai S.S., Hill S.S., Arnett A.B., Harris J., Marco E.J., Mukherjee P. Autism and sensory processing disorders: Shared white matter disruption in sensory pathways but divergent connectivity in social-emotional pathways // PLoS ONE. 2014. V. 9. № 7. P. e103038. https://doi.org/10.1371/journal.pone.0103038
  20. Chen L., Bohanick J.D., Nishihara M., Seamans J.K., Yang C.R. Dopamine D1/5 receptor-mediated long-term potentiation of intrinsic excitability in rat prefrontal cortical neurons: Ca2+-dependent intracellular signaling // J. Neurophysiol. 2007. V. 97. № 3. P. 2448. https://doi.org/10.1152/jn.00317.2006
  21. Choe H.K., Reed M.D., Benavidez N., Montgomery D., Soares N., Yim Y.S., Choi G.B. Oxytocin mediates entrainment of sensory stimuli to social cues of opposing valence // Neuron. 2015. V. 87. № 1. P. 152. https://doi.org/10.1016/j.neuron.2015.06.022
  22. Choi W.S., Machida C.A., Ronnekleiv O.K. Distribution of dopamine D1, D2, and D5 receptor mRNAs in the monkey brain: ribonuclease protection assay analysis // Mol. Brain Res. 1995. V. 31. № 1-2. P. 86. https://doi.org/10.1016/0169-328x(95)00038-t
  23. Cui G., Jun S,B., Jin X., Pham M.D., Vogel S.S., Lovinger D.M., Costa R.M. Concurrent activation of striatal direct and indirect pathways during action initiation // Nature. 2013. V. 494. № 7436. P. 238. https://doi.org/10.1038/nature11846
  24. Domes G., Sibold M., Schulze L., Lischke A., Herpertz S.C., Heinrichs M. Intranasal oxytocin increases covert attention to positive social cues // Psychol. Med. 2013. V. 43. № 8. P. 1747. https://doi.org/10.1017/S0033291712002565
  25. Fang L.Y., Quan R.D., Kaba H. Oxytocin facilitates the induction of long-term potentiation in the accessory olfactory bulb // Neurosci. Lett. 2008. V. 438. № 2. P.133. https://doi.org/10.1016/j.neulet.2007.12.070
  26. Freeman S.M., Young L.J. Comparative perspectives on oxytocin and vasopressin receptor research in rodents and primates: translational implications // J. Neuroendocrinol. 2016. V. 28. № 4. P. 10.1111/jne.12382. https://doi.org/10.1111/jne.12382
  27. Friend D.M., Kravitz A.V. Working together: basal ganglia pathways in action selection // Trends Neurosci. 2014. V. 37. № 6. P. 301. https://doi.org/10.1016/j.tins.2014.04.004
  28. Fritz J., Elhilali M., Shamma S. Active listening: task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex // Hear. Res. 2005. V. 206. № 1-2. P. 159. https://doi.org/10.1016/j.heares.2005.01.015
  29. Fritz J., Shamma S., Elhilali M., Klein D. Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex // Nat. Neurosci. 2003. V. 6. № 11. P. 1216. https://doi.org/10.1038/nn1141
  30. Froemke R.C., Young L.J. Oxytocin, neural plasticity, and social behavior // Annu. Rev. Neurosci. 2021. V. 44. P. 359. https://doi.org/10.1146/annurev-neuro-102320-102847
  31. Gittis A.H., Nelson A.B., Thwin M.T., Palop J.J., Kreitzer A.C. Distinct roles of GABAergic interneurons in the regulation of striatal output pathways // J. Neurosci. 2010. V. 30. № 6. P. 2223. https://doi.org/10.1523/JNEUROSCI.4870-09.2010
  32. Gombköto P., Rokszin A., Berényi A., Braunitzer G., Utassy G., Benedek G., Nagy A. Neuronal code of spatial visual information in the caudate nucleus // Neuroscience. 2011. V. 182. P. 225. https://doi.org/10.1016/j.neuroscience.2011.02.048
  33. Graziano M.S., Gross C.G. A bimodal map of space: somatosensory receptive fields in the macaque putamen with corresponding visual receptive fields // Exp. Brain Res. 1993. V. 97. № 1. P. 96. https://doi.org/10.1007/BF00228820
  34. Grinevich V., Stoop R. Interplay between oxytocin and sensory systems in the orchestration of socio-emotional behaviors // Neuron. 2018. V. 99. № 5. P. 887. https://doi.org/10.1016/j.neuron.2018.07.016
  35. Haber S.N. Corticostriatal circuitry // Dialogues Clin. Neurosci. 2016. V. 18. № 1. P. 7. https://doi.org/10.31887/DCNS.2016.18.1/shaber
  36. Haynes W.I., Haber S.N. The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for Basal Ganglia models and deep brain stimulation // J. Neurosci. 2013. V. 33. № 11. P. 4804. https://doi.org/10.1523/JNEUROSCI.4674-12.2013
  37. Hicks T.P., Albus K., Kaneko T., Baumfalk U. Examination of the effects of cholecystokinin 26-33 and neuropeptide Y on responses of visual cortical neurons of the cat // Neuroscience. 1993. V. 52. № 2. P. 263. https://doi.org/10.1016/0306-4522(93)90155-9
  38. Hodos W., Butler A.B. Evolution of sensory pathways in vertebrates // Brain Behav. Evol. 1997. V. 50. № 4. P. 189. https://doi.org/10.1159/000113333
  39. Hofstetter S., Dumoulin S.O. Tuned neural responses to haptic numerosity in the putamen // Neuroimage. 2021. V. 238. P. 118178. https://doi.org/10.1016/j.neuroimage.2021.118178
  40. Hosp J.A., Hertler B., Atiemo C.O., Luft A.R. Dopaminergic modulation of receptive fields in rat sensorimotor cortex // Neuroimage. 2011. V. 54. № 1. P. 154. https://doi.org/10.1016/j.neuroimage.2010.07.029
  41. Huber D., Veinante P., Stoop R. Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala // Science. 2005. V. 308. № 5719. P. 245. https://doi.org/10.1126/science.1105636
  42. Isaacson J.S. Odor representations in mammalian cortical circuits // Curr. Opin. Neurobiol. 2010. V. 20. № 3. P. 328. https://doi.org/10.1016/j.conb.2010.02.004
  43. Kha H.T., Finkelstein D.I., Tomas D., Drago J., Pow D.V., Horne M.K. Projections from the substantia nigra pars reticulata to the motor thalamus of the rat: single axon reconstructions and immunohistochemical study // J. Comp. Neurol. 2001. V. 440. № 1. P. 20. https://doi.org/10.1002/cne.1367
  44. Kirsch P., Esslinger C., Chen Q., Mier D., Lis S., Siddhanti S., Gruppe H., Mattay V.S., Gallhofer B., Meyer-Lindenberg A. Oxytocin modulates neural circuitry for social cognition and fear in humans // J. Neurosci. 2005. V. 25. № 49. P. 11489. https://doi.org/10.1523/JNEUROSCI.3984-05.2005
  45. Kröner S., Krimer L.S., Lewis D.A., Barrionuevo G. Dopamine increases inhibition in the monkey dorsolateral prefrontal cortex through cell type-specific modulation of interneurons // Cereb. Cortex. 2007. V. 17. № 5. P. 1020. https://doi.org/10.1093/cercor/bhl012
  46. Li Y.T., Ma W.P., Pan C.J., Zhang L.I., Tao H.W. Broadening of cortical inhibition mediates developmental sharpening of orientation selectivity // J. Neurosci. 2012. V. 32. № 12. P. 3981. https://doi.org/10.1523/JNEUROSCI.5514-11.2012
  47. Li L.Y., Xiong X.R., Ibrahim L.A., Yuan W., Tao H.W., Zhang L.I. Differential receptive field properties of parvalbumin and somatostatin inhibitory neurons in mouse auditory cortex // Cereb. Cortex. 2015. V. 25. № 7. P. 782. https://doi.org/10.1093/cercor/bht417
  48. Lintas A., Silkis I. G., Albéri L., Villa A.E.P. Dopamine deficiency increases synchronized activity in the rat subthalamic nucleus // Brain Res. 2012. V. 1434. P. 142. https://doi.org/10.1016/j.brainres.2011.09.005
  49. Marlin B.J., Mitre M., D’amour J.A., Chao M.V., Froemke R.C. Oxytocin enables maternal behaviour by balancing cortical inhibition // Nature. 2015. V. 520. № 7548. P. 499. https://doi.org/10.1038/nature14402
  50. Martiros N., Kapoor V., Kim S.E., Murthy VN. Distinct representation of cue-outcome association by D1 and D2 neurons in the ventral striatum’s olfactory tubercle // Elife. 2022. V. 11. P. e75463. https://doi.org/10.7554/eLife.75463
  51. Maubach K.A., Cody C., Jones R.S. Tachykinins may modify spontaneous epileptiform activity in the rat entorhinal cortex in vitro by activating GABAergic inhibition // Neuroscience. 1998. V. 83. № 4. P. 1047. https://doi.org/10.1016/s0306-4522(97)00469-7
  52. Meyer-Lindenberg A., Domes G., Kirsch P., Heinrichs M. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine // Nat. Rev. Neurosci. 2011. V. 12. № 9. P. 524. https://doi.org/10.1038/nrn3044
  53. Miller L.J., Nielsen D.M., Schoen S.A., Brett-Green B.A. Perspectives on sensory processing disorder: a call for translational research // Front. Integr. Neurosci. 2009. V. 3. P. 22. https://doi.org/10.3389/neuro.07.022.2009
  54. Mitre M., Marlin B.J., Schiavo J.K., Morina E., Norden S.E., Hackett T.A., Aoki C.J., Chao M.V., Froemke R.C. A distributed network for social cognition enriched for oxytocin receptors // J. Neurosci. 2016. V. 36. № 8. P. 2517. https://doi.org/10.1523/JNEUROSCI.2409-15.2016
  55. Moaddab M., Hyland B.I., Brown C.H. Oxytocin excites nucleus accumbens shell neurons in vivo // Mol. Cell Neurosci. 2015. V. 68. P. 323. https://doi.org/10.1016/j.mcn.2015.08.013
  56. Moore A.K., Wehr M. Parvalbumin-expressing inhibitory interneurons in auditory cortex are well-tuned for frequency // J. Neurosci. 2013. V. 33. № 34. P. 13713. https://doi.org/10.1523/JNEUROSCI.0663-13.2013
  57. Murata K., Kanno M., Ieki N., Mori K., Yamaguchi M. Mapping of learned odor-induced motivated behaviors in the mouse olfactory tubercle // J. Neurosci. 2015. V. 35. № 29. P. 10581. https://doi.org/10.1523/JNEUROSCI.0073-15.2015
  58. Nagy A., Eördegh G., Norita M., Benedek G. Visual receptive field properties of excitatory neurons in the substantia nigra // Neuroscience. 2005. V. 130. № 2. P. 513. https://doi.org/10.1016/j.neuroscience.2004.09.052
  59. Nagy A., Paróczy Z., Norita M., Benedek G. Multisensory responses and receptive field properties of neurons in the substantia nigra and in the caudate nucleus // Eur. J. Neurosci. 2005. V. 22. № 2. P. 419. https://doi.org/10.1111/j.1460-9568.2005.04211.x
  60. Nakajima M., Görlich A., Heintz N. Oxytocin modulates female sociosexual behavior through a specific class of prefrontal cortical interneurons // Cell. 2014. V. 159. № 2. P. 295. https://doi.org/10.1016/j.cell.2014.09.020
  61. Naskar S., Qi J., Pereira F., Gerfen C.R., Lee S. Cell-type-specific recruitment of GABAergic interneurons in the primary somatosensory cortex by long-range inputs // Cell Rep. 2021. V. 34. № 8. P. 108774. https://doi.org/10.1016/j.celrep.2021.108774
  62. Oettl L.L., Ravi N., Schneider M., Scheller M.F., Schneider P., Mitre M. et al. Oxytocin enhances social recognition by modulating cortical control of early olfactory processing // Neuron. 2016. V. 90. №3. P. 609. https://doi.org/10.1016/j.neuron.2016.03.033
  63. Oettl L.L., Kelsch W. Oxytocin and olfaction // Curr. Top Behav. Neurosci. 2018. V. 35. P. 55. https://doi.org/10.1007/7854_2017_8
  64. Owen S.F., Tuncdemir S.N., Bader P.L., Tirko N.N., Fishell G., Tsien R.W. Oxytocin enhances hippocampal spike transmission by modulating fast-spiking interneurons // Nature. 2013. V. 500. №7463. P. 458. https://doi.org/10.1038/nature12330
  65. Papaleonidopoulos V., Kouvaros S., Papatheodoropoulos C. Effects of endogenous and exogenous D1/D5 dopamine receptor activation on LTP in ventral and dorsal CA1 hippocampal synapses // Synapse. 2018. V.72. № 8. P. e22033. https://doi.org/10.1002/syn
  66. Parent A., Hazrati L.N. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop // Brain Res. Rev. 1995. V. 20. № 1. P. 91. https://doi.org/10.1016/0165-0173(94)00007-c
  67. Pienkowski M., Harrison R.V. Tone frequency maps and receptive fields in the developing chinchilla auditory cortex // J. Neurophysiol. 2005. V. 93. № 1. P. 454. https://doi.org/10.1152/jn.00569.2004
  68. Potts Y., Bekkers J.M. Dopamine increases the intrinsic excitability of parvalbumin-expressing fast-spiking cells in the piriform cortex // Front. Cell Neurosci. 2022. V. 16. P. 919092. https://doi.org/10.3389/fncel.2022.919092
  69. Puschmann S., Brechmann A., Thiel C.M. Learning-dependent plasticity in human auditory cortex during appetitive operant conditioning // Hum. Brain Mapp. 2013. V. 34. № 11. P. 2841. https://doi.org/10.1002/hbm.22107
  70. Ramanathan G., Cilz N.I., Kurada L., Hu B., Wang X., Lei S. Vasopressin facilitates GABAergic transmission in rat hippocampus via activation of V(1A) receptors // Neuropharmacology. 2012. V. 63. № 7. P. 1218. https://doi.org/10.1016/j.neuropharm.2012.07.043
  71. Rosselet C., Zennou-Azogui Y., Xerri C. Nursing-induced somatosensory cortex plasticity: temporally decoupled changes in neuronal receptive field properties are accompanied by modifications in activity-dependent protein expression // J. Neurosci. 2006. V. 26. P. 10667. https://doi.org/10.1523/JNEUROSCI.3253-06.2006
  72. Ruggieri V. Autism. Neurobiological aspects // Medicina (B Aires). 2022. V. 82. Suppl. 3. P. 57
  73. Silkis I. The cortico-basal ganglia-thalamocortical circuit with synaptic plasticity. I. Modification rules for excitatory and inhibitory synapses in the striatum // Biosystems. 2000. V. 57. № 3. P. 187. https://doi.org/10.1016/s0303-2647(00)00134-9.
  74. Silkis I. The cortico-basal ganglia-thalamocortical circuit with synaptic plasticity. II. Mechanism of synergistic modulation of thalamic activity via the direct and indirect pathways through the basal ganglia // Biosystems. 2001. V. 59. № 1. P. 7. https://doi.org/10. 1016/s0303-2647(00)00135-0
  75. Silkis I. A hypothetical role of cortico-basal ganglia-thalamocortical loops in visual processing // Biosystems. 2007. V. 89. № 1–3. P. 227. https://doi.org/10.1016/j.biosystems.2006.04.020
  76. Stalter M., Westendorff S., Nieder A. Dopamine gates visual signals in monkey prefrontal cortex neurons // Cell Rep. 2020. V. 30. № 1. P. 164.e4. https://doi.org/10.1016/j.celrep.2019.11.082
  77. Stettler D.D., Axel R. Representations of odor in the piriform cortex // Neuron. 2009. V. 63. № 6. P. 854. https://doi.org/10.1016/j.neuron.2009.09.005
  78. Stoop R., Hegoburu C., van den Burg E. New opportunities in vasopressin and oxytocin research: a perspective from the amygdala // Annu. Rev. Neurosci. 2015. V. 38. P. 369. https://doi.org/10.1146/annurev-neuro-071714-033904
  79. Szydlowski S.N., Pollak Dorocic I., Planert H., Carlén M., Meletis K., Silberberg G. Target selectivity of feedforward inhibition by striatal fast-spiking interneurons // J. Neurosci. 2013. V. 33. № 4. P. 1678. https://doi.org/10.1523/JNEUROSCI.3572-12.2013
  80. Takahashi H., Funamizu A., Mitsumori Y., Kose H., Kanzaki R. Progressive plasticity of auditory cortex during appetitive operant conditioning // Biosystems. 2010. V. 101. № 1. P. 37. https://doi.org/10.1016/j.biosystems.2010.04.003
  81. Tantirigama M.L., Huang H.H., Bekkers J.M. Spontaneous activity in the piriform cortex extends the dynamic range of cortical odor coding // Proc. Natl. Acad. Sci. USA. 2017. V. 114. № 9. P. 2407. https://doi.org/10.1073/pnas.1620939114
  82. Tecuapetla F., Jin X., Lima S.Q., Costa R.M. Complementary contributions of striatal projection pathways to action initiation and execution // Cell. 2016. V. 166. № 3. P. 703. https://doi.org/10.1016/j.cell.2016.06.032
  83. Thiel C.M. Pharmacological modulation of learning-induced plasticity in human auditory cortex // Restor. Neurol. Neurosci. 2007. V. 25. № 3–4. P. 435.
  84. Uvnas-Moberg K., Handlin L., Petersson M. Self-soothing behaviors with particular reference to oxytocin release induced by non-noxious sensory stimulation // Front. Psychol. 2015. V. 5. P. 1529. https://doi.org/10.3389/fpsyg.2014.01529
  85. Valtcheva S., Froemke R.C. Neuromodulation of maternal circuits by oxytocin // Cell Tissue Res. 2019. V. 375. № 1. P. 57. https://doi.org/10.1007/s00441-018-2883-1
  86. White K.A, Zhang Y.F., Zhang Z., Bhattarai J.P., Moberly A.H., In ‘t Zandt E.E. et al. Glutamatergic neurons in the piriform cortex influence the activity of d1- and d2-type receptor-expressing olfactory tubercle neurons // J. Neurosci. 2019. V. 39. №48. P. 9546. https://doi.org/10.1523/JNEUROSCI.1444-19.2019
  87. Wilson D.A. Receptive fields in the rat piriform cortex // Chem. Senses. 2001. V. 26. №5. P. 577. https://doi.org/10.1093/chemse/26.5.577
  88. Xerri C., Stern J.M., Merzenich M.M. Alterations of the cortical representation of the rat ventrum induced by nursing behavior // J. Neurosci. 1994. V. 14. № 3. Pt. 2. P. 1710. https://doi.org/10.1038/nnl800
  89. Yao H., Li C.Y. Clustered organization of neurons with similar extra-receptive field properties in the primary visual cortex // Neuron. 2002. V. 35. № 3. P. 547. https://doi.org/10.1016/s0896-6273(02)00782-1
  90. Young L.J., Barrett C.E. Neuroscience. Can oxytocin treat autism? // Science. 2015. V. 347. № 6224. P. 825. https://doi.org/10.1126/science.aaa8120
  91. Young W.S., Song J. Characterization of oxytocin receptor expression within various neuronal populations of the mouse dorsal hippocampus // Front. Mol. Neurosci. 2020. V. 13. P. 40. https://doi.org/10.3389/fnmol.2020.00040
  92. Zaninetti M., Raggenbass M. Oxytocin receptor agonists enhance inhibitory synaptic transmission in the rat hippocampus by activating interneurons in stratum pyramidale // Eur. J. Neurosci. 2000. V. 12. № 11. P.3975–3984. https://doi.org/10.1046/j.1460-9568.2000.00290.x
  93. Zheng J-J., Li S-J., Zhang X-D, Miao W-Y., Zhang D., Yao H., Yu X. Oxytocin mediates early experience-dependent cross-modal plasticity in the sensory cortices //cNat. Neurosci. 2014. V. 17. № 3. P. 391. https://doi.org/10.1038/nn.3634
  94. Zhu Y., Qiao W., Liu K., Zhong H., Yao H. Control of response reliability by parvalbumin-expressing interneurons in visual cortex // Nat. Commun. 2015. V. 6. P. 6802. https://doi.org/10.1038/ncomms7802

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Simplified diagram of the neural network cortex – basal ganglia – thalamus – cortex, involved in the processing of sensory information and the formation of displays of sensory stimuli in the activity of neural clusters in the cortex. A – processing of signals that are preferred for cortical neurons; B – processing of signals that are not preferred for cortical neurons. P and H are clusters of pyramidal cells in the cortex, strongly and weakly activated by a sensory stimulus, which was preferred and not preferred for them, respectively. Striatum. – striatum, D1 and D2 – dopamine receptors; C-H and C-P are strionigral and striopallidar spike cells, respectively; CVr and PMk are the reticular and compact parts of the black substance, respectively; BSn is the outer part of the pale globe. CVr and BSn contain projected GABAergic cells. PPJ is the pedunculopontine nucleus; VD and ND are the upper and lower two–lobes, respectively. YES– dopamine. The sensory cortex is the sensory cortex. Sens. A stimulus is a sensory stimulus. The black circles are GABAergic cells. The lines ending in black arrows and diamonds are excitatory and inhibitory inputs, respectively. Small triangles and squares are potentiated and depressed synaptic inputs, respectively. Thick and thin lines are strong and weak inputs, respectively. Dashed dotted lines with light arrows are dopaminergic inputs. The nuclei of the basal ganglia are outlined with thicker lines than other structures.

Download (147KB)
3. Fig. 2. A simplified scheme of the participation of oxytocin and dopamine in improving the formation of the display of a sensory stimulus in the activity of a pyramidal cell, which is part of a neural cluster in the cortex. The big triangle is a pyramid-shaped cage. TI is the inhibitory interneuron; hippocampus is the hippocampus; PfC is the prefrontal cortex; RUNWAY is the ventral field of the tire; PVYA and SOY are the paraventricular and supraoptic nuclei of the hypothalamus; STE is the subthalamic nucleus. The lines ending in black arrows at both ends are bilateral excitatory connections. Dotted lines with light arrows represent oxytocinergic inputs. The rest of the designations are as in Fig. 1.

Download (125KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies