Social isolation: relationship with cardiovascular diseases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Social and demographic changes in the recent decades have led to an increase in the prevalence of social isolation and loneliness in modern society. Social isolation and loneliness are common but underrated factors that determine health, especially cardiovascular health. In addition, the results of various studies have shown that the negative impact of loneliness and social isolation leads to dysfunction of other systems. Social isolation and loneliness are accompanied by the development of oxidative stress in brain structures. This stress activates neurons in the prefrontal cortex and limbic areas, which is accompanied by prolonged increased production of glucocorticoid hormones, eventually leading to resistance to glucocorticoids. At the same time, the sympathetic nervous system is also activated, which, against the backdrop of resistance to glucocorticoids, causes a persistent increase in blood pressure and the development of a pro-inflammatory state. As a result, lonely people experience increased peripheral vascular resistance and increased blood pressure. In addition, the atherosclerotic changes in the arteries develop faster. Although the molecular mechanisms responsible for increased cardiovascular risk in lonely and socially isolated people are not well studied, these changes have been proven to contribute to an increased risk of developing cardiovascular disease. Current measures to fight against loneliness and social isolation have the potential to reduce their negative impact on health. However, given their limited use, their effectiveness for society as a whole is insufficient. In order to better understand the mechanisms of the negative impact of loneliness and social isolation on cardiovascular health, more in-depth research and the development of more effective interventions are needed.

Full Text

Restricted Access

About the authors

G. I. Lobov

Pavlov Institute of Physiology of the RAS

Author for correspondence.
Email: LobovGI@infran.ru
Russian Federation, 199034, St. Petersburg

References

  1. Крупина Н.А., Ширенова С.Д. Нарушения когнитивных функций при длительной социальной изоляции: результаты исследований на людях и экспериментов на животных // 2023. Т. 54. № 3. С. 18–35. https://doi.org/10.31857/S0301179823040045
  2. Bai Y., Jabbari B., Ye S. et al. Regional expression of NAD(P)H oxidase and superoxide dismutase in the brain of rats with neurogenic hypertension // Am. J. Nephrol. 2009. V. 29. № 5. P. 483–492. https://doi.org/10.1159/000178817
  3. Benjamin D.G., Gummanur P. Loneliness – Cancer of the Mind // Indian J. Palliat Care. 2023. № 2. P. 212–216. https://doi.org/10.25259/IJPC_200_2022
  4. Beutel M.E., Klein E.M., Brahler E. et al. Loneliness in the general population: prevalence, determinants and relations to mental health // BMC Psychiatry. 2017. V. 17. № 1. 97. https://doi.org/ 10.1186/s12888-017-1262-x
  5. Black C.N., Bot M., Revesz D. et al.The association between three major physiological stress systems and oxidative DNA and lipid damage // Psychoneuroendocrinology. 2017. V. 80. P. 56–66. https://doi.org/10.1016/j.psyneuen.2017.03.003
  6. Borski R.J. Nongenomic membrane actions of glucocorticoids in vertebrates // Trends Endocrinol. Metab. 2000. V. 10. P. 427–436. https://doi.org/10.1016/s1043-2760(00)00325-8
  7. Bruce M.L. Depression and disability in late life: directions for future research // Am. J. Geriatr. Psychiatry. 2001. Spring. V. 9. № 2. P. 102-12.
  8. Bu F., Steptoe A., Fancourt D. Who is lonely in lockdown? Cross-cohort analyses of predictors of loneliness before and during the COVID-19 pandemic // Public Health. 2020. V. 186. P. 31–34. https://doi.org/10.1016/j.puhe.2020.06.036
  9. Cacioppo J.T., Hawkley L.C., Crawford L.E. et al. Loneliness and health: potential mechanisms// Psychosom Med. 2002. V. 64. P. 407–417. https://doi.org/10.1097/00006842-200205000-00005
  10. Cacioppo J.T., Hawkley L.C. Perceived social isolation and cognition // Trends Cogn. Sci. 2009. V. 10. P. 447-454. https://doi.org/10.1016/j.tics.2009.06.005
  11. Cacioppo J.T., Cacioppo S. Social Relationships and Health: The Toxic Effects of Perceived Social Isolation // Soc. Personal Psychol. Compass. 2014. V. 8. № 2. P. 58–72. https://doi.org/10.1111/spc3.12087
  12. Cacioppo S. Capitanio J.P. Cacioppo J.T. Toward a neurology of loneliness // Psychol Bull. 2014. V. 140. № 6. P. 1464–1504. https://doi.org/10.1037/a0037618
  13. Cacioppo J.T., Cacioppo S., Cole S.W. et al. Loneliness across phylogeny and a call for comparative studies and animal models // Perspect Psychol. Sci. 2015. V. 10. P. 202–212. https://doi.org/10.1177/1745691614564876
  14. Cacioppo J.T., Cacioppo S., Capitanio J.P., Cole S.W. The neuroendocrinology of social isolation // Annu. Rev. Psychol. 2015. V. 66. P. 733–767. https://doi.org/10.1146/annurev-psych-010814-015240
  15. Cacioppo S., Grippo A.J., London S. et al. Loneliness: clinical import and interventions // Perspect Psychol Sci. 2015. № 2. P. 238–249. https://doi.org/10.1177/1745691615570616
  16. Cacioppo J.T., Cacioppo S. The growing problem of loneliness // Lancet. 2018. V. 391. № 10119. 426. https://doi.org/10.1016/S0140-6736(18)30142-9.
  17. Campaign to End Loneliness. About the Campaign. https://www.campaigntoendloneliness.org/about-the-campaign.
  18. Campese V.M., Ye S., Zhong H., Yanamadala V. et al. Reactive oxygen species stimulate central and peripheral sympathetic nervous system activity // Am. J. Physiol. Heart Circ. Physiol. 2004. V. 287. № 2. H695–H703. https://doi.org/10.1152/ajpheart.00619.2003
  19. Cené C.W., Loehr L., Lin F.C. et al. Social isolation, vital exhaustion, and incident heart failure: findings from the atherosclerosis risk in communities study // Eur. J. Heart Fail. 2012. V. 14. № 7. P. 748–753. https://doi.org/10.1093/eurjhf/hfs064
  20. Cené C.W., Beckie T.M., Sims M. et al. Effects of objective and perceived social isolation on cardiovascular and brain health: a scientific statement from the American heart association // J. Am Heart Assoc. 2022. V. 11. № 16. e026493. https://doi.org/10.1161/JAHA.122.026493
  21. Coalition to End Social Isolation & Loneliness. https://www.endsocialisolation.org/
  22. Colaianna M., Schiavone S., Zotti M. et al. Neuroendocrine profile in a rat model of psychosocial stress: relation to oxidative stress // Antioxidants Redox Signal. 2013. V. 18. № 12. P. 1385–1399. https://doi.org/10.1089/ars.2012.4569
  23. Cole S.W., Hawkley L.C., Arevalo J.M. et al. Social regulation of gene expression in human leukocytes // Genome Biol. 2007. V. 8. № 9. R189. https://doi.org/10.1186/gb-2007-8-9-r189
  24. Cole S.W., Capitanio J.P., Chun K. et al. Myeloid differentiation architecture of leukocyte transcriptome dynamics in perceived social isolation // Proc. Natl. Acad. Sci. USA. 2015. V. 112. P. 15142–15147. https://doi.org/10.1073/pnas.1514249112
  25. Collins C.C., Benedict J. Evaluation of a community-based health promotion program for the elderly: lessons from seniors can // Am. J. Health Promotion. 2006 V. 21. № 1. P. 45–48. https://doi.org/10.4278/0890-1171-21.1.45
  26. Dankoski E.C., Agster K.L., Fox M. et al. Facilitation of serotonin signaling by SSRIs is attenuated by social isolation // Neuropsychopharmacology. 2014. V. 39. № 13. P. 2928–2837. https://doi.org/10.1038/npp.2014.162
  27. Di Angelantonio E., Bhupathiraju Sh.N., Wormser D. et al. Global BMI Mortality Collaboration. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents // Lancet. 2016. V. 388. P. 776–786. https://doi.org/10.1016/S0140-6736(16)30175-1
  28. Doane L.D. and Adam E.K. Loneliness and cortisol: momentary, day-to-day, and trait associations // Psychoneuroendocrinology. 2010. V. 35: № 3. P. 430–441. https://doi.org/10.1016/j.psyneuen.2009.08.005
  29. Dunfield KA. A construct divided: prosocial behavior as helping, sharing, and comforting subtypes // Front. Psychol. 2014. V. 5. P. 958. https://doi.org/10.3389/fpsyg.2014.00958
  30. Golaszewski N.M., LaCroix A.Z., Godino J.G. et al. Evaluation of Social Isolation, Loneliness, and Cardiovascular Disease Among Older Women in the US // JAMA Netw. Open. 2022. V. 5. № 2. e2146461. https://doi.org/10.1001/jamanetworkopen.2021.46461
  31. Filipovic D., Todorovic N., Bernardi R.E., Gass P. Oxidative and nitrosative stress pathways in the brain of socially isolated adult male rats demonstrating depressive- and anxiety-like symptoms // Brain Struct. Funct. 2017. V. 222. № 1. P. 1–20. https://doi.org/10.1007/s00429-016-1218-9
  32. Fokkema T., De Jong Gierveld J., Dykstra P.A. Cross-national differences in older adult loneliness // J. Psychol. 2012. V. 146. P. 201–228. https://doi.org/10.1080/00223980.2011.631612
  33. Forstermann U.., Xia N., Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis // Circ. Res. 2017. V. 120. № 4. P. 713–735. https://doi.org/10.1161/CIRCRESAHA.116.309326
  34. Fry P.S., Debats D.L. Self-efficacy beliefs as predictors of loneliness and psychological distress in older adults // Int. J. Aging. Hum. Dev. 2016. V. 55. № 3. P. 233–269. https://doi.org/10.2190/kbvp-l2te-2ery-bh26
  35. Gavrilovic L., Dronjak S. Activation of rat pituitary-adrenocortical and sympatho-adrenomedullary system in response to different stressors // Neuro Endocrinol. Lett. 2005. V. 26. № 5. P. 515–520.
  36. Gerst-Emerson K., Jayawardhana J. Loneliness as a public health issue: the impact of loneliness on health care utilization among older adults // Am. J. Public Health. 2015. V. 105. № 5. P. 1013–1019. https://doi.org/10.2105/AJPH.2014.302427
  37. Glozier N., Tofler G.H., Colquhoun D.M. et al. Psychosocial risk factors for coronary heart disease // Med. J. Aust. 2013. V. 199. P. 179–180. https://doi.org/10.5694/mja13.10440
  38. Govindan R.M., Behen M.E., Helder E. et al. Altered water diffusivity in cortical association tracts in children with early deprivation identified with Tract-Based Spatial Statistics (TBSS) // Cereb Cortex. 2010. V. 20. P. 561–569. https://doi.org/10.1093/cercor/bhp122
  39. Hajek A., König H.H. Social isolation and loneliness of older adults in times of the COVID-19 pandemic: can use of online social media sites and video chats assist in mitigating social isolation and loneliness? // Gerontology. 2021. V. 67. № 1. P. 121–124. https://doi.org/10.1159/000512793
  40. Hanke M.L., Powell N.D., Stiner L.M. et al. Beta adrenergic blockade decreases the immunomodulatory effects of social disruption stress // Brain Behav. Immun. 2012. V. 26. № 7. P. 1150–1159. https://doi.org/10.1016/j.bbi.2012.07.011
  41. Hänsel A., Hong S., Cámara R.J.A, von Könel R. Inflammation as a psychophysiological biomarker in chronic psychosocial stress // Neurosci. Biobehav. Rev. 2010. V. 35. № 1. P. 115–121. https://doi.org/10.1016/j.neubiorev.2009.12.012
  42. Havranek E.P., Mujahid M.S., Barr D.A. et al. Social determinants of risk and outcomes for cardiovascular disease: a scientific statement from the American Heart Association // Circulation. 2015. V. 132. P. 873–898. https://doi.org/10.1161/CIR.0000000000000228
  43. Hawkley L.C., Burleson M.H., Berntson G.G., and Cacioppo J.T. Loneliness in everyday life: cardiovascular activity, psychosocial context, and health behaviors // J. Pers. Soc. Psychol. 2003. V. 85. № 1. P. 105–120. https://doi.org/10.1037/0022-3514.85.1.105
  44. Hawkley L.C., Masi C.M., Berry J.D., Cacioppo J.T. Loneliness is a unique predictor of age-related differences in systolic blood pressure // Psychol. Aging. 2006. V. 21. № 1. P. 152–164. https://doi.org/10.1037/0882-7974.21.1.152
  45. Hawkley L.C., Cacioppo J.T. Loneliness matters: A theoretical and empirical review of consequences and mechanisms // Ann. Behav. Med. 2010. V. 40. № 2. P. 218–227. https://doi.org/10.1007/s12160-010-9210-8
  46. Hawkley L.C., Hughes M.E., Waite L. et al. From social structure factors to perceptions of relationship quality and loneliness: The Chicago health, aging, and social relations study // J. Gerontol. B. Psychol. Sci. Soc. Sci. 2008. V. 63. № 6. P. S375–S384. https://doi.org/10.1093/geronb/63.6.s375
  47. Hawkley L.C., Thisted R.A., Masi C.M., Cacioppo J.T. L oneliness predicts increased blood pressure: 5-year cross-lagged analyses in middle-aged and older adults // Psychol. Aging. 2010. V.25. № 1. P. 132–141. https://doi.org/10.1037/a0017805
  48. Hawkley L.C., Cole S.W., Capitanio J.P. et al. Effects of social isolation on glucocorticoid regulation in social mammals// Hormю Behav. 2012. V. 62. № 3. P. 314–323. https://doi.org/10.1016/j.yhbeh.2012.05.011
  49. Heidt T., Sager H.B., Courties G. et al. Chronic variable stress activates hematopoietic stem cells // Natю Med. 2014. V. 20. № 7. P. 754–758. https://doi.org/10.1038/nm.3589
  50. Hodgson S., Watts I., Fraser S. et al. Loneliness, social isolation, cardiovascular disease and mortality: a synthesis of the literature and conceptual framework // J. R. Soc. Med. 2020. V. 113. № 5. P. 185–192. https://doi.org/10.1177/0141076820918236
  51. Hoffner C.A., Bond B.J. Parasocial relationships, social media, & well-being // Curr. Opin. Psychol. 2022. V. 45. 101306. https://doi.org/10.1016/j.copsyc.2022.101306
  52. Holt-Lunstad J., Smith T.B. Loneliness and social isolation as risk factors for CVD: implications for evidence-based patient care and scientific inquiry // Heart. 2016. V. 102. № 13. P. 987–989. https://doi.org/10.1136/heartjnl-2015-309242
  53. Holt-Lunstad J., Smith T.B., Baker M. et al. Loneliness and social isolation as risk factors for mortality: a meta-analytic review // Perspect Psychol. Sci. 2015. V. 10. № 2. P. 227–237. https://doi.org/10.1177/1745691614568352
  54. Hostinar C.E., Sullivan R.M., Gunnar M.R. Psychobiological mechanisms underlying the social buffering of the hypothalamic-pituitary-adrenocortical axis: a review of animal models and human studies across development // Psychol. Bull. 2014. V. 140. № 1. P. 256–282. https://doi.org/10.1037/a0032671
  55. House J.S.., Landis K.R., Umberson D. Social relationships and health // Science (New York, N.Y.). 1988. V. 241. № 4865. P. 540–545. https://doi.org/10.1126/science.3399889
  56. Jensen K. Prosociality // Curr Biol. 2016. V. 26. № 16. P. R748–R752. https://doi.org/10.1016/j.cub.2016.07.025
  57. Kaushal N., Nair D., Gozal D., Ramesh V. Socially isolated mice exhibit a blunted homeostatic sleep response to acute sleep deprivation compared to socially paired mice // Brain Res. 2012. № 1454. P. 65–79. https://doi.org/10.1016/j.brainres.2012.03.019
  58. Kaplan J.R., Manuck S.B., Clarkson T.B. et al. Social stress and atherosclerosis in normocholesterolemic monkeys // Science. 1983. V. 220. № 4598. P. 733–735. https://doi.org/10.1126/science.6836311
  59. Koba S. Angiotensin II, oxidative stress, and sympathetic nervous system hyperactivity in heart failure // Yonago Acta Med. 2018. V. 61. № 2. P. 103–109. https://doi.org/10.33160/yam.2018.06.002
  60. Krieger S.S., Zwart S.R., Mehta S. et al. Alterations in Saliva and Plasma Cytokine Concentrations During Long-Duration Spaceflight // Front. Immunol. 2021. V. 12. 725748. https://doi.org/10.3389/fimmu.2021.725748
  61. Kross E., Verduyn P., Demiralp E. et al. Facebook use predicts declines in subjective well-being in young adults // PloS One. 2013. V. 8. e69841. https://doi.org/10.1371/journal.pone.0069841
  62. Lahey B.B. Public health significance of neuroticism // Am. Psychol. 2009. V. 64. № 4. P. 241–256. https://doi.org/10.1037/a0015309
  63. Landeiro F., Barrows P., Nuttall Musson E. et al. Reducing social isolation and loneliness in older people: a systematic review protocol // BMJ Open. 2016. V. 7. № 5. P. e013778. https://doi.org/10.1136/bmjopen-2016-013778
  64. Leigh-Hunt N., Bagguley D., Bash K. et al. An overview of systematic reviews on the public health consequences of social isolation and loneliness // Publ. Health. 2017. V. 152. P. 157–171. https://doi.org/10.1016/j.puhe.2017.07.035
  65. Li H., Horke S., Forstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis // Atherosclerosis. 2014. V. 237. № 1. P. 208–219. https://doi.org/10.1016/j.atherosclerosis.2014.09.001
  66. Li H. The role of oxidative stress in cardiovascular disease caused by social isolation and loneliness // Redox Biol. 2020. V. 37. 101585. https://doi.org/10.1016/j.redox.2020.101585
  67. Lim M.H., Manera K.E., Owen K.B. et al. The prevalence of chronic and episodic loneliness and social isolation from a longitudinal survey // Sci. Rep. 2023. V. 13. № 1. 12453. https://doi.org/10.1038/s41598-023-39289-x
  68. Liu Y., Mladinov D., Pietrusz J.L. et al. Glucocorticoid response elements and 11 beta-hydroxysteroid dehydrogenases in the regulation of endothelial nitric oxide synthase expression// Cardiovasc. Res. 2009. V. 81. № 1. P. 140–147. https://doi.org/10.1093/cvr/cvn231
  69. Lutgendorf S.K., DeGeest K., Dahmoush L. et al. Social isolation is associated with elevated tumor norepinephrine in ovarian carcinoma patients // Brain Behav. Immun. 2011 V. 25. № 2. P. 250–255. https://doi.org/10.1016/j.bbi.2010.10.012
  70. Mann F., Bone J.K., Lloyd-EvansB. et al. A life less lonely: the state of the art in interventions to reduce loneliness in people with mental health problems // Soc. Psychiatry Psychiatr. Epidemiol. 2017. V. 52. № 6. P. 627–638. https://doi.org/10.1007/s00127-017-1392-y
  71. Masi C.M., Chen H.Y., Hawkley L.C., and Cacioppo J.T. A meta-analysis of interventions to reduce loneliness // Pers. Soc. Psychol. Rev. 2011. V. 15. № 3. P. 219–266. https://doi.org/10.1177/1088868310377394
  72. Matthews K.A., Zhu S., Tucker D.C., Whooley M.A. Blood pressure reactivity to psychological stress and coronary calcification in the coronary artery risk development in young adults study // Hypertension. 2006. V. 47. № 3. P. 391–395. https://doi.org/10.1161/01.HYP.0000200713.44895.38
  73. McNeal N., Scotti M.A., Wardwell J. et al. Disruption of social bonds induces behavioral and physiological dysregulation in male and female prairie voles // Auton. Neurosci. 2014. V. 180. P. 9–16. https://doi.org/10.1016/j.autneu.2013.10.001
  74. Mehta M.A., Golembo N.I., Nosarti C. et al. Amygdala, hippocampal and corpus callosum size following severe early institutional deprivation: the English and Romanian adoptees study pilot // J. Child Psychol. Psychiatry. 2009. V. 50. P. 943–951. https://doi.org/10.1111/j.1469-7610.2009.02084.x
  75. Meyers P.H., Nice C.M. Jr. The epidemiology of loneliness // Arch. Environ Health. 1964. V. 8. P. 775–776. https://doi.org/10.1080/00039896.1964.10663756
  76. Mumtaz F., Khan M.I., Zubair M., Dehpour A.R. Neurobiology and consequences of social isolation stress in animal model-A comprehensive review // Biomed. Pharmacother. 2018. V. 105. P. 1205–1222. https://doi.org/10.1016/j.biopha.2018.05.086
  77. Naik E., Dixit V.M. Mitochondrial reactive oxygen species drive proinflammatory cytokine production // J. Exp. Med. 2011. V. 208. № 3. P. 417–420. https://doi.org/10.1084/jem.20110367
  78. Ohta K.I., Suzuki S., Warita K. et al. Prolonged maternal separation attenuates BDNF-ERK signaling correlated with spine formation in the hippocampus during early brain development // J. Neurochem. 2017. V. 141. P. 179–194. https://doi.org/10.1111/jnc.13977
  79. Olujoke A.F, McCorry N.K., Donnelly M. Loneliness and social isolation interventions for older adults: a scoping review of reviews // BMC Public Health. 2020. V. 20. № 1. 129. https://doi.org/10.1186/s12889-020-8251-6
  80. Ong A.D., Uchino B.N., Wethington E. Loneliness and health in older adults: a mini-review and synthesis // Gerontology. 2016. V. 62. P. 443–449. https://doi.org/10.1159/000441651
  81. Oscar G. Wakabayashi M., Sugiyama Y. et al. Loneliness and increased hazardous alcohol use: data from a nationwide internet survey with 1-year follow-up // Int. J. Environ Res. Public Health. 2022. V. 19. № 19. P. 12086. https://doi.org/10.3390/ijerph191912086
  82. Pace T.W., Hu F., Miller A.H. Cytokine-effects on glucocorticoid receptor function: relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression // Brain Behav. Immun. 2007. V. 21. P. 9–19. https://doi.org/10.1016/j.bbi.2006.08.009
  83. Paredes J., Szeto A., Levine J.E. et al. Social experience influences hypothalamic oxytocin in the WHHL rabbit // Psychoneuroendocrinology. 2006. V. 31. P. 1062–1075. https://doi.org/10.1016/j.psyneuen.2006.06.007
  84. Perissinotto C.M., Stijacic Cenzer I., Covinsky K.E. Loneliness in older persons: a predictor of functional decline and death // Arch. Intern. Med. 2012. V. 172. № 14. P. 1078–1083. https://doi.org/10.1001/archinternmed.2012.1993
  85. Powell N.D., Sloan E.K., Bailey M.T. et al. Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via β-adrenergic induction of myelopoiesis // Proc. Natl. Acad. Sci. USA. 2013. V. 110. № 41. P. 16574–16579. https://doi.org/10.1073/pnas.1310655110
  86. Preece M.A., Dalley J.W., Theobald D.E.H. et al. Region specific changes in forebrain 5-hydroxytryptamine1A and 5-hydroxytryptamine2A receptors in isolation-reared rats: an in vitro autoradiography study // Neuroscience. 2004. V. 123. P. 725–732. https://doi.org/10.1016/j.neuroscience.2003.10.008
  87. Peuler J.D., Scotti M.A., Phelps LE. E al. Chronic social isolation in the prairie vole induces endothelial dysfunction: implications for depression and cardiovascular disease // Physiol. Behav. 2012. V. 106. № 4. P. 476–484. https://doi.org/10.1016/j.physbeh.2012.03.019
  88. Powell N.D., Sloan E.K., Bailey M.T. et al. Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via beta-adrenergic induction of myelopoiesis // Proc. Natl. Acad. Sci. USA. 2013. V. 110. № 4. 16574–16579. https://doi.org/10.1073/pnas.1310655110
  89. Prior N.H., Bentz E.J., Ophir A.G. Reciprocal processes of sensory perception and social bonding: an integrated social-sensory framework of social behavior // Genes. Brain Behav. 2022. V. 21. № 3. e12781. https://doi.org/10.1111/gbb.12781
  90. Qualter P., Vanhalst J., Harris R. et al. Loneliness across the life span // Perspect. Psychol. Sci. 2015. V. 10. № 2. P. 250–264. https://doi.org/10.1177/17456916155689
  91. Rodriguez J.M., Monsalves-Alvarez M., Henriquez S., Llanos M.N., Troncoso R. Glucocorticoid resistance in chronic diseases // Steroids. 2016. V. 115. P. 182–192. https://doi.org/10.1016/j.steroids.2016.09.010
  92. Roth G.A., Mensah G.A., Johnson C.O. et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 Study. GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group // J. Am. Coll. Cardiol. 2020. V. 76. № 25. P. 2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010
  93. Ruiz M.C., Appleton P.R., Duda J.L. et al. Social environmental antecedents of athletes’ emotions // Int. J. Environ Res. Public Health. 2021. V. 18. № 9. P. 4997. https://doi.org/10.3390/ijerph18094997
  94. Saha S. Role of the central nucleus of the amygdala in the control of blood pressure: descending pathways to medullary cardiovascular nuclei // Clin. Exp. Pharmacol. Physiol. 2005. V. 32. № 5–6. P. 450–456. https://doi.org/10.1111/j.1440-1681.2005.04210.x
  95. Schafer S.C., Wallerath T., Closs E.I. et al. Dexamethasone suppresses eNOS and CAT-1 and induces oxidative stress in mouse resistance arterioles // Am. J. Physiol. Heart Circ. Physiol. 2005. V. 288. № 1. H436–H444. https://doi.org/10.1152/ajpheart.00587.2004
  96. Sharma T., Padala P.R., Mehta J.L. Loneliness and social isolation: determinants of cardiovascular outcomes // Curr. Cardiol. Rev. 2021. V. 17. № 6. e051121190873. https://doi.org/10.2174/1573403X17666210129101845
  97. Schiavone S., Sorce S., Dubois-Dauphin M. et al. Involvement of NOX2 in the development of behavioral and pathologic alterations in isolated rats // Biol. Psychiatr. 2009. V. 66. № 4. P. 384–392. https://doi.org/10.1016/j.biopsych.2009.04.033
  98. Schiavone S., Jaquet V., Trabace L., Krause K.H. Severe life stress and oxidative stress in the brain: from animal models to human pathology // Antioxidants Redox Signal. 2013. V. 18. № 12. P. 1475–1490. https://doi.org/10.1089/ars.2012.4720
  99. Schraml E., Quan P., Stelzer I., Fuchs R. et al. Norepinephrine treatment and aging lead to systemic and intracellular oxidative stress in rats // Exp. Gerontol. 2007. V. 42. № 11. P. 1072– https://doi.org/1078. 10.1016/j.exger.2007.08.003
  100. Selye H. Stress and the General Adaptation Syndrome // Br. Med. J. 1950. V. 1. № 4667. P.1383–1392. https://doi.org/10.1136/bmj.1.4667.1383
  101. Siegrist J., Sies H. Disturbed redox homeostasis in oxidative distress: a molecular link from chronic psychosocial work stress to coronary heart disease? // Circ. Res. 2017. V. 121. № 2. P. 103–105. https://doi.org/10.1161/CIRCRESAHA.117.311182
  102. Silverman M. N., Esther M. S. Glucocorticoid regulation of inflammation and its behavioral and metabolic correlates: from HPA axis to glucocorticoid receptor dysfunction // Ann. NY Acad. Sci. 2012. V. 1261. P. 55–63. https://doi.org/10.1111/j.1749-6632.2012.06633.x
  103. Siuda D., Tobias S., Rus A., Xia N., Forstermann U., Li H. Dexamethasone upregulates Nox1 expression in vascular smooth muscle cells // Pharmacology. 2014. V. 94. № 1–2. P. 13–20. https://doi.org/10.1159/000365932
  104. Sloan E.K., Capitanio J.P., Tarara R.P. et al. Social stress enhances sympathetic innervation of primate lymph nodes: mechanisms and implications for viral pathogenesis // J. Neurosci. 2007. V. 27. № 33. P. 8857–8865. https://doi.org/10.1523/JNEUROSCI.1247-07.2007
  105. Sloan E.K., Capitanio J.P., Tarara R.P., Cole S.W. Social temperament and lymph node innervation // Brain Behav. Immun. 2008. V. 22. P. 717–726. https://doi.org/10.1016/j.bbi.2007.10.010
  106. Sloan E.K., Capitanio J.P., Cole S.W. Stress-induced remodeling of lymphoid innervation // Brain Behav. Immun. 2008. V. 22. P. 15–21. https://doi.org/10.1016/j.bbi.2007.06.011
  107. Smith A.S., Birnie A.K., French J.A. Social isolation affects partner-directed social behavior and cortisol during pair formation in marmosets, Callithrix geoffroyi // Physiol. Behav. 2011. V. 104. № 5. P. 955–961. https://doi.org/10.1016/j.physbeh.2011.06.014
  108. Smith K.J., Gavey S., Riddell N.E., Kontari P., Victor C. The association between loneliness, social isolation and inflammation: a systematic review and meta-analysis // Neurosci. Biobehav. Rev. 2020. V. 112. P. 519–541. https://doi.org/10.1016/j.neubiorev.2020.02.002
  109. Surkalim D.L., Luo M., Eres R. et al. The prevalence of loneliness across 113 countries: systematic review and meta-analysis // BMJ. 2022. V. 376. e067068. https://doi.org/10.1136/bmj-2021-067068
  110. Thayer J.F., Lane R.D. A Model of Neurovisceral Integration in Emotion Regulation and Dysregulation // J. Affect. Disord. 2000. V. 61. P. 201–216. https://doi.org/10.1016/S0165-0327(00)00338-4
  111. Treiber F.A., Kamarck T., Schneiderman N., Sheffield D., Kapuku G., Taylor T. Cardiovascular reactivity and development of preclinical and clinical disease states // Psychosom. Med. 2003. V. 65. № 1. P. 46–62. https://doi.org/10.1097/00006842-200301000-00007
  112. VanderWeele T.J. Hawkley L.C. Thisted R.A. Cacioppo J.T. A marginal structural model analysis for loneliness: Implications for intervention trials and clinical practice // J. Clin. Cons. Psychol. 2011. V. 79. № 2. P. 225–235. https://doi.org/10.1037/a0022610
  113. Valtorta N., Hanratty B. Loneliness, isolation and the health of older adults: do we need a new research agenda? // J. R Soc Med Suppl. 2012. V. 105. № 12. P. 518–522. https://doi.org/10.1258/jrsm.2012.120128
  114. Valtorta N.K., Kanaan M., Gilbody S. et al. Loneliness and social isolation as risk factors for coronary heart disease and stroke: systematic review and meta-analysis of longitudinal observational studies // Heart. 2016. V. 102. № 13. P. 1009–1016. https://doi.org/10.1136/heartjnl-2015-308790
  115. VanTieghem M., Korom M., Flannery J. et al. Longitudinal changes in amygdala, hippocampus and cortisol development following early caregiving adversity // Dev. Cogn. Neurosci. 2021. V. 48. 100916. https://doi.org/10.1016/j.dcn.2021.100916
  116. Victor C.R., Yang K. The prevalence of loneliness among adults: A case study of the United Kingdom // J. Psychol. 2012. V. 146. P. 85–104. https://doi.org/10.1080/00223980.2011.613875
  117. Wang X.R., Yang J.W., Ji C.S. et al. Inhibition of NADPH oxidase-dependent oxidative stress in the rostral ventrolateral medulla mediates the antihypertensive effects of acupuncture in spontaneously hypertensive rats // Hypertension. 2018. V. 71. № 2. P. 356–365. https://doi.org/10.1161/HYPERTENSIONAHA.117.09759
  118. Wenzel P., Knorr M., Kossmann S. et al. Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction // Circulation. 2011. V. 124. № 12. P. 1370–1381. https://doi.org/10.1161/CIRCULATIONAHA.111.034470
  119. White C.N., VanderDrift L.E., Heffernan K.S. Social isolation, cognitive decline, and cardiovascular disease risk // Curr. Opin. Psychol. 2015. V. 5. P. 18–23.
  120. Williams R.B., Barefoot J.C., Califf R. et al. Prognostic importance of social and economic resources among medically treated patients with angiographically documented coronary artery disease // JAMA. 1992. V. 267. P. 520–524.
  121. World Health Organization (WHO). 2020. Fact sheets: Cardiovascular diseases (CVDs). http://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
  122. Xia N., Li H. Loneliness, Social Isolation, and Cardiovascular Health // Antioxid. Redox Signal. 2018. V 28. № 9. P. 837–851. https://doi.org/10.1089/ars.2017.7312
  123. Yang S., Zhang L. Glucocorticoids and vascular reactivity // Curr. Vas.c Pharmacol. 2004. V. 2. № 1. P. 1–12. https://doi.org/10.2174/1570161043476483
  124. Yu Y., Wei S.G., Zhang Z.H. et al. Does aldosterone upregulate the brain renin-angiotensin system in rats with heart failure? // Hypertension. 2008. V. 51. № 3. P. 727–733. https://doi.org/10.1161/HYPERTENSIONAHA.107.099796

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. A diagram illustrating the relationship of loneliness and social isolation with cardiovascular diseases. Loneliness and SI lead to an increased autonomic response to stress and hyperactivity of the sympathetic nervous system, which is accompanied by an increase in total peripheral resistance (OPS), the development of arterial hypertension and coronary heart disease (CHD). SI is associated with higher levels of GC at rest due to excessive activation of GGAX, which leads to GC resistance and chronic inflammation. A high concentration of HA enhances the vasoconstrictive effect of catecholamines and reduces the synthesis of NO by endothelial cells. SI activates the renin-angiotensin-aldosterone system, which also increases OPS and leads to endothelial dysfunction. SI also increases the number of circulating natural killer cells (NK), fibrinogen and other inflammatory mediators, which accelerates the development of atherosclerosis. GGAX – hypothalamic-pituitary-adrenocortical system, GK – glucocorticoid hormones, NO – nitric oxide, IL-1β – interleukin -1β, IL-6 – interleukin 6, -TNFa – tumor necrosis factor α, SNC – sympathetic nervous system, OPS – general peripheral resistance, RAAS – renin-angiotensin-the aldosterone system, blood pressure – blood pressure, coronary artery disease – coronary heart disease.

Download (1MB)
3. Fig. 2. The bidirectional relationship between GGAX and the immune system. Glucocorticoids have a negative effect on the immune system, inhibiting further synthesis and release of pro-inflammatory cytokines (dotted red line). Glucocorticoids regulate their own production through negative feedback: through corticotropin-releasing hormone (CRH) in the paraventricular nucleus (PVN) of the hypothalamus and ACTH in the anterior pituitary lobe (dotted red line). Pro-inflammatory cytokines (TNF, IL-1 and IL-6) stimulate the release of glucocorticoids, acting at all three levels of GGAX (solid blue lines).

Download (1MB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies